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Abstract

We propose a visual scene interpretation system for
cognitive robots to maintain a consistent world model
about their environments. This interpretation system is
for our lifelong experimental learning framework that
allows robots analyze failure contexts to ensure robust-
ness in their future tasks. To efficiently analyze fail-
ure contexts, scenes should be interpreted appropri-
ately. In our system, LINE-MOD and HS histograms are
used to recognize objects with/without textures. More-
over, depth-based segmentation is applied for identify-
ing unknown objects in the scene. This information is
also used to augment the recognition performance. The
world model includes not only the objects detected in
the environment but also their spatial relations to effi-
ciently represent contexts. Extracting unary and binary
relations such as on, on_ground, clear and near is use-
ful for symbolic representation of the scenes. We test
the performance of our system on recognizing objects,
determining spatial predicates, and maintaining consis-
tency of the world model of the robot in the real world.
Our preliminary results reveal that our system can be
successfully used to extract spatial relations in a scene
and to create a consistent model of the world by using
the information gathered from the onboard RGB-D sen-
sor as the robot explores its environment.

Introduction

A cognitive robot may face several types of failures during
the execution of its actions in the real world. These fail-
ures may arise due to the gap between the real-world facts
and their symbolic representations used during planning, un-
expected events that may change the current state of the
world or internal problems (Karapinar, Altan, and Sariel-
Talay 2012). The robot should gain experience from these
failures and use this experience in its future tasks, which re-
quires tight integration of continual planning, monitoring,
reasoning and lifelong experimental learning (Karapinar et
al. 2013). Efficient and consistent scene interpretation is a
prerequisite for these cognitive abilities. In this work, we
propose a consistent world modelling system for this pur-
pose. The system continually monitors the environment to
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detect and recognize objects and to determine spatial rela-
tions among them using visual data from an RGB-D camera
during the operation of the robot. As a motivating example
to illustrate the stated problem, consider an object manip-
ulation task in the blocks world domain. An example plan
constructed for a three-block problem is given in Figure 1.
In this toy problem, where all blocks are initially on the ta-
ble without any other objects on top of them (i.e., satisfying
the clear predicate), the aim is stacking three blocks on top
of each other. The required spatial predicates to be extracted
in this domain are on, on_table and clear. During the execu-
tion of its plan, the robot may fail in executing action stack.
Possible reasons for this failure might be a vision problem
or unstability of the destination stack. The relation between
the context and the failure can be specified as follows:

holding(a) A clear(b) A on_table(c) A on(b,c)
= StackFailure

(D

where the interpretations in the premise part of this conclu-
sion should be extracted from the scene. To ensure robust-
ness in such cases, the robot needs to continuously monitor
the state space for anomalies during action execution, which
makes it very important to possess a model of the world con-
sistent with the real environment.

Throughout the paper, we first present background infor-
mation on the areas of object recognition and scene inter-
pretation. Then, we describe the details of our system for
maintaining a knowledge base of objects and for extracting
spatial relations among them in order to monitor failures. We
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Figure 1: The execution trace for solving the blocks world
problem with a three-block case is given. (top) The states
(S;) and the actions (A;) taken at each state, (bottom) the
visual scene observed at each world state are presented.




then give empirical results of our approach followed by the
conclusions.

Background

In this section, we give a brief review of the approaches used
for recognizing objects and determining spatial relations in
a scene. Then, in the following section, we present our sys-
tem for maintaining a consistent world model with spatial
relations.

