
beeStanbul

RoboCup 3D Simulation League

Team Description Paper 2010

Bahadir Acar, Shahriar Asta, Sukru Avcuoglu, Maltam Hosseinzadeh Sarabi,
Itauma Itauma, Zehra Kavasoglu, Can Oztokmak, Ozdemir Sozmen, Nurdan

Topaloglu, and Sanem Sariel-Talay

Artificial Intelligence and Robotics Laboratory
Istanbul Technical University

Computer Engineering Department
Istanbul, TURKEY

http://air.cs.itu.edu.tr/beestanbul
sariel@itu.edu.tr

Abstract. The main objective of the beeStanbul project is to develop
an efficient software system to correctly model the behaviors of simulated
Nao robots in a competitive environment. The challenging and the most
time consuming part of the project was the design phase of the motions.
However, these motion models were successively developed towards the
achievement of the main goal. This team description paper presents im-
portant aspects of the overall system design and outlines the methods
used in different modules.

1 Introduction

The beeStanbul project from AIR laboratory (AIR lab) at Istanbul Technical
University (ITU) is the first initiative from ITU to participate in RoboCup com-
petitions. Earlier projects in the AIR lab were mainly on cooperative multirobot
systems. This challenging project was initiated in 2009 to apply the experience,
gained from earlier research on multirobot systems [1–3], to competitive envi-
ronments as well.

The beeStanbul team consists of undergraduate and graduate students from
the Computer Engineering Department of ITU. The main goal of the team is
contributing for the main objective of the RoboCup project by presenting an
efficient software system implementing several promising approaches which will
be successful during the main competition. The designed software system will
serve as a basis to apply several high-level intelligence, reasoning and learning
methods as well as to improve semantic predictions for reasoning.

The organization of the rest of the paper is as follows. Section 2 presents
the software system architecture for simulated Nao robots in the SimSpark sim-
ulation environment. Localization technique applied for robots is presented in
Section 3. Section 4 outlines the developed semantic analysis for reasoning on



decision conditions. The input for the vision module to perform this analysis is
the incoming vision information from the server. Different behaviors and corre-
sponding motions are illustrated in Section 5. Section 6 presents the designed
planning strategy. The distributed coordination and team strategy that is em-
ployed by each agent using its own agent model is discussed in Section 7, followed
by the conclusion in Section 8.

2 System Architecture

The overall software system consists of several modules that interact with each
other (Fig. 1). The Server Layer perfoms a two-way communication with the
SimSpark server, decodes incoming messages and encodes outgoing messages. In
order to carry out these operations, the SimSpark utilities and rcssnet library,
provided by SimSpark, are used.

Fig. 1. Overall Software Architecture



The Agent Layer is responsible for performing the main functionalities of
a robot. Each agent maintains its own world model for the environment and
the agent model for its own state. The Localization module is responsible for
determining the correct pose of the robot given an observation history. The
short term memory (in accordance with the observation history) of the robot is
maintained by ten consecutive frames in the world model. The Vision module is
responsible for determining the positions of the seen objects in the environment.
Based on the observation history, semantic analysis of the objects (including the
opponents) and related predictions are made. The robot decides on an action
based on its agent and world models, the selected team strategy and the assigned
role for itself. The motion command for the corresponding behavior is sent to the
Server Layer to generate the desired effect. Simultaneously, either informative
or query messages might be sent to teammates based on the selected role. The
planner for the goalie is different than that of the field players.

3 Localization

The global pose of a robot is determined based on landmark-based triangulation.
If three flags are observed, the robot localizes itself correctly based on the stan-
dard formulation. When only two or less flags are seen, the previous calculated
location information is used in the triangulation. Therefore, dead-reckoning from
no-flag zones to locations in which flags are seen is performed successively by
considering previously calculated pose information. A sample triangulation is
given in Fig. 2, in which the robot localizes itself by using distance information
from one corner flag and two goal flags. Even when only two flags are seen, the
robot localizes itself by using its short term memory. A more robust localization
method by using Kalman Filter ([4], [5]) was implemented and it will be used in
the final version of the system.

Fig. 2. The robot localizes itself based on the incoming distance values. When the flags
cannot be observed, the prediction is made based on the history.



