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Abstract—When the tasks of a mission are interrelated
and subject to several resource constraints, more effortsra
needed to coordinate robots towards achieving the missioan
independent tasks. In this work, we formulate the Coordinaed
Task Selection Problem (CTSP) to form the basis of an efficign
dynamic task selection scheme for allocation of interrelatd
tasks of a complex mission to the members of a multi-robot
team. Since processing times of tasks are not exactly known i
advance, the incremental task selection scheme for the elide
tasks prevents redundant efforts as, instead of schedulingll of
the tasks, they are allocated to robots as needed. This appach
results in globally efficient solutions through mechanismghat
form priority based rough schedules and select the most suble
tasks from these schedules. Since our method is targeted aal
world task execution, communication requirements are kept
limited. Empirical evaluations of the proposed approach ae
performed on the Webots simulator and the real robots. The
results validate that the proposed approach is scalable, #fient
and suitable to the real world safe mission achievement.

I. INTRODUCTION

dependent on the actions of others. According to the classi-
fication of multi-agent organizations given in [2], coalitis
(agent groups) are formed to perform tasks in cooperation.
From our perspective, coalitions are suitable to meet the
simultaneous resource requirements on executing tasks wit
sub-teams of robots.

Our earlier experiments on different domains have re-
vealed that incremental assignments eliminate redundant
considerations for environments in which the best solution
is highly probable to change, and efficient bidding strasgi
ensure solutions to be efficient with a time-extended view of
the problem in a computationally tractable way [3]. In this
research, we extend this approach for interrelated complex
tasks with resource constraints.

Il. RELATED WORK

Task dependency has been analyzed in some earlier multi-
robot cooperation schemes. One of the earliest studies on

Multi-robot task allocation problem is better viewed as gnulti-robot coordination presents a generic scheme based
scheduling problem if there are interrelations among task8n @ distributed plan-merging process [4]. M+ scheme [5]
suggesting the use of Operation Research (OR) metho@®mbines local planning and negotiations on task allonatio
However, when the problem solving time is limited and/ofor robots having their own local world knowledge. [6] irtro
reallocations are frequently required at runtime, OR mettfiuces the mechanism concept in the framework M+CTA for
ods may not be directly applicable. Our research focusdBe resources used for multi-robot cooperation. Each robot
on distributed task execution to ensure robustness agaifi§s an individual plan and tasks are initially decomposed
failures and make the system suitable for environmentsevhefnd, then, allocated. After this planning step, robots tiago

reliable teleoperating is not continually possible. Besithe

with each other in order to adapt their plans in the multieiob

base difficulties, finding a solution with the OR methods irffontext.

a decentralized setting may need considerably high efiorts

One of the earlier algorithms for coalition formation

both computation and communication. In this case, hearistPf cooperative multi agent systems to handle multi-agent
methods are preferred to find good solutions in reasonabfgsource) requirements is presented in [7]. Another work

time.

on multi-robot coalition formation states the differences

interrelated tasks (project tasks) whose requirementssi t from sensor possessive point of view [8]. Locational sensor
execution may vary. These interrelations may corresporfpPabilities are considered in their work on top of the
to shared resources, producer/consumer, simultaneity afgalition evaluation step suggested in [7]. Their approach
task-subtask dependencies [1]. The Pick-Up/Delivery doma@Ssumes that capgbmtles are known apriori and goal|t|ons
tasks can be classified in this class because of the pi@® formed accordingly. ASyMTRe [9], uses reconfigurable
ducer/consumer type of dependency relation for the pick's_chema absFractlon for collaborative task exequtlon pliagi

up and the delivery tasks. More complicated interrelation§ensor sharing among robots, and connections among the
may be involved in mission representations. Simultaneo$hemas are dynamically formed at runtime. The information
execution requirements imply tightly coupled task exemuti labels provide a method for automating the interconnestion

where the actions implemented by each robot are highR/f schemas, enabling robots to share sensory and perceptual
information as needed. Their approach provides a way to
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([20], [11]). However, in this case, the global solution titya for each robot in a team is determining the next action to be
may be degraded if the decisions are made by just using tkelected in such a way that:

