1. Evaluate the following MATLAB expressions yourself.
a. $2 / 2 * 3$
b. $2 / 3^{\wedge} 2$
c. $(2 / 3)^{\wedge} 2$
d. $2+3 * 4-4$
e. $2^{\wedge} 2 * 3 / 4+3$
f. $2^{\wedge}(2 * 3) /(4+3)$
g. $2 * 3+4$
h. $2^{\wedge} 3^{\wedge} 2$
i. $-4^{\wedge} 2$
2. Use MATLAB to evaluate the following expressions. The answers are in round brackets again.
a) $\sqrt{ } 2$
b) $\frac{3+4}{5+6}$
c) $\mathbf{2}^{\mathbf{3}^{\boldsymbol{2}}}$
d) Find the sum of 5 and 3 divided by their product
e)Find the square of 2π
f) $2 \pi^{2}$
g) $1 / \sqrt{2 \pi}$
h) $\frac{1}{2 \sqrt{\pi}}$
i) Find the cube root of the product of 2.3 and 4.5

$$
\begin{array}{lll}
\frac{1-\frac{2}{3+2}}{1+\frac{2}{3-2}} & \text { k) } 1000(1+0.15 / 12)^{60} & \text { l) }\left(0.0000123+5.678 \times 10^{-3}\right) \times 0.4567 \times 10^{-4}
\end{array}
$$

3. Try to avoid using unnecessary brackets in an expression. Can you spot the errors in the following expression (test your corrected version with MATLAB):
$\left(2(3+4) /(5 *(6+1))^{\wedge} 2\right.$
4. Set up a vector n with elements $1,2,3,4,5$. Use MATLAB array operations on the vector n to set up the following four vectors, each with five elements:
a) $2,4,6,8,10$
a) $1 / 2,1,3 / 2,2,5 / 2$
c) $1,1 / 2,1 / 3,1 / 4,1 / 5$
d) $1,1 / 2^{2}, 1 / 3^{2}, 1 / 4^{2}, 1 / 5^{2}$
5. Suppose a and b are defined as follows: $a=\left[\begin{array}{lll}2-1 & 5 & 0\end{array}\right] ; b=\left[\begin{array}{ccc}3 & 2 & -1\end{array}\right]$; Evaluate by hand the vector c in the following statements. Check your answers with MATLAB.
a) $\mathrm{c}=\mathrm{a}-\mathrm{b}$;
b) $c=b+a-3$;
c) $\mathrm{c}=2 * \mathrm{a}+\mathrm{a} .{ }^{\wedge} \mathrm{b}$;
d) $\mathrm{c}=\mathrm{b} . / \mathrm{a}$;
e) $c=b . \backslash$;
f) $c=a .^{\wedge} b$;
g) $c=2 .^{\wedge} b+a ;$
h) $\mathrm{c}=2 * \mathrm{~b} / 3 . * \mathrm{a}$;
i) $\mathrm{c}=\mathrm{b}^{*} 2 .{ }^{*} \mathrm{a}$;
6. Let $\mathrm{X}=\left[\begin{array}{lll}2 & 5 & 1\end{array}\right]$
a) Add 16 to each element
b) Add 3 to just the odd-index element.
c) Compute the square root of each element. d) Compute the square of each element.
7. Given a vector t, of length n, write down the Matlab expressions that will correctly compute the following.
a) $\ln \left(2+t+t^{2}\right)$
b) $e^{t}(1+\cos (3 t))$
c) $\cos ^{2} t+\sin ^{2} t$
d) $\cot (\mathrm{t})$
e) $\sec ^{2}(t)+\cot (t)-1$
8. Water freezes at 32° and boils at 212° on the Fahrenheit scale. If C and F are Celsius and Fahrenheit temperatures, the formula $\mathrm{F}=9 \mathrm{C} / 5+32$, converts from Celsius to Fahrenheit. Use
the MATLAB command line to convert a temperature of $37^{\circ} \mathrm{C}$ (normal human temperature) to Fahrenheit (98.6).
9. Engineers often have to convert from one unit of measurement to another; this can be tricky sometimes. You need to think through the process carefully. For example, convert 5 acres to hectares, given that an acre is 4840 square yards, a yard is 36 inches, an inch is 2.54 cm , and a hectare is $10000 \mathrm{~m}^{2}$.
