Introduction to Scientific and Engineering Computing Lab 8

1. An experiment has produced the following data:

	t	0	0.5	1.0	6.0	7.0	9.0
ľ	у	0	1.6	2.0	2.0	1.5	0

We wish to interpolate the data with a smooth curve in the hope of obtaining reasonable values of y for values of t between the points at which measurements were taken. Plot experimental data overlay with the interpolated values. What is y at t = 4.

- 2. Determine the 4th degree polynomial y(x) that passes through the points (0,-1), (1, 1), (3, 3), (5, 2) and (6,-2).
- 3. The data points in the table lie on the plot of $f(x) = 4.8 \cos(\pi x/20)$. Interpolate this data at $x = 0, 0.5, 1.0, \dots, 8.0$ by the lowest degree polynomial and compare the results with the "exact" values given by y = f(x).

X	0.15	2.30	3.15	4.85	6.25	7.95
у	4.79867	4.49013	4.2243	3.47313	2.66674	1.51909

4. The table shows the drag coefficient c_D of a sphere as a function of Reynolds number Re. Find c_D at Re = 5, 50, 500 and 5000.

Hint: use log-log scale.

5. The kinematic viscosity μ_k of water varies with temperature T in the following manner:

T (°C)	0	21.1	37.8	54.4	71.1	87.8	100
$\mu_k (10^{-3} \text{ m}^2/\text{s})$	1.79	1.13	0.696	0.519	0.338	0.321	0.296

Interpolate μ_k at T = 10 °, 30 °, 60 ° and 90 °C