up-to-date knowledge available, ignoring the global solut , taskt; is not achieved yet,

quality. [12] models the multi-agent task assignment grobl  , totalreqnq for taskt; is less than or equal to the number
as a scheduling problem for the RoboCupRescue simulation of gvailable robots(Rsj = Urj) with reqcap C cap;
domain. In their approach, each agent locally chooses its (Condition-1,C1),

best task to accomplish using a scheduling algorithm. Then,, the given precedence conditions (Conditiorc2) are

the best local task information is exchanged among agents to  fyffilled,

find the global best task to perform. Earliest Due Date (EDD) , and the selected objectiv®) is minimized.

algorithm, not taking into account the future considenasio Including theCT SR, the Cooperative Mission Achieve-
and interrelations, is used to schedule the tasks.

ent problem CMAP) for each robot is formulated as
Our approach differs from earlier work in that incrementa(;n P EMAR)

task selection and distributed single item allocation fes ollows: _ . -
cooperation on the global plan to achieve the overall cormple 1) Select t_he task in such a way _that GeSPis sat_|s_f|ed,
mission with interrelated tasks. Coordinated task sedecti 2) Detgrmme the most appropriate _robot (coalition) ac-
backed up with a realistic world and mission representation cording to communication or beliefs to execute the

meets execution constraints simultaneously. We evaluate o 3 té‘Sk; rttasct)rI]ve ccinﬂ;ctjs,t if inyﬁ- ently. if itself i
approach on both a realistic simulator and real robots. ) xecute the selected task etliciently, 1T 11Selt 1S appro-
priate to execute, and

Ill. PROBLEM STATEMENT 4) Simultaneously respond to contingencies and return to

Multi-robot task allocation problem may be formulated lmhse Step 1, when necessary, until the mission is achieved.

on the well known OR problem, Resource Constrained IV. PROPOSEDAPPROACH

Project Scheduling Problem (RCPSP), which is known to be o . ,
NP-Hard ([13], [14]). The adapted version of the formulatio We propose a distributed, incremental ta§k selection ap-
for our multi-robot task allocation problem on project task Proach as a part of our framework, DEMIR-CF [15], for

is given as follows. A complex mission consists of a sefoPOtS in a multi-robot team where they need to cooper-

of tasks T = {ti,...,t} which have to be performed by a ate/coordinate to achieve complex missions includingttygh
of taske robotsé: {r1,...fm}. The tasks are interrelated coupled tasks that require diverse capabilities and dilec

by two types of constraints. First, precedence constrainf¢ork- coalitions i) are formed to meet simultaneous exe-

are defined between activities. These are given by relatiof&ion requirements of tasks;j synchronously by a group of
t <t;, wheret; < t; means that task cannot start before robots. An example of such a task that needs to be executed

taskt; is completed. Second, a taskequires a certain set of by a coalition of robots is pushing a heavy object requiring

capabilitiesreqcap and certain number of robots (resources)yn_or_e than one robot. Sizes of coz_;\htlons vary accordingéo th
reqnq to be performed. We relax the limitation constraintTinimum number of robots requirede@na) to execute the

on reqnq by allowing it to change during task executiontaSth" Robpts can detgct and recover from different types of
according to new requirements. Consequently, alternatigPntingencies by keeping representative models of thesyst

solutions may be found to allocate tasks to robots based &#°KS and the states of other robots, details of which agngiv
dynamic environmental factors. in [15]. A sample flow of the operations in our approach is

Difficulty of the task allocation problem arises whenSummarized as:
communication is limited and robots should autonomously 1) Mission task definitions are given to the robots (time-
perform task allocation at the same time with execution. Si- ~ extended representation of tasks with precedence con-
multaneous execution requirements make the problem more  straints to achieve overall mission).
challenging because each robot should be in its most seitabl 2) Each robot selects the most suitable candidate task to
execution in a future formation and estimate it correctly =~ €xecute by global cost consideration among mission

before making a decision. tasks (dynamic task selection/switching).

