

Introduction to Scientific and Engineering Computing, BIL108E

INTRODUCTION TO SCIENTIFIC & ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

April 12, 2010

Tentative Course Schedule, CRN 24023

troduction Scientific and ngineering omputing, BII 108F	Week	Date	Topics
	1	Feb 08	Introduction to Scientific and Engineering Computing
Karaman	2	Feb. 15	Introduction to Program Computing Environment
	3	Feb. 22	Variables, Operations and Simple Plot
	4	Mar. 01	Algorithms and Logic Operators
	5	Mar. 08	Flow Control, Errors and Source of Errors
	6	Mar. 15	Functions
	6	Mar. 20	Exam 1
	7	Mar. 22	Arrays
	8	Mar. 29	Solving of Simple Equations
	9	Apr. 05	Polynomials Examples
	10	Apr. 12	Applications of Curve Fitting
	11	Apr. 19	Applications of Interpolation
	11	Apr. 18	Exam 2
	12	Apr. 26	Applications of Numerical Integration
	13	May 03	Symbolic Mathematics
	14	May 10	Ordinary Differential Equation (ODE) Solutions with Built-in Functions

LECTURE # 10

Introduction to Scientific and Engineering Computing, BIL108E

LECTURE # 10

NUMERICAL APPROXIMATION

- **1** NUMERICAL DIFFERENTIATION
 - **1** FORWARD FINITE DIFFERENCE
 - **2** BACKWARD FINITE DIFFERENCE
 - **3** CENTERED FINITE DIFFERENCE
- **2** NUMERICAL INTEGRATION
 - 1 MIDPOINT QUADRATURE
 - 2 TRAPEZOIDAL QUADRATURE
 - **3** SIMPSON QUADRATURE
 - 4 GAUB-LEGENDRE FORMULA
 - 5 ADAPTIVE SIMPSON FORMULA

Introduction

to Scientific

and

Engineering

Computing, BIL108E

NUMERICAL APPROXIMATION

NUMERICAL INTEGRATION AND DIFFERENTIATION

- To integrate a generic function, it is not possible to find a closed form of the primitive function.
- When a primitive is known, its use might not be easy.

$$f(x) = \cos(4x)\cos(3\sin(x))$$

$$\int_{0}^{\pi} f(x) \, dx = \pi(\frac{3}{2}) \sum_{k=0}^{\infty} \frac{(-9/4)^{k}}{k!(k+4)!}$$

- Calculation on experimental measurements.
- Use numerical methods to approximate the differentiation or integration.

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

- Consider a function $f : [a, b] \longrightarrow \mathbb{R}$
- Find an approximation of the first derivative(f') of f at a generic point x̄ in interval (a, b).

$$\Delta f^+(\bar{x}) = \frac{f(\bar{x}+h) - f(\bar{x})}{h}$$

is an approximation of $f'(\bar{x})$, for h sufficiently small and positive h.

The above approximation is defined as FORWARD FINITE DIFFERENCE.

Introduction

to Scientific

and

Engineering

Computing,

BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

APPROXIMATION OF FUNCTION DERIVATIVES

- To estimate the error, check the difference between the real value and approximation
- With using Taylor series

$$f(\bar{x}+h) = f(\bar{x}) + h f'(\bar{x}) + \frac{h^2}{2} f''(\xi)$$

Here ξ is in the interval $(\bar{x}, \bar{x} + h)$

• Then the forward finite difference is

$$\Delta f^+(\bar{x}) = f'(\bar{x}) + \frac{h}{2}f''(\xi)$$

• $\Delta f^+(\bar{x})$ is a first order approximation of $f'(\bar{x})$

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

 With a similar procedure for a sufficiently small and negative h.

$$\Delta f^{-}(\bar{x}) = \frac{f(\bar{x}) - f(\bar{x} - h)}{h}$$

This is called BACKWARD FINITE DIFFERENCE

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering

Computing, BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

CENTERED FINITE DIFFERENCE

$$\Delta f(\bar{x}) = \frac{f(\bar{x}+h) - f(\bar{x}-h)}{2h}$$

- This formula provides second –order approximation
- Error estimation

$$f'(\bar{x}) - \Delta f(\bar{x}) = \frac{h^2}{12}(f'''(\xi) + f'''(\eta))$$

Introductio to Scientific and Engineering Computing BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

- When $\bar{x} = x_i$ and $x_i = x_0 + i h$
 - with h > 0, $f'(x_i)$ is approximated with
 - FORWARD FINITE DIFFERENCE
 - BACKWARD FINITE DIFFERENCE
 - CENTERED FINITE DIFFERENCE

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

Note: With the centered finite difference approximation, the centered formula cannot be used at beginning and ending points of interval. For this points use

 $\frac{1}{2h}[-3f(x_0)+4f(x_1)-f(x_2)]$ at x_0 $\frac{1}{2h}[3f(x_n) - 4f(x_{n-1}) + f(x_{n-2})]$ at x_n

Introduction

and

Computing,

BIL108E

APPROXIMATION OF FUNCTION DERIVATIVES

to Scientific Engineering

EXAMPLE:

• The height q(t) reached at time t by a fluid in a straight cylinder of radius R = 1m with a circular hole of radius r = 0.1m on the bottom, has been measured every 5 seconds yielding the following values

t	0.0	5.0	10.0	15.0	20.0
q(t)	0.6350	0.5336	0.4410	0.3572	0.2822

We want to compute an approximation of the emptying velocity q(t) of the cylinder, then compare it with the one predicted by Torricelli's law: $q'(t) = -\gamma (r/R)^2 \sqrt{g q(t)}$,

where g is the gravitational acceleration and $\gamma = 0.6$ is a correction factor.

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	0.0	5.0	10.0	15.0	20.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q(t)	0.6350	0.5336	0.4410	0.3572	0.2822
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	q '(t)	-0.0212	-0.0194	-0.0176	-0.0159	-0.0141
Δq ⁻ -0.0203 -0.0185 -0.0168 -0.0150 Δq -0.0194 -0.0176 -0.0159	Δq^+	-0.0203	-0.0185	-0.0168	-0.0150	
Δq -0.0194 -0.0176 -0.0159	Δq^{-}		-0.0203	-0.0185	-0.0168	-0.0150
	Δq		-0.0194	-0.0176	-0.0159	

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction

to Scientific

and

Engineering

Computing,

APPROXIMATION OF FUNCTION DERIVATIVES

MATLAB FUNCTIONS cont'd.