Object Recognition

There are various approaches for recognition of objects in
a scene using different types of visual clues. These ap-
proaches can be categorized as 2D object recognition ap-
proaches based on local invariant feature descriptors and
3D object recognition approaches based on surface normals
computed from the depth map. In the case of 2D color data,
local feature descriptors are used to determine patterns in
the image which differ from the other pixels in their neigh-
borhood. These distinguishing parts of the image (i.e., key-
points) are generally chosen by considering sharp changes
in color intensity and texture. To store the keypoints, de-
scriptors are computed around them which are suitable for
measuring their similarities. The idea of using local invari-
ant descriptors became popular when Scale-Invariant Fea-
ture Transform (SIFT) (Lowe 1999) was proposed in 1999.
SIFT is a keystone in the area, and it is used as the base
of the state of the art techniques. It is known to be invari-
ant against geometric transformations such as scale, rota-
tion, translation and affine transformation to a sufficient ex-
tent for a lot of applications. It is also claimed to perform
well against noises and changes in the illumination. How-
ever, SIFT-based approaches are known to have deficiencies
in recognizing textureless objects. Information on the 3D
shapes of the objects and their colors can be used in order to
deal with this problem. By the development of RGB-D sen-
sors, it is possible to get depth information as well as color
and texture information for this purpose. To utilize the depth
values captured using these types of sensors, different 3D
descriptors have been proposed (Aldoma et al. 2012). These
descriptors can be divided in two categories: local descrip-
tors and global descriptors. Local descriptors are used to de-
scribe the local geometric properties of distinguishing points
(i.e., keypoints) whereas global descriptors capture depth-
based features globally for a presegmented object without
storing local information for extracted descriptors. Among
these, LINE-MOD (Hinterstoisser et al. 2012) is unique as
it is a linearized multi-modal template matching approach
based on weak orientational features which can be used to
recognize objects very fast making this approach the most
suitable one for real-time robotic applications.

Spatial Relation Extraction

Detecting and representing structures with spatial relations
in a scene is known as the scene interpretation problem.
While this is a trivial task for humans, interpreting spatial
relations by processing visual information from artificial vi-
sion systems is not a totally solved problem for autonomous

agents (Neumann and Moller 2008). In the recent years,
some approaches have been proposed to solve this problem.
Some of these works use 2D visual information for extract-
ing qualitative spatial representations in a scene (Falomir et
al. 2011; Sokeh, Gould, and Renz 2013). In these works,
some topological and orientational relations among objects
are determined in the scene. In another work, Sjoo et al. have
proposed a method for determining topological spatial rela-
tions on and in among the objects, and this information is
used to guide the visual search of a robot for the objects in
the scene (Sjoo, Aydemir, and Jensfelt 2012). Object recog-
nition approach used in their work is based on matching
SIFT (Lowe 1999) keypoints on a monocular image of the
environment.

Moreover, there are studies on using semantic knowledge
for scene interpretation. In one of these studies, challenges
are identified for using high-level semantic knowledge to
reason about objects in the environment (Gurdu and Niichter
2013). In another study, a system is proposed for reasoning
about spatial relations based on context (e.g., nearby objects,
functional use etc.) in previously unseen scenes (Hawes et
al. 2012). In another work, proximity-based high-level rela-
tions (e.g., relative object positions to find objects that are
generally placed together) are determined by comparing Eu-
clidean distance between pairs of recognized objects in the
scene (Kasper, Jikel, and Dillmann 2011). This system re-
lies on 3D data obtained using an RGB-D sensor and an AR-
Toolkit marker acting as a reference coordinate system. Fi-
nally, Elfring et al. have proposed a remarkable approach
for associating data from different sources into a semanti-
cally rich world model (Elfring et al. 2013). Their approach
is based on using probabilistic multiple hypothesis anchor-
ing.

Our proposed work differs from the previous studies in
three ways. First, a 3D model of the world is created by
combining object recognition and segmentation results with
reasoning in a knowledge base. Second, spatial relations are
determined for a higher level task of detecting failures after
action executions. Third, the object recognition system used
in this work is more generic as it can deal with textureless
objects that do not have any distinguishing texture informa-
tion.

Consistent World Modelling

We propose a visual scene interpretation system to represent
world states symbolically for monitoring action execution
in cognitive robotic tasks. Our system involves two main
procedures, namely, object recognition to detect and label
objects in the scene, and scene interpretation to maintain a
consistent world model to represent some useful spatial re-
lations among objects for manipulation scenarios.

3D Object Recognition

In our system, we use LINE-MOD (Hinterstoisser et al.
2012) as a basis for recognizing objects in the scene. LINE-
MOD is a multi-modal template matching approach primar-
ily designed for textureless objects where each template en-
codes the surface normals and the color gradients on the



object from a viewpoint. We have used the beta version of
LINE-MOD which is available in OpenCV. In this version,
color information on the surface of the object is not taken
into account while constructing templates, and the color gra-
dients are extracted only around the boundaries. To exploit
the color information in a more efficient way, a histogram is
generated to model each template in Hue-Saturation-Value
(HSV) color space (Ersen, Sariel-Talay, and Yalcin 2013).
V (value) channel is not considered while constructing these
histograms as it is directly dependent on the intensity of the
light source in the environment (Figure 2(a)).
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Figure 2: The phases of (a) modelling and (b) recognizing
an object.