Since schedules are subject to change, we propose ar) Robots offer execution intentions for the tasks they
approach in which tasks are allocated to robots incremigntal have selected. During these declarations, inconsisten-
without ignoring the overall global solution quality inatof cies and conflicts are resolved.

initially scheduling all of the tasks. Therefore, the malmo  4) Coalitions are formed for the announced tasks, making
jective becomes determining a particular task to be asdigne ~ sure that each robot is in the most suitable coalition
whenever it is convenient in a precedence and resource feasi ~ considering the global solution quality.

ble manner, instead of scheduling all the tasks from scratch 5) Dynamic task selecting/switching proceeds simultane-

Although not a concern during assignments, preempiien ( ously with task execution. This allows switching be-
yielding) is possible to maintain the solution quality awnd t tween tasks if it is more profitable, handling real time
handle failures during the execution. Therefore, the allion contingencies at the same time. Then, corresponding

problem turns into a selection problem and may be stated as ~ auction and coalition formation procedures (2-4) are
follows: The Coordinated Task Selection Proble@iTGH applied continually.



A. Mission Representation ti. tj is an executable taskif at leastreqnq robots can be

A mission, in our approach, is represented by a directe@Signed for its executiofie; is atask in executiomy robot
acyclic graph (DAG) where each node represents a tadk OF coalitionC;. T is @ union of tasks in executiotk; is
and the directed arcs (conjunctive arcs) represent theepre@" €ligible task if it is an executable tasknd is neither in
dence constraints among tasks. Tasks are represented®¥gcution {e) nor achievedTg; is a union ofeligible tasks
septuples containing information regarding task exeoutio© robotrj. ty is anineligible task if it is not anexecutable

requirements and task status:id, type reqcap deplisy [@SK if it is already achieved or if it is not auitable task
reqng relinfo, precinfos. Ty is the union ofineligible tasks P(t;) is defined as the set

1) id: Each task is assigned a unique task id. of all predecessor tasks of the tapktaj is anactive taskif

. : ) - it is suitable executableand tasks inP(ta;) are completed.
2) type Each task is ass_omate_d with f_;lc_i_escnptmn of taSlT'Aj(g Tej) is the union of theactive tasks for robotrj. An
type and corresponding action definitions.

3 Requi s defi ial q inactive task set T = Tgj \ Taj contains the tasks that are
) Eﬁqt?ap eq_uwgr;nen S et'n?hSPtec'E SENSOrs and cabgjitable but notexecutableyet for robotr j- A critical task
Ies required to execute the task. tc is a task that has inflexibility from the point of view of
4) deplist Interrelations represent the precedence CONGsources and the robot is suitable for that task; is a

5 stramtsl\./l_ . ber of robot ed t ‘ prioritized list of critical tasksfor robotr;. A rough schedule
) :ﬁqrzu K |n|.rt'rr1]umdnltjm ol Od LO fo S required fo exet<_:u € j for robotr; is a priority queue of mission tasks thgt
e task, either determined before mission execution Qlco | o< it will execute.

6 dL:.”nfg .rugtlme_. tive inf i ding task t 1) Rough Schedule Generation Schentgach robotr;
) relinfo: Descriptive information regarding tas ypegenerates its rough schedule as a dynamic priority queue

SUCh. as, the IatesF IOC‘T’“'O”' th? target location, etc. similar to runqueues by considering its critical task list
7) precinfa Precaution information is used for con-sg%

X - . cj), the eligible task setTg;), the conjunctive arcs (if
tingency handling: the task state, the estimated ta y) and the requirements. Since each rahdtas different

achievement time and the current execution cost. capabilities, the eligible task setdg() and the priority
Information in a task representation can dynamically bgueue entries may be different. The critical tasks may be
modified during execution. In particulaelinfo, precinfo  determined either by negotiations or by beliefs. To elirtgna
andregno are subject to change during execution. Samplgytractable communication overhead, we use a rough belief
mission representations are given in [15]. update approach to form the critical tasks. Each critical
task is assigned a probability value to indicate its critiga
Critical task information is used for determining the task

In our approach, robots make instantaneous decisiopsquirements such as power, fuel etc.