BIL108E

I	Command Window
	>> help diff
	DIFF Difference and approximate derivative.
	DIFF(X), for a vector X, is [X(2)-X(1) X(3)-X(2) X(n)-X(n-1)].
	DIFF(X), for a matrix X, is the matrix of row differences,
	[X(2:n,:) - X(1:n-1,:)].
	DIFF(X), for an N-D array X, is the difference along the first
	non-singleton dimension of X.
	DIFF(X,N) is the N-th order difference along the first non-singleton
	dimension (denote it by DIM). If N >= size(X,DIM), DIFF takes
	successive differences along the next non-singleton dimension.
	DIFF(X,N,DIM) is the Nth difference function along dimension DIM.
	If N >= size(X,DIM), DIFF returns an empty array.
	Examples:
	h = .001; x = 0:h:pi;
	diff(sin(x.^2))/h is an approximation to 2*cos(x.^2).*x
	diff((1:10).^2) is 3:2:19

If X = [3 7 5

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific

and

Engineering

EXAMPLE :

Computing, BIL108E File Edit Debug Desktop Window Help 🚹 🗃 🔏 🐂 🛱 🤊 🥲 🐉 📆 🖹 🛛 Current Directory /media/Transcend/source 💌 ... 🖻 Shortcuts 🖪 How to Add 💽 What's New Current Directory 🕂 🗖 🔻 🛪 🖬 🕻 Com 🙃 🖆 🖪 🗟 🔹 >> type ex_10_1.m All Files 💪 Type 📖 advanced_... TXT F h=0.001: ex_10_01.m M-file x=0:h:pi; ex_10_02.m M-file_d1 = diff(sin(x.^2))/h; ex_10_1.m M-file d1(1) ex_10_2.m M-file d1(end) ex_10_3a.m M-file 🗋 ex_10_3b.m M-fil 🕞 Command History + - * × >> ls quad1_ex %-- 4/13/10 10:5 ex_10_1 clc type ex_10_1.m **▲** Start

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE :

Introd

to Sci

Engin

Comp

BIL1

APPROXIMATION OF FUNCTION DERIVATIVES

	MATLAB 7.6.0 (R2008a)	12
Eile Edit Debug Desktop Wind	dow Help	
1 😂 🕹 🖷 🛍 🤊 😁 🎒 1	🐒 🖹 🧶 Current Directory /media/Transcend/source 💌 🛄 😰	
Shortcuts 🖪 How to Add 🔝 What's	New	
Current Directory + - * × *	Command Window	3
	<pre>>> type ex_10_2.m</pre>	
All Files Z Type		
advanced IXI F	diff((1:10).^2)	
ex_10_01.m M-file	>>	
ex_10_02.m M-file		
ex_10_1.m M-file		
ex_10_2.m M-file		
ex_10_3a.m M-file		
ex_10_3D.m M-TII(
Command History		
ex 10 1		
type ex_10_1.m		
ex_10_1		
-clc		

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

Karaman

EXAMPLE :

4		MATH	AB 7.6.0	(R2008a)						4
<u>Eile Edit Debug D</u> esktop <u>W</u> i	ndow <u>H</u> elp									
🔁 😂 🕷 🛍 🔊 ୯ 💧	🗂 🖹 🛛 🖉 🖓 Curr	rent Directory /m	edia/Transce	nd/source	• 🖻					
Shortcuts 🖪 How to Add 🖪 What	's New									
Current Directory 🗝 🛪 🗤	Command Winde	01V							-+ E + C	×
🖻 🖆 📓 🖥 🔹	>> type e	x_10_2.m								
All Files ∠ Type										
📖 advanced TXT F	diff((1:1	0).^2)								
🖺 ex_10_01.m M-fil	>> ex_10_3	2								
ex_10_02.m M-file										
ex_10_1.m M-file	ans =									
ex_10_2.m M-file	and the second sec									
🖆 ex_10_3a.m M-file	3	57	9	11	13	15	17	19		
🖺 ex_10_3b.m M-fil 🖛										
	>>									
Command History + I * ×										
clc										
type or 10 1 m										
cype ch_10_1										
ex_10_1										
CIC										
-τype ex_10_2.m										
ex_10_2										
▲ <u>S</u> tart									0	4

The second second

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific

and

Engineering

EXAMPLE :

Computing, BIL108E File Edit Debug Desktop Window Help 🚹 🗃 👗 🐂 🛱 🤊 🥲 👪 🗊 🖹 🧶 Current Directory /media/Transcend/source 💌 ... 🖻 Shortcuts 🛃 How to Add 🖪 What's New Current Directory 🏎 🗆 🛪 🗙 🕪 🔽 Com 🙃 🖆 🖪 🗟 🔹 >> type ex_10_3a.m All Files L Type Ⅲ advanced_... TXT F X = [3 7 5 🖺 ex_10_01.m M-fil 🦲 0 9 2] 🖺 ex_10_02.m M-fil diff(X, 1, 1) ex_10_1.m M-file >> 🖺 ex_10_2.m M-file 🖺 ex 10 3a.m M-file 🗅 ex_10_3b.m M-file Type ex_10_1.Ⅲ▲ ex_10_1 clc type ex_10_2.m ex_10_2 clc 10 71 A 📣 <u>S</u>tart

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE :

A			MATLA	AB 7,6.0 (R2008a)	- 0	1
<u>File Edit Debug Desktop Wir</u>	ndow <u>H</u> elp					-
1 🖸 🕹 👗 🛍 🤊 😁 📥	🗂 🖹 🛛 🖉 Cu	rent Dire	ctory /me	dia/Transcend/source 💌 🛄 😢		
Shortcuts 🗷 How to Add 🗷 What	s New					
Current Directory 🖛 🖬 🛪 🛪 🗤	Command Wind	low.				
🔞 🚰 🖪 🗟 🔸	>> type e	x_10_	3a.m			-
All Files ∠ Type						
🔠 advanced TXT F	X = [3 7	5				
🖺 ex_10_01.m M-fil 🦊	0 9	2]				
🖺 ex_10_02.m M-file	diff(X, 1	, 1)				
ex_10_1.m M-file	>> ex_10_	3a				
🖺 ex_10_2.m M-file						
🖺 ex_10_3a.m M-file	X =					
ex_10_3b.m M-file						
	3	7	5			
Command History 🗰 🖬 🛪 🗙	0	9	2			
clc 🔶						
type ex_10_2.m						
ex_10_2	ans =					
clc						
type ex_10_3a.	-3	2	-3			
ex_10_3a 🗸						
	>>					
Start						10.4

Introduct

to Scienti

Engineer

Computi

BIL108

and

APPROXIMATION OF FUNCTION DERIVATIVES

4	MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop	(indow Help	
2 🖸 🐸 👗 🖷 🛱 🤊 (° 🕯	🖡 📆 💼 🧐 Current Directory: //media/Transcend/source 💌 🛄 💼	
Shortcuts 🖪 How to Add 🗷 Wh	at's New	
Current Directory + C * × W	Command Window	41 0
	$d = \frac{1}{2}$	
All Files ∠ Type	1111(x, 1, 1)	
advanced IAI F	>> ex_10_5a	
ex_10_01.m M-me	× _	
ex_10_02.m M-Int	A -	
ex_IO_I.m M-Inc	2 7 5	
Nex_10_2.m M-file		
ex_10_5a.m M-Int	0 9 2	
ex_10_50.m M-Int		
Command History +	ans -	
type ex 10 2 m		
ex 10 2	-3 7 -3	
	ss type av 10 3h m	
Type ex_10_3a.	>> cype ex_10_50.m	
ex_10_3a	1555(V 1 2)	
type ex_10_3b.r.	unin(A, I, Z)	
	>>>	
Start		

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE :

≜			MATLAB	7.6.0 (R2008a)	
<u>Eile Edit Debug D</u> esktop <u>W</u> in	idow <u>H</u> elp				
1 6 × 1 6 7 C 8	🗊 🖹 🛛 🖉 🕻	urrent Dire	ctory /media/1	Franscend/source 💌 🔜 💼	
Shortcuts 🖪 How to Add 🖪 What's	s New				
Current Directory 🗝 🛪 🛪 🗤 🕨	Command Wir	ndow			× 5 🗆 H
📾 🖆 🖪 🚽 -	0	9	2		<u> </u>
All Files ∠ Type					
🖩 advanced TXT F					
🖺 ex_10_01.m M-fil	ans =				
🖺 ex_10_02.m M-file					
ex_10_1.m M-file	-3	2	-3		
ex_10_2.m M-file					
ex_10_3a.m M-file	>> type	ex_10_	3b.m		
ex_10_3b.m M-file					
•	diff(X,	1, 2)			
Command History 🗰 🛪 🗙	>> ex_10	_3b			
ex_10_2 🏻 ᄎ					22
-clc	ans =				
type ex 10 3a.					
ex 10 3a	4	-2			
type or 10 3h	9	-7			
type ex_10_50.1					
ex_10_30	>>				
♠ Start	L				04

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific

and

Engineering

EXAMPLE :

Computing,	, матьав 7.6,0 (R2008a)								
BIL108E	Elle Edit Debug Desktop Window Help								
Karaman	🛅 🗃 😹 ங 🛱 🤊 🕫 🕻 🐉 🗊 🖹 🔮 Current Directory. //media/Transcend/source 🔍 🕲								
	Shortcuts Z How to Add Z What's New								
	Current Directory 🗝 🗖 🗙 🍿 Command Window	× 5 🗆 🕂							
	🖻 🖆 👼 🗟 - 🛛 🛛 ans =	-							
	All Files 🗠 Type								
	🛄 advanced TXT F 📥 -3 2 -3								
	🕾 ex_10_01.m M-fil								
	Sex_10_02.m M-file >> type ex_10_3b.m								
	ex_10_1.m M-file								
	$ex_{10,2,m}$ M-file diff(X, 1, 2)								
	ex 10 3a.m M-file >> ex_10_3b								
	ex 10 3b.m M-file								
	ans =								
	Command History 🗰 🖬 🗙								
	clc 4 -2								
	-type ex 10 3a 9 -7								
	- x 10 2a								
	two so 10 styles by 10 3c m								
	Type ex_10_sp.1								
	ex_10_{3b}								
	-type ex_10_3c.								
	<u>♠ Start</u>	<u>a</u>							

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE :

1	MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop	Mindow Help	7
1 🖸 🕹 👗 🛍 🤊 😁 💧	🕽 🗊 🥹 Current Directory /media/Transcend/source 💌 😢	
Shortcuts 🖪 How to Add 💽 Wh	at's New	
Current Directory 🛏 🖬 🛪 🖤	Command Window	-+ 🗆 + ×
🙃 🖆 📓 🗟 🔹	>> ex_10_3b	-
All Files ∠ Type		
🖽 advanced TXT F	ans =	
🖆 ex_10_01.m M-file		
🖺 ex_10_02.m M-file	4 -2	
ex_10_1.m M-file	9 -7	
ex_10_2.m M-file		
🖺 ex_10_3a.m M-file	>> type ex_10_3c.m	
ex_10_3b.m M-file		
	diff(X, 2, 2)	
Command History 🗰 🖬 🛪 >	>> ex_10_3c	
type ex_10_3a.		
ex_10_3a	ans =	
type ex_10_3b.		
ex_10_3b	-6	
type ex_10_3c.	-16	
ex_10_3c		
()	>>	-
▲ Start		0