4 Vision Semantics

The Vision module is responsible for identifying different objects in the field
of view. Based on the observation history, semantic analysis of the objects (in-
cluding the opponents) is made, and beliefs are formed. Semantic analysis is
needed to infer some useful information for the planner to efficiently select the
best action in the current situation. This useful information is related to some
boolean flags (e.g., whether the robot is facing the opponents goal), ball location
and its semantic state (e.g., the ball is coming from the right side). Predictions
are made for the movement direction of the objects (i.e., the ball and the op-
ponents) and their velocities. To make such an analysis, an observation history
(short term memory) is stored by means of the registered frames (environment
information) for up to ten cycles. The estimations are made by using the Kalman
Filter Model [4] for every object to be tracked. By means of these estimations,
passive stability of the robot is improved and the required underlying structure
for reflexive behaviors is formed (e.g., selection of the dive right behavior for
the goalie when the ball is coming towards the right side). Although the relative
locations are sent by the server, the global coordinates of the objects are cal-
culated by using localization information. The future work includes cooperative
object localization by using incoming information from other teammates.

5 Motion

Primitive behaviors that make up high-level plans and team strategies are de-
termined for robots. These behaviors are encoded as consecutive sequences of
joint angles to generate different motions for robots. Some videos of these be-
haviors are available online [6]. All goalie behaviors, kick and stand up behaviors
are generated by a detailed analysis and tuning of the joints on the simulator.
Hence, the joint angles for different phases of these behaviors are scripted.

Three different types of kick behaviors were developed: a side kick (Fig.4),
a tunable straight kick and a shoot. These behaviors were generated by fitting
relevant joint angles to sinusoidal phase function. The tunable (for short-long
distance) straight kick is designed for dribbling and passing to another teammate.
The shoot directly targets to score a goal. The side kick is designed to be used
whenever the position of the robot and the goal location is appropriate for scoring
a goal from a side position. Left and right side versions of all these kicks are
available. The side change (Right-Left) for a behavior can be performed by
switching the behaviors of the foot and changing the sign of the values for only
joint angles which change in the y axis.

A sample motion model is given for the shoot behavior as follows. The motion
is divided into four different phases. The joint angle calculations for the first two
phases are performed by sinusoidal fitting at specified intervals. The target angle
of a joint, θtarget, is evaluated by the following equation where the sin(wt + p)
is a sinusoidal signal with phase p, a is the amplitude, θshift is a shift value.

θtarget = a ∗ sin(wt + p) + θshift (1)



The angle change that will be applied to a joint is calculated based on the
error between the target joint angle and the current joint angle by the following
equation.

∆θjoint = (θtarget − θcurrent) ∗ 0.1 (2)

The third phase is designed in a different way than the previous phases
since the robot foot needs to be accelerated in this phase. An experiment was
performed to determine the maximum angular velocity for the knee joint. The
obtained experimental values are illustrated in Fig. 3. Based on these results,
the joint angle changes to accelerate the foot at this step are calculated by

∆θjoint = wmax ∗ (pkick/100) (3)

where wmax is the maximum angular velocity and pkick is a tunable parameter
to determine the speed of the shoot. After this phase, a sinusoidal fitting phase
as in initial phases is applied to end the motion.

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a
n

g
u

la
r
 v

e
lo

c
it

y
 

time to reach the maximum knee angle

Fig. 3. Experimental results to determine the maximum angular velocity for the knee
joint.

An active balancing walk model [7] was investigated and performed for walk
behaviors. In the initial phase, the walk trajectories of the robot are determined
by a Center of Mass (COM)-based model and, then, the joint angles are in-
versely calculated to perform the specified walk pattern. However, in the current
implementation, walk behavior joint angles are adopted from Robotoos 3D Team
joint angle parameters [8] which are provided as text files. Move forward, move
backwards and sidewalk behaviors are developed by using these parameters.

A stop behavior is designed to make robots switch from its current behavior to
another stably. For the cases when stability cannot be maintained, two different
stand up behaviors (i.e., from the front and the back) are developed. These stand
up behaviors were generated by directly tuning relevant joint angles for fast
and stable recoveries. Incoming perceptual inputs related to both gyro and foot



Fig. 4. The robot position after the side kick

Fig. 5. A goalie dive position

Fig. 6. Different phases of the stand up behavior

pressure values are used to detect whether the robot is fallen down. The side of
which it is fallen down can be decided by using gyro information. Foot pressure
value is also used to determine whether the stand up behavior is succeeded.
Sample gyro values for y and z axes are given in Fig. 7, illustrating changes in
their values when the robot falls down (left side) during walking. In this instable
case, x axis gyro values do not change, therefore, not illustrated in the figure.

