1. A rocket is going vertically up and expels fuel at a velocity $(u) 2000 \mathrm{~m} / \mathrm{s}$ at a consumption rate (q) of $2100 \mathrm{~kg} / \mathrm{s}$. The initial mass of the rocket $\left(m_{0}\right)$ is $140,000 \mathrm{~kg}$. Applying Newton's second law of motion one can obtain the following equation relating the distance with time.

$$
\frac{d x}{d t}=u \ln \left(\frac{m_{0}}{m_{0}-q t}\right)-g t
$$

If the rocket starts from rest at $t=0$ seconds, calculate the vertical distance covered by the rocket from $t=8$ to $t=30$ seconds, taking $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
2. A company advertises that every roll of toilet paper has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is given by

$$
P(y \geq 250)=\int_{250}^{\infty} 0.3515 e^{-0.3881(y-252.2)^{2}} d y
$$

Approximating the above integral as

$$
P(y \geq 250)=\int_{250}^{270} 0.3515 e^{-0.3881(y-252.2)^{2}} d y
$$

by using n segment ($n=4,8,16$). Assume that the exact value of the above integral is 0.97377 , calculate error for each n.

Neither use trap nor quad functions in your solutions.