Object recognition is performed by matching multi-modal
LINE-MOD templates in the scene and then verifying the
matches by considering their corresponding HS histograms
(Figure 2(b)). Similarity threshold for template matching is
specified as 80% by taking into account the noisy data cap-
tured using an ordinary RGB-D sensor and a moderate value
(i.e., 0.4) is preferred as the threshold for correlation of the
histograms to enhance robustness against the changes in the
illumination.

Scene Interpretation

In the physical world, there is uncertainty in the data gath-
ered through sensors due to different factors like vary-
ing illumination conditions or dynamic environments. This
makes bare object recognition results unreliable for cogni-
tive robotic applications. To handle this issue, we have de-
vised a temporal scene interpretation system that combines
information from a sequence of frames rather than relying
only on the current scene to maintain a consistent knowl-
edge base (KB) of objects (0; € O). Moreover, spatial rela-
tions among existing objects are included in the KB in order
to keep a more comprehensive world model. The proposed
scene interpretation system is used in our Pioneer 3-AT robot
(Figure 3).

To maintain a consistent KB representing the world, it is
beneficial to use different sources or forms of sensory data
(s; € S). For this reason, we combine the recognition results
with depth-based segmentation. This enables the system to
gather more information about the objects that cannot be de-
tected by the recognition system until they are recognized
correctly. Moreover, this is also useful for detection of un-
known objects in the robot’s environment. For this purpose,
the 3D point cloud data acquired from the RGB-D sensor
is segmented using Euclidean clustering. To distinguish real
objects from clutter, the obtained segments are filtered con-
sidering both their sizes and whether they lie on the ground.
They are then included in the world model as yet-undefined
objects. Figure 4 shows an example in which LINE-MOD
(Figure 4(a)), HS histograms (Figure 4(b)) and segmenta-
tion outputs (Figure 4(c)) contribute to the KB (Figure 4(d)).
As seen in Figure 4(d), three objects are recognized and
included in the world model with their color information.

Figure 3: Our Pioneer 3-AT robot with a laser scanner and
Asus Xtion Pro Live RGB-D sensor mounted on top of it.
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Figure 4: Construction of the KB: (a) LINE-MOD results,
(b) LINE-MOD&HS results, (c) segmentation results and
(d) KB fusing all these information.

However, the leftmost object cannot be recognized as it is
not modelled, and only the segmentation result is taken into
account while adding it to the KB as an unknown object.
The certainty of each object o;’s existence in the environ-
ment at time step ¢ is represented in the KB as a confidence

value 0 < cf < 1 which is initially defined as 0 and updated
as follows whenever a new observation is taken:

-0.1, if > c; =0A> f;>0
8 8
ci=c A wicflc, i Y c; >0AdT < (2)
5 8j
0, otherwise

where cﬁj is the matching similarity of the recognition of
o; by the source s;. Similarity value for each extracted seg-
ment is taken as 1 since the segmentation algorithm does
not have a scale to measure reliability. w; is the weight of
the source s; which is empirically determined. According
to our experiments, object recognition using the color data
(i.e., LINE-MOD&HS) gives more reliable results than us-
ing only LINE-MOD and thus its wj is greater. The field of
view coefficient, 0 < fitj < 1, represents the expectation
that object o; is detected regarding its location and the field
of view of source s;. It is determined based on the bound-
aries of the corresponding field of view of a source. These
boundaries (as illustrated in Figure 5 for the RGB-D sensor)
are determined experimentally and define the visually reach-
able area from the sensor’s point of view. Establishing the
RGB-D sensor on the robot as the origin, the area indicated
in dark blue shows the limited region in which the vision
algorithms are observed to detect objects with the highest
probability. In the area indicated by light blue, visual detec-
tion performance is observed to decrease starting from the
curve separating the two regions onwards to the end of the
second region. Any information about the objects detected
in the latter area is considered to be more unreliable as the
location of the recognition gets closer to the outer boundary
of the field of view. No considerable recognition is expected
outside of these regions. Using these boundaries, ffj is cal-
culated as follows:

¢ max_dist — disty; 3)

9 maz_dist — def _dist
where dist;; is the distance of the object from the RGB-
D sensor, def_dist is the curve separating the two regions
onwards to the end of the second region, and maz_dist is
the outer boundary of the field of view. These regions are
also used to expect the detection of objects whose models
are registered to the KB previously and that are likely to be
seen because they lie in the field of view.