Goalie has dive behaviors (Fig.5) to protect either sides of the goal which
can be accompanied by stand up behaviors (Fig.6). Furthermore, a goalie posi-
tion for protecting the goal was determined and scripted as a motion. However,
integration of this motion into the goalie planner has not been performed yet.
Current versions of these behaviors were successfully implemented in SimSpark.
The future work includes improving these behaviors by applying reinforcement
learning techniques on them.



-500

-400

-300

-200

-100

0

100

200

300

1 51 101 151 201 251 301 351 401 451

Gyro Z

Gyro Z

-300

-250

-200

-150

-100

-50

0

50

100

1 51 101 151 201 251 301 351 401 451

Gyro Y

Gyro Y

Fig. 7. Changes in the gyro values (in y and z axes) when the robot falls down (left
side) during the walk behavior.

There are three head motions which can be executed simultaneously with the
body motions. These are track object, search and reset.

Fig. 8. Goalie FSM



6 Planning

A priority-based action selection strategy is adapted in the design of the planner.
This approach is used to determine the most appropriate action for the robot in a
given situation. Although the priorities of the actions are fixed, their confidence
values are determined based on a list of predicates which change during runtime.
These predicates have different impacts on the confidence values of the actions.
Reflexive behaviors have usually priorities higher than more complicated behav-
iors. As a simple example, the stand up behavior has a higher priority than the
search behavior.

The goalie planner, on the other hand, is designed as an FSM, illustrated in
Fig. 8. According to this model, the goalie never leaves the goal location unless
it falls down or the server state is goalkick for the team. It has a specific goalie
position and two-sided dive behaviors. The goalie planner uses global localization
and estimated ball position information from the world model to decide on an
action.

A case-based playbook is being designed for the 3D simulation league. A case
library is constructed for different situations of the world state. By applying a
case-based reasoning approach, this library will be extended in the future. An
HTN type of hierarchical playbook decomposition strategy will also be integrated
into this approach.

7 Team Strategy

Since one of the players is directly assigned to the goalie role, its own planner is
used for its strategy. The remaining two robots may be in one of the following
roles: attacker, supporter or defender. This decision is simply made based on
the estimated ball position and velocity, and the global localization information.
Based on the selected team role and the current situation, the appropriate high-
level behaviors are executed based on the priority-base planner. Besides the
regular behaviors, different behaviors (e.g., ball search, flag search, etc.) are
developed for the robots to correct their world model including localization and
vision semantics information.

Role assignment is performed by a single-item auction method [1] where a
role is assigned based on the bids by the robots. An auction phase is performed
whenever needed. In some situations, in which the roles are obvious, there is no
need to offer an auction. This is due to the communication limitations of the
simulator. The role assignment and bid calculation is based on the area that the
field player is in (Fig. 9) and confidence values for the specific behaviors. An
HMM-based opponent modeling method is also being designed for recognizing
high-level plans of opponents.

8 Conclusion

This team description report outlines different parts of the developed software
system for beeStanbul robots. The beeStanbul is an ongoing project and promis-



Fig. 9. In different zones, the strategies are selected accordingly.

ing results have been obtained in the current version. The future work includes
improvements on some motions and their integration to the system. After revis-
ing some of the high-level team strategies, the base code will become a test-bed
to apply high-level intelligence and learning capabilities for soccer robots.

References

1. Sariel, S.: An Integrated Planning, Scheduling and Execution Framework for Multi-
Robot Cooperation and Coordination. Phd thesis, Istanbul Technical University,
Turkey (2007)

2. Sariel, S., Balch, T., Erdogan, N.: Multiple traveling robot problem: A solution
based on dynamic task selection and robust execution. IEEE/ASME Transactions
on Mechatronics 14(2) (2009) 198–206

3. Sariel, S., Balch, T., Erdogan, N.: Naval mine countermeasure missions: A dis-
tributed, incremental multirobot task selection scheme. IEEE Robotics and Au-
tomation Magazine 15(1) (2008) 45–52

4. Welch, G., Bishop, G.: An introduction to the kalman filter. Technical report,
Chapel Hill, NC, USA (1995)

5. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press (2001)
6. beeStanbul Media Files 2010. http://air.cs.itu.edu.tr/beestanbul
7. Graf, C., Härtl, A., Röfer, T., Laue, T.: A robust closed-loop gait for the standard

platform league humanoid. In Zhou, C., Pagello, E., Menegatti, E., Behnke, S.,
Röfer, T., eds.: Proc. of the 4th Workshop on Humanoid Soccer Robots at the 2009
IEEE-RAS International Conference on Humanoid Robots. (2009) 30 – 37

8. Robotoos Team Website. http://www.robotoos.com/ (2010)