(from their local perspectives) which are both precedemck a
resource feasible in the context of the global time extendeflgorithm 1 GeneratePriorityList for robot;
view of the problem. While the completion of the mission iS™jnput: Eligible task setTg)), active task setTh;)
the highest priority objective, performance related otiyes output: Topologically ordered and prioritized schedule liSg;
can additionally be targeted. Each robot initially forms a
rough schedule of its activities for an overall time extethde Ri =@ Stemp=¢ _

. - . . Sremp= DFS(Tg,) /*List generated by a depth-first search,
resolution of the mission. S|r_1ce thgse schedules are hlghlythe tasks are ordered by ascending order of estimated task
probable to change in dynamic environments and robots alsocompletion times*/
have the real time burdens of path planning, mapping etc., for all tj € Srempdo
the formed rough schedules are tentative and constructed Iif ti € Taj then
by computationally cheap methods (explained in the next insert i in Sgj as ordered by the cost value and the

: . precedence
subsection). Therefore, robots in our framework come up oo
with their rough schedules and refine their plans duringaictu insertt; to the front of g
fast execution when information available in the current end if
context enables them to make specific, detailed decisions. end for

Instead of scheduling all tasks in one step, we propose a
Dynamic Priority-based Task Selection Scheme (DPTSS) to Intuitively, robots do not deal with the ineligible tasks
allocate tasks to robots incrementally, considering tlobal (Ty), while forming the rough schedules. The eligible tasks
solution quality. The main objective of the proposed schem@g; = T \ Ty) for robot r; consists of active and inactive
is the incremental allocation of tasks by taking into acdountasks. The rough schedule of a robot constitutes a topabgic
the precedence and resource constraints whenever a new tager of the directed acyclic graph of the eligible mission
needs to be assigned, instead of scheduling all tasks fraasks. While generating the rough schedules, both preceden
scratch. constraints and cost values are considered. Basically each

The following definitions are needed to present our forrough schedule is a priority listT§, topological order)
mulation to the solution of th€ MAP. t; is a suitable task determined by Algorithm 1. While forming the topologically
for robotrj, if reqcap C cap; andr; is asuitable robotfor  ordered prioritized schedule list, a depth first search (DFS

B. Dynamic Priority-based Task Selection Scheme




is performed to topologically order the tasks by using thé\lgorithm 3 DPTSS Algorithm for robor

estimated task completion times. Next, the tasks are mdert input: Mission (M) task descriptions

into the list according to their completion times. If a task i ~Output: Action to be performed depending on the selected task
an active task, its priority key is computed as a com_blnatlon Determine thelk j, Ta; € Tej andLc; € Te,

of the precedence and the cost value. Tasks with equal xgenerateListOfCriticalTasks*/

precedence are ordered according to their cost values. Lej=9

The rough schedule of a robot is generated by execution of for eatghtle TEiqu%o
Algorithm 2 wherecurcs represents the remaining capacity et(ti) = gotsurablerobots

. - if Pet(tj) > 0.5 then
of robotrj andreqcst;) represents the required capacity for uﬁts(elgttT in Lc; prioritized by thePy(t)

taskt; in terms of the consumable resources (e.g fuel). end if
end for
- [SRj, ts] = GenerateRoughSchedul@:(, Taj, Lcj, curcs)
Algorithm 2 GenerateRoughSchedule for robigt if t;;gsq) then G Tajr Lej 3
input: Eligible task set Tgj), active task setTy), critical task if ts is the current taskhen .
list (LCj)v remaining Capacitydurcq) of robotrj Continue with the current execution
output: Rough scheduleSgj) of tasks, the top most suitable else ] . ] ]
active tasks Offer an auction to form a new coalition or directly begin
execution
ts = ¢; R= curcs;; achievable= true; end if
SRj = GeneratePriorityLisT j, Taj) else - . o 3
*Determines if the mission is achievable*/ if ts € Tie and it is profitable to join the coalitiothen
for eachtj € Lcj do Join the coalition
R=R—reqcgt;) else
if R< 0 then Stay idle
achievable= false end if
R= curcs end if
break
end if
end for C. Distributed Task Allocation Scheme
if SRj# @ and (op(SRj) € Lcj || R—reqegtop(Srj)) > 0) then o _ _
ts = top(SR)) In our distributed allocation approach, standard auction
end if procedures of CNP [16] are applied to announce ithe