Figure 5: The field of view of our Pioneer 3-AT robot.



An example is given to illustrate how a recognized ob-
ject’s information is added into the KB (Figure 6). First, the
object is detected by only LINE-MOD, and its color infor-
mation is associated by LINE-MOD&HS. When the object
is taken out of the scene and thus cannot be detected by the
aforementioned methods any longer, its confidence is grad-
ually decreased over time until it is decided that the object
does not exist in the world any longer for some external
reason. This case is illustrated in Figure 7 where the confi-
dence on the recognition is indicated by the transparency of
the color: as the confidence value increases, the representing
color gains solidity.

According to Equation 2, if the expected objects in the
field of view of the robot are not detected (X, cﬁj =0A
Esj fj > 0), their confidence values are decreased. How-
ever, the confidence values of the objects that are not ex-
pected to be observed remain the same as in the following
equation:

Yo;, (Z ffj =0)=cl = cﬁ_l %)

An example scenario is presented in Figure 8 where the
generated map of the environment, the registered objects in
the KB and the 3D point cloud of the scene from the robot’s
instant view are overlapped. In this scenario, the confidence
values of the previously registered objects to the KB that are
not located in the robot’s field of view remain the same when
the robot turns left.

If two object types are recognized in overlapping 3D re-
gions in the environment, they are assumed to belong to
a single object, and the matching similarity (cﬁj) is used
to decide on the type of the object. Every different object
type recognized for a single item in the world is kept in a
weighted list: as one object type gets recognized more often,
its weight increases. The maximum weight value determines
the interpreted type. Objects only detected by the segmen-
tation algorithm keep no type information until the object
gets recognized by one of the vision algorithms. A similar

Figure 6: Adding a newly recognized object to the KB.

Figure 7: Updating the KB when an in-view object is re-
moved from the scene.

Figure 8: As the robot turns left and observes new objects,
the world model is updated while previously recognized out
of view objects are preserved in the KB.

weighted list is used for recognitions of different colors re-
garding a single object to determine its most probable color.

In addition to type, color and confidence, the location of
an existing object is adjusted with every new instance of its
detection. Upon every new detection of an existing object in
the KB, the position information regarding that recognition
is taken into account to determine a more correct estima-
tion for the location of the object. This adjustment helps in
correcting misplacements or tolerating small object move-
ments.

t—1 t—1 ) t t t
¢ cloc;T + 37 (wj- fi; - ¢ - locy)
S5

- 5)

t_
loc; =

where loc!™! is the registered location vector of o; at

timestep ¢ — 1 in the KB, and locﬁj is the newly found vector
coordinates for the same object.

The world model is also updated when the robot acts upon
its environment. If an object is being moved by the robot,
while it is sensed that it is still in the robot’s gripper, its lo-
cation is updated in accordance to the location of the gripper.
If the gripper is sensed empty (i.e., the robot puts the object



down or drops it before reaching its intended destination), it
is assumed that the object preserves its last known location,
until further information can be acquired by the robot from
its sensors.

Determining Spatial Object Relations Extracting spatial
predicates of and relations among objects is essential for
accurate creation of the world model and interpretation of
the scenes. Uncertainties are also taken into account for
the updates of relational predicates. The following are the
predicates considered for object manipulation tasks:

The on_ground/on_table relation: If the distance between
the bottom surface of an object and the ground/table is
observed to be within a certain threshold and no other
objects can be detected under this object, it is determined to
be on the ground or table. Surfaces are determined by plane
segmentation.