Introduc

to Scient

Engineer

Comput

BIL108

and

APPROXIMATION OF FUNCTION DERIVATIVES

MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop Window Help	
: 🗋 😂 👗 🐂 🛅 🤊 🍽 <table-of-contents> 📆 🗐 🗐 V Current Directory /media/Transcend/source 🔽 🛄 🔞</table-of-contents>	
Shortcuts 🗷 How to Add 🗷 What's New	
Current Directory + C * X > Command Window	-+ 🗆 s
ex_10_1.m M-mc 9 -7	
\mathbb{O} ex 10 2 m M-file \mathbb{I} type ex 10 3 m	
ex_10_5a.m M-file	
$f_{\text{ex}} = 10^{-50} \text{m} \text{ M} \text{m}$ $f_{\text{ex}} = 10^{-50} \text{m} \text{ M} \text{m}$	
ex 10 3 dm M-file >> ex 10 3 c	
ex 10 4am M-file	
A ans =	
Command History + C + X	
ex_10_3a6	
-type ex_10_3b.(-16	
ex_10_3b	
type ex 10 3c. >> type ex_10_3d.m	
ex 10 3c	
type ex 10 3d diff(X, 3, 2)	
· · · · · · · · · · · · · · · · · · ·	

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

MATLAB 7.6.0 (R200Ba)	(م)ب
ile Edit Debug Desktop Window Help	
🗋 👸 👗 🖺 🛱 🤊 (* 🖣 🗭 🗐 🖉 🖬 🕐 Current Directory: /media/Transcend/source 🔍 🛄 🔞	
Shortcuts 🗷 How to Add 🗷 What's New	
urrent Directory + a * X V Command Window	-
IFiles Z Type >> ex_10_3C	
$ex_10_2.m$ M-file ans =	
ex_10_5a.m M-file	
ex_10_3b.m M-file -16	
ex_10_Sc.m M-fil	
$ex_10_5a.m$ M-file is two or 10.2d m	
ex_10_4a.m M-mite >> cype ex_10_3d.m	
command History +	
type ex 10 $3b$ $rac{1}{2}$ $x ex 10 3d$	
ex 10 3h	
type ex 10 3c $ans =$	
ey 10 3c	
type ox 10 2d Empty matrix: 2-by-0	
ex_10_3a	
	10

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific

and

Engineering

Comput

EXAMPLE :

omputing,	MATLAB 7.6.0 (R2008a)	
BIL108E	<u>File Edit Debug Desktop Window H</u> elp	
Karaman	: 🎦 😂 👗 ங 🛱 🤊 🍽 👪 🗊 🖹 🕢 Current Directory: /media/Transcend/source 🔍 😥	
i curumun	Shortcuts 🗷 How to Add 🗷 What's New	
	Current Directory 🗰 🕷 🛪 🔰 Command Window	++ □ * ×
	ⓑ ≝ ख़ · >> type ex_10_4a	
	All Files Z Type	
	$ex_{10}_{3a.m} M-fil (x = [1 2 3 4 5];$	
	$ex_{10_3b.m}$ M-file y = diff(x)	
	ex_10_3c.m M-fil	
	🖄 ex_10_3d.m M-fil	
	🖺 ex_10_4a.m M-fil 💫	
	🖺 ex_10_4b.m M-fil	
	ex_10_5a.m M-fil	
	Command History + a *	
	type ex_10_3c.i=	
	ex_10_3c	
	-type ex_10_3d.(
	ex_10_3d	
	-clc	
	type ex 10 4a	
	▲ Start	<u>a</u> •

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE :

Command History $rac{1}{2} = diff(x, 2)$

>> ex_10_4b

>>

0 0

ex_10_3d

type ex_10_4b. ex_10_4b

clc type <mark>ex_10_4a</mark> ex_10_4a

4 Star

Introduc

to Scient

Engineeri

Computi

BIL108

and

APPROXIMATION OF FUNCTION DERIVATIVES

MATLAB 7.6.0 (R2008a)	
Elle Edit Debug Desktop Window Help	
: 🗋 😂 🖌 🖷 🕼 🍠 🍽 👪 🖾 🦉 🧮 🧶 Current Directory /media/Transcend/source 🔍 🛄 🔞	
Shortcuts & How to Add & What's New	
All Files / Type	
$ex_{10_{1.m}} M - fil (x_{10_{1.m}} - fil (x$	
$ex_{10_2.m}$ M-file $y = diff(x)$	
ex_10_3a.m M-file	
🖺 ex_10_3b.m M-fil	
ex_10_3c.m M-file >> ex_10_4a	
ex_10_3d.m M-file	
$ex_10_4a.m M-file y =$	
Command History + C * X	
type ex 10 3d.	
ex 10 3d	
clc	
type ex 10 4a $z = diff(x - 2)$	
ex 10 4a	

APPROXIMATION OF FUNCTION DERIVATIVES

Introduction to Scientific and Engineering Computing, BIL108E

Karaman

EXAMPLE :		
Δ	MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop Wir	ndow Help	
1 1 1 × 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🗊 🗐 🔮 Current Directory /media/Transcend/source 💌 🛄 🔞	
Shortcuts 🖪 How to Add 💽 What'	's New	
Current Directory 🏎 🗆 🛪 🐨	Command Window ++ 🗆	e ×
🔁 🖆 😹 😼 •		-
All Files ∠ Type		
ex_10_1.m M-fil<	>> ex_10_4a	
🖺 ex_10_2.m M-fil 🕘		
🖺 ex_10_3a.m M-file	y =	
🖺 ex_10_3b.m M-fil		
🖺 ex_10_3c.m M-file	1 1 1 1	
🖺 ex_10_3d.m M-file		
🗈 ex_10_4a.m M-fil 💌	>> type ex_10_4b.m	

Introduction

to Scientific

and

Engineering

Computing,

BIL108E

APPROXIMATION OF FUNCTION INTEGRALS

QUADRATURE

- The word "quadrature" reminds us an elementary technique for finding the area under the curve.
- Plot the function on graph paper and count the number of little squares that lie underneath the curve.

Area under the curve is counted / calculated.

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

Numerical Methods for approximating the integral

$$I(f) = \int_{a}^{b} f(x) \, dx$$

• Here *f* is an arbitrary continuous function

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E Karaman

APPROXIMATION OF INTEGRALS

- Midpoint Quadrature
- Trapezoidal Quadrature
- Simpson Quadrature
- Gauß-Legendre Formula
- Adaptive Simpson Formula

STANHILL SECTION

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

Newton-Cotes equation

- Define the function f(x) as an approximation with polynom P(x), and use it on an equally partitioned interval (a, b).
- Calculation with this method is also named as composite quadrature.