tentionsof robots on task execution and select ttegno
number of robots for a coalition in a cost-profitable, scal-
- . %ble and tractable way. Additionally, precaution routines
the rough schedule, the remaining capacity of the robot %re added to check validity, consistency and coherence in

also monitored. If the capacity of the robot is not sufficien{hese negotiation steps [15]. Each robot intending to eecu

for executing all of its critical tasks and the mission IS, task announces an auction after determining its rough

believed to be unachievable accordingly, then the robot MaY.hedule and performing the DPTSS. Basically, auction

?eliCt ﬁn active task tobeﬁecute gvedn |f||t |s(;10:|a Cm'ow_]}?hannouncements are ways to illustrate intentions to execute
Or ISelfIn case New robots can be deployed. HOWEVeT, It e, gy ¢ for whichregno=1 or to select members of coalitions

missi_on Is b(_ali.eved. t_o be achievable, the r-obot may §elect 18 execute tasks for whiategno> 1. Therefore, if more than
stay idle until its c_r|t|caI tasks become active. Th|s_ SHUET one robot declares intentions to execute the same task, the
is done after forming the rough schedule. The actlye task Hore suitable one(s) is selected in the auction by consideri
top of the rough schedule that can be executable is the m?ﬁ% cost values. Auction negotiations and the selection of
suitable task to be executed for the robot. the suitable robots are performed in a completely distedut

2) DPTSS Algorithm:In our incremental allocation ap- fashion by the auctioneers. Single task items are auctioned
proach, the fundamental decision that each robot must makad allocated in auctions. The framework allows multiple
is the selection of the most suitable task from the active tasauctions to be carried out simultaneously. Validity colstro
set (Ta) by considering the eligible task séfi). Algorithm 3 are performed to ensure the system consistency, the details
presents the DPTSS in which a rough schedule is generatgfdwhich are given in [15].
before making a decision. The four different decisions made ] ] . ]
by robots after performing DPTSS are: (1) to continud?- Cost/Bid Evaluation and the Tie Breaking Rules
executing the current task (if any), (2) to join a coaliti¢®) The cost evaluation has a tremendous impact on the
to form a new coalition to perform a free task, or (4) to staysolution quality. Each task type as a part of the mission
idle. DPTSS process is repeated whenever a robot completegjuires a different cost evaluation to efficiently solve th
its current task execution or detects a change in its worldroblem. For now, we perform the simplest evaluations for
knowledge. Instead of regenerating the rough schedule e cost and bid determination and leave a more extended
each call of the DPTSS, the rough schedule may be repairadalysis on the cost function design for future work. Cost
whenever it is desirable. evaluation is performed by using the corresponding fumstio

In the rough schedule generation algorithm, while formin



TABLE |

expected from the approach, time to complete the overall
COSTEVALUATIONS FOR DIFFERENTTASKS p pp ! p

mission overly reduces with increasing numbers of robots,

validating the scalability of the approach. Since the items
[ Task Type(s) | Cost Function | are delivered to the center of the environment, an extreme
Locate/Pick-up| Estimated time to reach at the location of the object. variation for the expected utility in the total path Iength
Deliver/Push Estimated time to carry/push the object from the d b b . d il d i h
initial location to the final destination. traversed by robots Is not expected as lillustrated in the

Clean Estimated time to cover the whole environment.| corresponding graph.

