1. Calculate the following summation with user input n, and plot S versus k graph.

$$
s=\sum_{k=0}^{n} \frac{1}{k^{2}+1}
$$

2. A function that classifies a flow according to the values of its Reynolds (Re) and Mach (Ma) numbers, such that if $\mathrm{Re}<2000$, the flow is laminar; if $2000<\mathrm{Re}<5000$, the flow is transitional; if $\operatorname{Re}>5000$, the flow is turbulent; if $\mathrm{Ma}<1$, the flow is sub-sonic, if $\mathrm{Ma}=1$, the flow is sonic; and, if Ma >1, the flow is super-sonic. Write an m-file classifying the flow according to its Reynolds and Mach numbers.
3. In one of your calculus classes you probably learned that $\sin (x)$ can be expanded in a power series, $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+-\ldots$. Compare $\sin x$ to the first two and first three terms of this expansion for $x=0.01,0.1$ and 1 .
4. In what follows, the value p_{n} should approach π. Let $p_{2}=2 \sqrt{2}$, and

$$
p_{n+1}=2^{n} \sqrt{2\left(1-\sqrt{1-\left(p_{n} / 2^{n}\right)^{2}}\right)}
$$

compute p_{n} for $\mathrm{n}=3,4, \ldots . ., 20$ by the above formula. Plot the absolute error versus n graph.