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E Karaman

MIDPOINT QUADRATURE

Introduction to Scientific and Engineering Computing, BIL108E

MIDPOINT QUADRATURE

BIL108E

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing,

MIDPOINT QUADRATURE

- Approximate the integral I(f) for the interval [a, b]
- Divide the interval *I_k* = [*x*_{*k*-1}, *x_k*] for *k* = 1, ..., *M* into subintervals.

•
$$x_k = a + k H$$
, $k = 0, ..., M$ and $H = (b - a)/M$

$$I(f) = \sum_{k=1}^{M} \int_{I_k} f(x) \, dx$$

191 AND IN THE REAL PROPERTY OF THE REAL PROPERTY O

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

MIDPOINT QUADRATURE

- Approximate the function f with a polynomial \overline{f} on I_k
- $\bullet \ \bar{x_k} = \frac{x_{k-1} x_k}{2}$
- $I_{mp}^{c}(f) = H \sum_{k=1}^{M} f(\bar{x_k})$ This is called **COMPOSITE MIDPOINT QUADRATURE**
- Second –order approximate with respect to H

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering

Computing,

BIL108E

CLASSIC MIDPOINT FORMULA

• Here the number of partitions M=1.

$$I_{mp}(f) = (b-a)f((a+b)/2)$$

Estimated error,

$$I(f) - I_{mp}(f) = \frac{(b-a)^3}{24}f''(\xi)$$

Introduction to Scientific and Engineering Computing, BIL108E

TRAPEZOIDAL QUADRATURE

APPROXIMATION OF INTEGRALS

TRAPEZOIDAL QUADRATURE TRAPEZOIDAL QUADRATURE Karaman TRAPEZOIDAL QUADRATURE $x_{0} = a$ x_{k} $x_{M} = b$

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

TRAPEZOIDAL QUADRATURE

Calculation is done with the area of a trapezoidal.

$$I_t^c(f) = \frac{H}{2} \sum_{k=1}^M (f(x_k) + f(x_{k-1})) = \frac{H}{2} (f(a) + f(b)) + H \sum_{k=1}^{M-1} f(x_k)$$

$$I_t(f) = \frac{b-a}{2}(f(a)+f(b))$$

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

SIMPSON QUADRATURE

Approximate the function by a parabola. This rule can be applied to the even number of segments (odd number of points).

$$I_{s}^{c}(f) = \frac{H}{6} \sum_{k=1}^{M} (f(x_{k-1}) + 4f(\bar{x_{k}}) + f(x_{k}))$$
$$I_{s}(f) = \frac{b-a}{6} (f(a) + 4f((a+b)/2) + f(b))$$

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E Karaman

INTERPOLATORY QUADRATURES GAUB-LEGENDRE FORMULA

 $I_{appr}(f) = \sum_{j=0}^{n} \alpha_j f(y_j)$

- α_i : quadrature weights
- y_j: quadrature nodes

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

MATLAB FUNCTIONS

- trapz : Uses areas of trapezoidals.
- cumtrapz : Uses composite trapezoidal quadrature
- quad : Uses the adaptive Simpson quadrature algorithm.
- quad1 : Uses Gauß–Legendre Formula

APPROXIMATION OF INTEGRALS

Introduction to Scientific and

Engineering

Computing,

BIL108E

trapz

>> help trapz

TRAPZ Trapezoidal numerical integration.

Z = TRAPZ(Y) computes an approximation of the integral of Y via the trapezoidal method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

For vectors, TRAPZ(Y) is the integral of Y. For matrices, TRAPZ(Y) is a row vector with the integral over each column. For N-D arrays, TRAPZ(Y) works across the first non-singleton dimension.

Z = TRAPZ(X,Y) computes the integral of Y with respect to X using the trapezoidal method. X and Y must be vectors of the same length, or X must be a column vector and Y an array whose first non-singleton dimension is length(X). TRAPZ operates along this dimension.

Z = TRAPZ(X,Y,DIM) or TRAPZ(Y,DIM) integrates across dimension DIM of Y. The length of X must be the same as size(Y,DIM)).

Introduction to Scientific and Engineering Computing, BIL108E

tr	aŗ	DZ			
1					
Eile	<u>E</u> dit	De <u>b</u> ug	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp
: 🎦	8	8 🐃 🖻	20	a 🗂 🗄	1 0
Sho	ortcuts	How to	Add 👔	What's New	

Eile Edit Debug Desktop	Window Help	
1 0 C 🗂 🖷 🕹 🔁 C	🐉 🗊 😰 Current Directory. /media/Transcend/source 💌 🕲	
Shortcuts 🗷 How to Add 🕑 V	What's New	
Current Directory ษ 🗖 🔻 🗙	Command Window	
🖻 🖆 📓 🗟 🔹	>> type ex 10 5a.m	
All Files ∠ Type		
🖞 ex_10_3b.m M-fil	$Y = [0 \ 1 \ 2]$	
🖺 ex_10_3c.m M-fil	3 4 51	
🖺 ex_10_3d.m M-fil	trapz(Y. 1)	
🖺 ex_10_4a.m M-fil		
🖞 ex_10_4b.m M-fil		
🖺 ex_10_5a.m M-fil		
🖞 ex_10_5b.m M-fil		
Command History 🗰 🛪	x	
type ex_10_4a		
ex_10_4a		
type ex_10_4b.		
ex_10_4b		
clc		
type ex_10_5a.		
▲ <u>S</u> tart		

Engineeri Computi

BIL108

APPROXIMATION OF INTEGRALS

Introduction to Scientific

4	MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop V	∦indow <u>H</u> elp	
1 🖸 🕹 🖷 🖄 🤊 (° 💧	🖡 🗊 🖹 🥹 Current Directory. /media/Transcend/source 👻 📵	
Shortcuts 🕑 How to Add 🕑 What	at's New	
Current Directory 🏨 🖬 🛪 🐨	Command Window	
🖻 🖆 👪 😼 ·	<pre>>> type ex_10_5a.m</pre>	
All Files ∠ Type		
ex_10_1.m M-file	$Y = [0 \ 1 \ 2$	
🖺 ex_10_2.m M-file	3 4 5]	
🖺 ex_10_3a.m M-file	trapz(Y, 1)	
🖺 ex_10_3b.m M-file	>> ex_10_5a	
🖺 ex_10_3c.m M-file		
🖺 ex_10_3d.m M-file	Y =	
ex_10_4a.m M-file		
	0 1 2	
	3 4 5	
ex_10_4a		
type ex_10_4b.		
ex104b	ans =	
clc		
type ex_10_5a.	1.5000 2.5000 3.5000	
ex_10_5a		