The on relation: If two objects’ projections on the ground
intersect, and the distance between the bottom surface of the
higher object and the top surface of the lower object is within
a certain threshold, the object at the higher position is deter-
mined to be on the lower object. The following formula is
used to check the on relation:

VO»;, Ok, ﬁ(DOzy(Oi, Ok) Vv ECzy(oi, Ok)) A UP(OZ‘, Ok)

= on(o;, ox)

©)

where DC(disconnected) and EC(externally connected) are
topological predicates of RCC8 (Randell, Cui, and Cohn
1992) and UP is a directional predicate which can be consid-
ered as the 3D expansion of N(north) from cardinal direction
calculus (Frank 1991).

As the objects on the top can obscure the ones on the bot-
tom from some points of view, once an on relation is es-
tablished and as long as the top object’s position does not
change enough to be considered as on_ground, the bottom
object is kept in the KB even if it cannot be detected by the
recognition algorithms any longer, which is formulated as
follows:

Y05, 0k, on(0;, 01) A —on_ground(o;) A Z cfwv =0
55 @)

t t—1
= C = Cr

Every on relation has a stability property, which is to be
used for failure detection. This value is computed as fol-
lows:

H siz€; dim /2 — of fset; dim

stability(on(os,0r)) = sizeram)2
i,dim

dim={=z,y}

®)

where size; 45, denotes the size of the top object o; in the
dimensions x and y parallel to the ground. The of fset; gim
denotes the offset of 0; (i.e., unsupported part by the bottom
object). If the top object’s complete area is supported by the
bottom object, the on relation is assumed to have a stability
of 1. Otherwise, the stability value decreases in correlation
with the percent of the top object that is unsupported.

In accordance with the robot’s movements, the on relation
is considered invalid if the top object is picked up by the
robot successfully. Any object that has no other objects
on top of it is considered to have the clear relation, which
indicates that the object is free to be picked up by the robot.

The near relation: The near predicate related to the prox-
imity of two objects is computed taking the relative sizes of
the objects into account as follows:

Yoi, o, (size; o + sizey > dist;y o)
N(size; y + sizeg,y > distik )
(size; , + sizeg , > distix, ) 9)

A\
A(—on(o;, o) A —on(og, 0;)
= near(0;, o)

where dist;, , denotes the distance between o; and oy, in di-
mension x. If the distance between any two objects’ centers
of mass is less than or equal to the sum of the two objects’
sizes in all three dimensions, the two objects are considered
to be near to each other. Note that on relation has a greater
importance than near relation, and these relations are con-
sidered to be mutually exclusive to each other.

Experimental Evaluation

The proposed system is evaluated in real time for different
possible situations using the real-world data captured by the
RGB-D sensor mounted on top of our Pioneer 3-AT robot.
We have selected a set of objects having different shapes and
colors as illustrated in Figure 9 for these experiments. These
objects involve two plastic bowling pins with different col-
ors, two small plastic balls with different colors, a bigger
beach ball and two paper boxes with different sizes and col-
ors. First, we have evaluated the overall object recognition
performance. Then, we have tested the scene interpretation
performance of the system on an object manipulation sce-
nario involving the objects shown in Figure 9.

In the first set of experiments, the overall recognition per-
formance has been evaluated by comparing the results of
LINE-MOD and our approach combining LINE-MOD with
HS histograms. The evaluation has been performed on a
scene involving only the objects of interest in 10 different
configurations for each object by changing its position. The

Figure 9: The objects used in the experiments.



results are illustrated in Table 1 and Table 2 as confusion ma-
trices. As expected, LINE-MOD is generally successful for
distinguishing objects by using differences in their geometri-
cal shapes. However, it has problems with similar shaped ob-
jects but with different colors. For example, it cannot distin-
guish different colored balls from each other. Furthermore,
it sometimes confuses different shaped objects as well due
to quantization errors (e.g., the black box is confused with
the similar sized balls in Table 1). Our approach based on
checking HS histogram correlations on the results obtained
using LINE-MOD leads to much better results in these sit-
uations as presented in Table 2. The only observed problem
with our approach is that false negatives may occur as some
correct results are eliminated by checking color correlation
in different illumination conditions.