3500

given in Table I. If a robot is executing a task when it recgive =
an auction message, it sends the bid value by considering t = l\*\l\lN
final destination of the current task as the location of itsel ¢ £
A common situation appears when the auctions are offer¢ .., S
at the same time by different robots either for the same tas =

or for different tasks. In our approach, if there are conifligt S MU B I S R
auctions for the same task, only the one with the smallest cos

value continues with the auction negotiation process. & ttrig. 1. Left: mission completion time (s); right: total pagngth (mm)
case of the Conﬂicting auctions for different tasks, a reseu results for the pick-up/delivery mission, with task numifieed at 20.
based rule (related to thegnoof the tasks) borrowed from

OR, Greatest Resource Requirements (GPR), is used [14{' A sample scenario for a complex mission which includes
asks for pushing boxes and picking-up and delivering items

E. Analysis of the Approach to a desired location is given in Figure 2 with five partici-
Our approach offers a polynomial time solution. Thepating robots. In the first scenario, two items are picked up
critical task list generation take®(nlog(n)) time for alln  and delivered to the destinations by the robots possessing
number of tasks. Achievability of the mission is determinedrippers. The two robots simultaneously and independently
in O(n). The complexity of the rough schedule generation ipush the two boxes. One of the robots stays idle during
bounded by the topological list generation algorithm whigh the mission execution. In the second scenario, since the
in the order ofO(n+e) (whereeis the number of conjunctive minimum required number of robots to push one of the boxes
arcs,i.e., hard dependencies). Therefore, the total complexitg two, the two robots form a coalition and push the heavy

become®(n(e+log(n))). If (e << n), the complexity of the box synchronously.

proposed approach reduces@on®log(n)). Another complex mission allocation scenario which in-
cludes tasks for pushing a box, carrying a cylindrical objec
to a final destination and then inspecting the environment is

We have conducted real world experiments and real-timenplemented by three Khepera Il robots and the execution
dynamic simulation experiments on Webots, the professiongcenario is illustrated as overlapped video images in Eigur
mobile robot simulation software [17]. In our simulation3 (Web-site reference for the corresponding videos: [18]).
experiments, each environment is represented as a 5m Dhere are interrelations between push, carry and inspect
5m 3D virtual world where 70mm-size simulated Kheperaasks respectively as in the graph depicted in Figure 4.
Il robots and objects are located. The environments afhile the objects can only be carried by the robots with
randomly generated VRML files containing the robots andrippers, the inspection task requires possessing a camera
the objects. Each Khepera Il robot is mainly equipped witlThe box can be pushed with all three robots. However, due
a 25MHz MC68331 micro-controller, 512K Flash and 512K
RAM memories and 8 infra-red sensors with limited obstacle
detection range as it is simulated in Webots. Communication
is achieved through wireless links in both simulations and
in the real world experiments. Real Kheperas have standard
radio turrets mounted on them to communicate through the
selected radio frequency.

The first set of experiments is targeted to analyze the
scalability of the proposed approach on the pick-up/defive
mission in which the tasks are interrelated by picking up
and delivery constraints. All picked up items are collected
in the center of the environment. The items are distributed
in the environment at fixed locations for each run. The robot
locations are randomly determined. Figure 1 illustrates th
mission completion times and the total path length trawkrse
by the robots for sets with different numbers of robots. A&ig. 2. Scenario 1-2: Robots push and carry boxes to the fewtirhtions.

V. EXPERIMENTS
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Fig. 3. Khepera Il robots achieve the overall mission of jngfearrying the objects to the final locations and insperthe area.

to the cost evaluations and the critical task list consiti@na

allocations are implemented accordingly. Robots obey the

interrelation constraints and each robot involves in aadlé

task execution for itself on which the decision is made in a

distributed manner.

[reqno = 1] [reqno=1] [reqno=1]

-~ [

g >

~ 7 ~7
[regno = 1] [reqno = 1]

Fig. 4. Real scenario mission graph with interrelated tasks

V1. CONCLUSION

We have described the details of a new approach tha[t9 ]
enables the efficient achievement of interrelated, resourc
constrained tasks of a mission by a multi-robot team. Th®
proposed approach relies on the distribution of the degisio
mechanism by introducing the CTSP and solves this problel#il]
through a scheme that involves the incremental selection
and allocation of tasks dynamically deriving the missioni2
execution. The main contributions of this approach are the
elimination of the redundant efforts for dealing with the[13
changing structure of the mission due to the uncertain
information or the dynamism of the environment, and orl4]
the other hand ensuring the time extended consideration Gp!
the problem through forming computationally efficient rbug

schedules, and the applicability of the approach efficyeortl
real robots with limited computational capacities.
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