Introduction to Scientific Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

trapz

A MATLAB 7.5.0 (R2008a)	
<u>File Edit Debug Desktop Window Help</u>	
🖺 😂 👗 ங 🛱 🤊 🥐 🐌 🗊 🖹 🥹 Current Directory: /media/Transcend/source 🔍 📵	
Shortcuts 🖪 How to Add 🖪 What's New	
Current Directory 🍽 🗖 र 🗙 🕪 Command Window	* 5 🗆 *
🖻 🖆 😹 - 345]	2
All Files Z. Type trapz(Y, 1)	
<mark>1]ex_10_1.m</mark> M−fil <mark>(</mark> >> ex_10_5a	
🗈 ex_10_2.m M-fil 🔤	
🖺 ex_10_3a.m M-fil 🔰 Y =	
🗈 ex_10_3b.m M-file	
🖺 ex_10_3c.m M-file 0 1 2	
🛍 ex_10_3d.m M-file 3 4 5	
≜ex_10_4a.m M-file	
	2
Command History III 7 X ans =	
type ex_10_4b.	
ex_10_4b 1.5000 2.5000 3.5000	
clc	
type ex_10_5a. >> type ex_10_5b.m	
ex_10_5a	
type ex 10 5b. trapz(Y, 2)	
4 Start	0

Engineerin

Computin BIL108E

APPROXIMATION OF INTEGRALS

Introduction to Scientific and

trapz

MATLAB 7.5.0 (R2008a)	la l
<u>Elle Edit Debug Desktop Window Help</u>	
🗄 🛅 😹 🐂 🛱 🤊 🍽 🍓 🗊 🖹 🥹 Current Directory. /media/Transcend/source 📼 🔞	
Shortcuts 🗷 How to Add 🖃 What's New	
Current Directory 🏨 🖬 🛪 X VV Command Window	
🖻 🖆 👪 - 3 4 5	
All Files ∠ Type	
ex_10_1.m M-fil	
ex_10_2.m M-file ans =	
ex_10_3a.m M-fil	
ex_10_3b.m M-fil(1.5000 2.5000 3.5000	
ex_10_3c.m M-file	
ex_10_3d.m M-file >> type ex_10_5b.m	
ex_10_4a.m M-fil(
Command History It D a X	
ex 10 4h	
three ov 10 East	
Type ex_10_5b.	
ex_10_5b	

Introduction to Scientific and Engineering Computing, BIL108E

cumtrapz

>> help cumtrapz CUMTRAPZ Cumulative trapezoidal numerical integration.

Z = CUMTRAPZ(Y) computes an approximation of the cumulative integral of Y via the trapezoidal method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.

For vectors, CUMTRAPZ(Y) is a vector containing the cumulative integral of Y. For matrices, CUMTRAPZ(Y) is a matrix the same size as X with the cumulative integral over each column. For N-D arrays, CUMTRAPZ(Y) works along the first non-singleton dimension.

Z = CUMTRAPZ(X,Y) computes the cumulative integral of Y with respect to X using trapezoidal integration. X and Y must be vectors of the same length, or X must be a column vector and Y an array whose first non-singleton dimension is length(X). CUMTRAPZ operates across this dimension.

APPROXIMATION OF INTEGRALS

Introduction to Scientific

and

cumtrapz

Introduction to Scientific and

Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

cumtrapz

2 Edit De <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u> elp	
🗋 😸 🐂 🛍 🤊 🐑 🎒 🗊 💼 🛛 🥹 Current Directory: /media/Transcend/source 🛛 🚽 🛄 😰	
hortcuts 🕑 How to Add 🕐 What's New	
rrent Directory 🗝 🖬 🛪 🗤 Command Window	* 🗆 * ×
🖆 🐻 🗟 -	A
Files 4 Type Y = [0 1 2	
ex_10_1.m M-fil 3 4 5]	
ex_10_2.m M-fil cumtrapz(Y, 1)	
ex_10_3a.m M-file >> ex_10_6a	
ex_10_3b.m M-fil	
ex_10_3c.m M-file Y =	
ex_10_3d.m M-fil	
ex_10_4a.m M-file 0 1 2	
3 4 5	
mmand History 🗰 🖬 🛪 🗶	
ex_10_5a	
type ex_10_5b.c ans =	
ex_10_5b	
-clc 0 0 0	
type ex 10 6a. 1.5000 2.5000 3.5000	
ex 10 6a	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	-
Start	0

APPROXIMATION OF INTEGRALS

Introduction to Scientific

and

Engineerin

Computin

BIL108E

cumtrapz

4	MATLAB 7.6.0 (R2008a)	
<u>File Edit Debug Desktop Wi</u>	idow <u>H</u> elp	
👬 🗠 🕫 🛍 🖷 🕹 🔁	📸 😰 Current Directory: /media/Transcend/source 👻 🖻	
Shortcuts 🖪 How to Add 🖪 What	's New	
Current Directory 🏎 🗆 🛪 🗙	Command Window	
🖻 🖆 📓 🗟 🔹	cumtrapz(Y, 1)	
All Files 💪 Type	>> ex_10_6a	
ex_10_1.m M-fil		
≜ex_10_2.m M-fil	Y =	
ex_10_3a.m M-file		
ex_10_3b.m M-file	0 1 2	
ex_10_3c.m M-file	3 4 5	
ex_10_3d.m M-file		
ex_10_4a.m M-file		
	ans =	
type or 10 5h	0 0 0	
cype ex_10_50.		
ex_10_50	1.3000 2.3000 3.3000	
cie	ss type ov 10 6h m	
type ex_10_6a.1	rype ex_ro_ob.m	
ex_10_6a	cumtranz(Y 2)	
type ex_10_6b.r	ss	
	L	

Introduction to Scientific and Engineering Computing, BIL108E

cumtrapz

and

Engineering

Computing,

BIL108E

APPROXIMATION OF INTEGRALS

Introduction to Scientific

quad

>> help quad

QUAD Numerically evaluate integral, adaptive Simpson quadrature. Q = QUAD(FUN, A, B) tries to approximate the integral of scalar-valued function FUN from A to B to within an error of 1.e-6 using recursive adaptive Simpson quadrature. FUN is a function handle. The function Y=FUN(X) should accept a vector argument X and return a vector result Y, the integrand evaluated at each element of X.