In the second set of experiments, we have tested the suc-
cess of our system to maintain the consistency of the world
model using 10 trials for each criteria in varying conditions
(Figure 10). First, we have checked whether the model can
successfully detect undefined objects using the segmentation
output. We have seen that unknown objects can be detected
with 90% success rate. Segmentation only fails in detecting
objects when they touch each other. Next, we have evalu-
ated the consistency of knowledge base updates concern-
ing newly added objects to and removed objects from the
scene. The average success of the former one is 90% due to
recognition and/or segmentation errors, while the latter one
is observed to be 100% successful in all trials. As the object
manipulation update (i.e., holding an object, changing its lo-
cation and putting it down) and out of view object preser-
vation operations are not affected by the uncertainty factor
in object recognition or segmentation, the system performed
100% success in making the necessary updates.

In the final set of experiments, the performance of our
system for extracting spatial relations on (with its stability),

Table 1: Confusion matrix for LINE-MOD recognition.

World Model Consistency

unknown object detection

object addition

object removal

object manipulation update

out-of-view object preservation

Correct

EWrong

0%

20% 40%

Success Percentage

60% 80%

Precision Recall F-Score
on 90.00% 90.00% 90.00%
stable 88.89% 100.00% | 94.12%
clear 98.00% 98.00% 98.00%
on_ground | 98.00% 98.00% 98.00%
near 100.00% | 100.00% | 100.00%

100%

Figure 10: Performance of the proposed system on maintain-
ing a consistent world model.

Table 3: Performance of the proposed system on determining
spatial relations.

blue | red | purple | pink | beach | black | striped | not
pin |pin| ball | ball| ball | box | box |found

blue pin 10 | 10 7 7 0 0 0 0
red pin 10 | 10 5 6 0 0 0 0
purple ball| 0 | 0 10 10 3 0 0 0
pink ball 010 10 10 2 0 0 0
beachball | 0 | O 10 10 | 10 0 0 0
black box 0|0 3 3 1 10 0 0
striped box| 0 | O 2 2 0 6 10 0

Table 2: Confusion matrix for LINE-MOD&HS recognition.

blue | red | purple | pink | beach | black | striped | not

pin |pin| ball |ball| ball | box | box |found
blue pin 10 | O 0 0 0 0 0 0
red pin 0 |10 0 2 0 0 0 0
purple ball| 0 | 0 9 0 1 0 0 1
pink ball 0|0 0 9 0 0 0 1
beachball | 0 | O 0 0 10 0 0 0
blackbox | 0 | O 0 0 1 10 0 0
striped box| 0 | 0 0 1 0 2 10 0

clear, on_ground and near has been tested. The system is
evaluated in 30 different scenes where 10 scenes involve ob-
jects having on relation, 10 scenes involve objects having
near relation and the other scenes involve no pairwise object
relations. The results are presented in Table 3. As given in
these results, our system can be used to successfully detect
relations for all the objects used in on-ground object manipu-
lation scenarios. The highest error rates are observed for the
on relation and determining its stability where the former is
mainly caused by object recognition problems (e.g., recog-
nition of two black boxes on top of each other instead of the
striped box) and the latter is due to alignment problems. The
success in determining the on relation also accounts for the
errors in the clear and on_ground relations. near relation is
observed to be determined without any errors.

Conclusions

We have presented an approach for temporal scene inter-
pretation and automated extraction of spatial relations to
be used in a lifelong experimental learning framework for
ensuring robust task execution in cognitive robotic appli-
cations. Our approach is based on using visual information
extracted from the scenes captured as our ground robot Pio-
neer 3-AT explores its environment. This information is used
to build a knowledge base with locations of objects used in
manipulation scenarios and spatial relations among them in
the physical world. First, we have shown how our system
can be used to recognize objects with different geometric
shapes and colors. Then, we have given the details of the vi-



sual scene interpreter for specifying spatial relations among
the objects of interest and creating a consistent world model.
The results of the conducted experiments on our system in-
dicate that the system can be used to successfully model the
environment with objects and spatial relations among them
by combining recognition and segmentation results from ob-
served scenes as the robot performs its actions. In our future
studies, we plan to integrate temporal reasoning into spatial
reasoning in order to detect the possible causes of failures
from previous states (e.g., an unstable stack of blocks caus-
ing a failure when stacking another block on top of them).
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