Q = QUAD(FUN,A,B,TOL) uses an absolute error tolerance of TOL instead of the default, which is 1.e-6. Larger values of TOL result in fewer function evaluations and faster computation, but less accurate results. The QUAD function in MATLAB 5.3 used a less reliable algorithm and a default tolerance of 1.e-3.

Q = QUAD(FUN,A,B,TOL,TRACE) with non-zero TRACE shows the values of [fcnt a b-a Q] during the recursion. Use [] as a placeholder to obtain the default value of TOL.

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing BIL108E

MATLAB 7.6.0 (R2008a)	
File Edit Degug Desktop Window Help Image: Stand Sta	
<pre>Command History += 0 × x Command History += 0 × x Command History += 0 × x Command History += 0 × x -clc -type ex_10_7a. -type ex_10_7a. -clc -type ex_10_7a. -clc -type ex_10_7a. -x</pre>	× • U +
▲ <u>Start</u>	0

APPROXIMATION OF INTEGRALS

Introduction to Scientific

and

Engineering

Computing,

BIL108E

quad

*	MATLAB 7.5.0 (R2008a)	
<u>File Edit Debug D</u> esktop	Window Help	
0 0 × 10 0 0	하 🗊 🖹 🥥 Current Directory /media/Transcend/source 👻 📖 🔞	
Shortcuts 🖪 How to Add 🖪 🛚	Vhat's New	
Current Directory 🖛 🗖 🔻 🗙	Command Window	-+ C
🔁 🖆 😹 🔒 •	>> type ex_10_7a.m	
All Files ∠ Type		
🖺 ex_10_7b.m M-fi	(-) Q = quad(@myfun, 0, 2)	
🖺 ex_10_8a.m M-fi	>> type myfun.m	
🖺 integrate M-fi		
🖺 midpointc M-fil	function y = myfun(x)	
🖆 myfun.m 🛛 M-fil	$v = 1./(x.^{3}-2*x-5)$:	
1 myfun2.m M-fil		
🖺 quadl_ex.m M-fil		
Command History 🗰 🖬 🕷	×	
type ex_10_7a.		
type myfun.m		
ex_10_7a		
clc		
type ex 10 7a.		
type myfun m		
(
A Canad	alaasta y	

Introduction to Scientific and Engineering Computing, BIL108E

quad

File Edit Debug Desktop Window Help

MATLAB 7,6,0 (R2008a)

Introd

to Scie

Engine

Comp

BIL1

APPROXIMATION OF INTEGRALS

Elle Edit Debug Desktop With Elle Edit A the set of dd a What	MATLAB 7.65.0 (£22008a) ndow Help 100 gl Q Current Directory /media/Transcend/source ▼	li
Current Directory + ×	Command Window	-
ex_10_7b.m M-fild ex_10_8a.m M-fild integrate M-fild midpointc M-fild myfun.m M-fild Myfun2.m M-fild Quadl ex.m M-fild command History == 0 + x clc type ex_10_7a.t type ex_10_7a.t type ex_10_7b.t	F = @(x)1./(x.^3-2*x-5); Q = quad(F, 0, 2) >>	

Recultary Contraction of the second s

Introduction to Scientific and Engineering

quad

Engineering Computing, BIL108E

IZ	
Naraman	

APPROXIMATION OF INTEGRALS

File Edit Debug Desktop Window Help 🚹 🗃 😹 ங 🖹 🤊 (*) 🐉 📝 🖹 🛛 Current Directory /media/Transcend/source 🔹 ... 🔞 Shortcuts 🛃 How to Add 💽 What's New Current Directory 🗝 🖬 🛪 🖤 🔁 🛃 🛃 >> type ex_10_7b.m All Files L Type ex_10_7b.m M-fil ← F = @(x)1./(x.^3-2*x-5); ex_10_8a.m M-file Q = quad(F, 0, 2)Sintegrate_... M-file >> ex_10_7b 1 midpointc... M-file 🛍 myfun.m 🛛 M-fil 0 = myfun2.m M-file quadl_ex.m_M-file -0.4605 nmand History 🗰 🖬 🛪 🗙 >> type ex_10_7a. type myfun.m ex_10_7a clc type ex_10_7b. ex_10_7b & Start

APPROXIMATION OF INTEGRALS

Introduction to Scientific

and

Engineering

Computing, BIL108E quadl

>> help quadl

QUADL Numerically evaluate integral, adaptive Lobatto quadrature. Q = QUADL(FUN,A,B) tries to approximate the integral of scalar-valued function FUN from A to B to within an error of 1.e-6 using high order recursive adaptive quadrature. FUN is a function handle. The function Y=FUN(X) should accept a vector argument X and return a vector result Y, the integrand evaluated at each element of X.

Q = QUADL(FUN,A,B,TOL) uses an absolute error tolerance of TOL instead of the default, which is 1.e-6. Larger values of TOL result in fewer function evaluations and faster computation, but less accurate results.

Q = QUADL(FUN, A, B, TOL, TRACE) with non-zero TRACE shows the values of [fcnt a b-a Q] during the recursion. Use [] as a placeholder to obtain the default value of TOL.

[Q,FCNT] = QUADL(...) returns the number of function evaluations.

Introduction to Scientific and Engineering Computing, BIL108E

quadl

🖻 🖆 🖪 🗟 •

clc

clc

A Start

ex_10_7b

type ex_10_8a.

All Files 4

File Edit Debug Desktop Window Help 🞦 😂 👗 🐂 🛱 🤊 🛯 🎒 🗊 🖹 🥹 Current Directory. /media/Transcend/source 💌 ... 🍘 Shortcuts 🔄 How to Add 🔄 What's New Current Directory 🏎 🗖 🛪 🗙 🕠 >> type ex_10_8a.m Type 🖞 simpadpt... M-fil 📫 Q = quadl(@(x)myfun2(x,5),0,2)🖺 simpadpt... M-file >> 🖺 simpadpt... M-file 🖞 simpsona.m M-file 🖞 simpsonc.m M-file 🖺 simpsonc... M-file simpsonc... M-file-Command History 🛛 🗰 🛪 🗙 ex_10_7a type ex_10_7b.

and

BIL108E

APPROXIMATION OF INTEGRALS

Introduction to Scientific

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

APPROXIMATION OF INTEGRALS

Introduction to Scientific and

Engineering

Computing,

BIL108E

EXAMPLES:

Evaluate the following integral with different methods.

Cosine is a built-in function in Matlab.

y=quad('cos',0,3*pi/2) y=quadl('cos',0,3*pi/2)

Introductio to Scientific and Engineering Computing BIL108E

EXAMPLES:

Evaluate the following integral with different methods.

$$\int_0^8 (x \, e^{-x^{0.8}} + 0.2) \, dx$$

quad('x.*exp(-x.^0.8)+0.2', 0,8) quadl('x.*exp(-x.^0.8)+0.2', 0,8)

APPROXIMATION OF INTEGRALS

troduction	
Scientific	
and	
ngineering	
omputing,	
BIL108E	

SOURCE:

function I=trapezoid(fun,a,b,npanel) n=npanel+1; %total number of nodes h=(b-a)/(n-1); %stepsize x=a:h:b: %divide the interval f=feval(fun,x); %evaluate the integral I=h*(0.5*f(1)+sum(f(2:n-1))+0.5*f(n));

APPROXIMATION OF INTEGRALS

SOURCE:

%

%

%

%

% %

%

Engineering Computing, BIL108E

Introduction

to Scientific

and

function Imp=midpointc(a,b,M,f) %MIDPOINTC Composite midpoint numerical integration. IMP = MIDPOINTC(A,B,M,FUN) computes an approximation of the integral of the function FUN via the midpoint method (with M equispaced intervals). FUN accepts real scalar input x and returns a real scalar value. FUN can also be an inline object. H=(b-a)/M;

```
x = linspace(a+H/2, b-H/2, M);
fmp=feval(f,x);
Imp=H*sum(fmp);
return
```


APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

SOURCE:

<pre>function [Isic]=simpsonc(a,b,M,f,varargin) %SIMPSONC Composite Simpson numerical integration.</pre>				
% ISIC = SIMPSONC(A,B,M,FUN) computes				
% an approximation of the in	ntegral			
% of the function FUN via th	ne Simpson method			
% (with M equispaced interva	als).			
% FUN accepts real scalar in	nput			
% x and returns a real scala	ar			
% value. FUN can also be an	inline object.			

Introduction to Scientific and Engineering Computing BIL108E

SOURCE cont'd.:

H=(b-a)/M;x=linspace(a,b,M+1); fpm=feval(f,x,varargin{:}); fpm(2:end-1) = 2*fpm(2:end-1); Isic=H*sum(fpm)/6; x=linspace(a+H/2,b-H/2,M); fpm=feval(f,x,varargin{:}); Isic = Isic+2*H*sum(fpm)/3; return

and

Computing,

BIL108E

APPROXIMATION OF INTEGRALS

SOURCE:

```
Introduction
to Scientific
Engineering
```

% %

function [JSf,nodes]=simpadpt(f,a,b,tol,hmin) %SIMPADPT Numerically evaluate integral,

- adaptive Simpson quadrature. %
- % JSF = SIMPADPT(FUN, A, B, TOL, HMIN)
- tries to approximate the integral of function
- % FUN from A to B to within an error
- % of TOL using recursive
- % adaptive Simpson quadrature.
- % The inline function Y = FUN(V) should
- % accept a vector argument V and
- % return a vector result Y, the
- % integrand evaluated at each element of X.

[JSF,NODES] = SIMPADPT(...) returns the

% distribution of nodes.

APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering Computing, BIL108E

SOURCE cont'd.:

```
A=[a,b]; N=[]; S=[]; JSf = 0; ba = b - a; nodes=[];
while ~isempty(A),
  [deltaI,ISc]=caldeltai(A,f);
  if abs(deltaI) \leq 15*tol*(A(2)-A(1))/ba;
     JSf = JSf + ISc;
     S = union(S,A);
     nodes = [nodes, A(1) (A(1)+A(2))*0.5 A(2)];
     S = [S(1), S(end)]; A = N; N = [];
```


APPROXIMATION OF INTEGRALS

Introduction to Scientific and Engineering

Computing,

BIL108E

SOURCE cont'd.:

```
elseif A(2)-A(1) < hmin
     JSf=JSf+ISc;
     S = union(S,A);
     S = [S(1), S(end)]; A=N; N=[];
     warning('Too small step-length');
  else
     Am = (A(1)+A(2))*0.5;
     A = [A(1) Am];
     N = [Am, b];
  end
end
```


Introduction to Scientific and Engineering Computing, BIL108E

SOURCE cont'd.:

nodes=unique(nodes); return

function [deltaI,ISc]=caldeltai(A,f) L=A(2)-A(1);t=[0; 0.25; 0.5; 0.5; 0.75; 1]; x=L*t+A(1);L=L/6;w=[1; 4; 1]; fx=feval(f,x); IS=L*sum(fx([1 3 6]).*w); ISc=0.5*L*sum(fx.*[w;w]); deltaI=IS-ISc; return

References

Introduction to Scientific and Engineering Computing, BIL108E

References for Week 10

- **1** Alfio Quarteroni, Fausto Saleri, Scientific Computing with Matlab and Octave, Springer, 2006.
- **2** Moler C, NumericalComputing with Matlab, Mathworks Inc., 2004 (http://www.mathworks.com/moler).
- 3 Thomas Huckle, Stefan Schneider, Numerische Methoden, Springer, 2006.