Introduction
Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

INTRODUCTION TO SCIENTIFIC \& ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul
April 5, 2010

LECTURE \# 9

1 INTERPOLATION

1 Lagrange Interpolation
2 Chebyshev Interpolation
3 Linear Interpolation
4 Spline Functions
2 APPROXIMATION
1 Least Squares Approximation
2 Linear Regression

Tentative Course Schedule, CRN 24023

INTERPOLATION

Data points for a function $\left(x_{i}, y_{i}\right)$
$i=0,1,2, \ldots, n$
x_{i} are all distinct and are called nodes.
Approximate function should satisfy $\tilde{f}\left(x_{i}\right)=y_{i}, i=0,1, \ldots, n$
\tilde{f} is called interpolant of the set of data y_{i}
■ polynomial interpolant

$$
\tilde{f}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

■ trigonometric interpolant

$$
\tilde{f}(x)=a_{-M} e^{-i M x}+\ldots+a_{0}+\ldots+a_{M} e^{i M x}
$$

■ rational interpolant

INTERPOLATION

INTERPOLATION

Introduction
to Scientific
Engineeri
Computing
Computing
BIL108E
Karaman

VANDERMONDE MATRIX

$\tilde{f}(x)=\sum_{k=0}^{n} c_{k} \varphi_{k}\left(x_{j}\right)=y_{j}, j=0,1,2, \ldots, n$
If we choose $\varphi_{k}(x)=x^{k}$
$p(x)=\sum_{k=0}^{n} c_{k} x^{k}$

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
\vdots \\
y_{n}
\end{array}\right) \\
x c=y
\end{gathered}
$$

$n+1$ equations for $n+1$ unknowns $c_{0}, c_{1}, \ldots, c_{n}$.
The matrix with the given structure is named as
Vandermonde matrix

INERPOLATION WITH POLYNOMIALS

LAGRANGE INTERPOLATION

$$
\begin{aligned}
\varphi_{k}(x) & =\prod_{j=0}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} \\
\Pi_{n}(x) & =\sum_{k=0}^{n} y_{k} \varphi_{k}(x)
\end{aligned}
$$

write the equation for all $\mathrm{n}+1$ points.
$L_{j}(x)=\prod_{i=0, i \neq j}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}$

$$
\frac{\left(x-x_{0}\right) \ldots\left(x-x_{j-1}\right)\left(x-x_{j+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{j}-x_{0}\right) \ldots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \ldots\left(x_{j}-x_{n}\right)}
$$

for $j=0,1,2, \ldots, n$ every $L_{j}(x)$ has the property $L_{j}\left(x_{j}\right)=1$ and $L_{j}\left(x_{i}\right)=0$ if $i \neq j$.

INTERPOLATION

INTERPOLATION

EXAMPLE

Draw the graph of the Lagrange polynom $L_{2}(x)$ for the $x_{j}=j$, $j=0,1,2,3,4$ supporting points. The supporting points are equispaced.
Lagrange -Polynom $L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)}$
Here $L_{2}\left(x_{2}\right)=1$ and $L_{2}\left(x_{i}\right)=0$ if $i \neq 0$

$$
p(x)=\sum_{j=0}^{n} y_{j} L_{j}(x)
$$

Introduction to Scientific and
Engineering Engineering
Computing,
BIL108E

EXAMPLE

INTERPOLATION

INTERPOLATION

Introduction
to Scientific
and
Engineerin
Computing
Computing,
BIL108E
Karaman

EXAMPLE

unction $\mathrm{v}=$ polyinterp($\mathrm{x}, \mathrm{y}, \mathrm{u}$)
 $\mathrm{n}=$ length (x);
 $\mathrm{v}=\operatorname{zeros}($ size (u));
 for $k=1: n$
 $\mathrm{w}=$ ones (size(u));
 for $j=[1: k-1 k+1: n]$
 $\mathrm{w}=(\mathrm{u}-\mathrm{x}(\mathrm{j})) \cdot /(\mathrm{x}(\mathrm{k})-\mathrm{x}(\mathrm{j})) \cdot * \mathrm{w}$; end
 $\mathrm{v}=\mathrm{v}+\mathrm{w}^{*} \mathrm{y}(\mathrm{k})$;
 end

To illustrate polyinterp, create a vector of densely spaced evaluation points. $u=-.25: .01: 3.25 ;$

Then
$\mathrm{v}=$ polyinterp $(\mathrm{x}, \mathrm{y}, \mathrm{u})$;
plot($x, y,{ }^{\prime} o^{\prime}, u, v,{ }^{\prime}{ }^{\prime}$)

INTERPOLATION

Introduction
to Scientific
$\stackrel{\text { and }}{\text { Engineering }}$
Engineering
BIL108E
Karaman

EXAMPLE

$x=\left[\begin{array}{lllll}-55 & -25 & 5 & 35 & 65\end{array}\right] ;$
$\mathrm{y}=[-3.25,-3.2,-3.02,-3.32,-3.1]$;
format short e;
$c=\operatorname{polyfit}(x, y, 4) ;$
p4x $=\operatorname{linspace}(x(1), x(e n d), 100) ;$
p4y $=\operatorname{polyval}(c, p 4 x)$
plot(x, y, 'or')
hold('on')
plot(p4x, p4y, 'k-')
xlabel(' x ')
ylabel('y')
ylabel('y')
legend('data', '4
legend('data', '4 deg poly.')
xdat $=[-55: 10: 65]$.
ydat $=[-3.25,-3.37,-3.35,-3.2,-3.12,-3.02,-3.02$
$-3.07,-3.17,-3.32,-3.3,-3.22,-3.1]$;
plot(xdat, ydat, '. k ')

Introduction
to Scientific
to Scientific
and
Engineering Computing,
BIL108E

EXAMPLE

INTERPOLATION

Introduction

to Scientific
and
Engineering
Engineering
BIL108E

EXAMPLE

INTERPOLATION

INTERPOLATION

Introduction to Scientific
Engineering
Computing,
BIL108E
LAGRANGE INTERPOLATION ERROR
EXAMPLE
clear;
clf;
clc;
$\mathrm{x}=[-55: 10: 65] ;$
$x=[-55: 10: 65] ;$
$y=[-3.25,-3.37,-3.35,-3.2,-3.12,-3.02,-3.02$
$-3.07,-3.17$
format short e ;
$\mathrm{c}=$ polyfit $(\mathrm{x}, \mathrm{y}, 12)$
p12x $=\operatorname{linspace}(x(1), x(e n d), 100)$.
p12y $=$ polyval ($c, p 12 x$);
plot (x, y, , or ${ }^{\prime}$
hold('on')
plot(p12x, p12y, 'k-')
xlabel(' x ')
legend('data', ' 12 deg poly.')

Introduction
 to Scientific
 and Engineering
 Engineering Computing,
 BIL108E

Karaman

EXAMPLE

INTERPOLATION

CHEBYSHEV INTERPOLATION

$$
x_{i}=\frac{a+b}{2}+\frac{b-a}{2} \widehat{x}_{i}, \text { where } \widehat{x}_{i}=-\cos (\pi i / n), i=0, \ldots, n
$$

INTERPOLATION

INTERPOLATION

Introduction
to Scientific
and
Engineerin
Engineering
Computing,
BIL108E
Karaman

CHEBYSHEV INTERPOLATION

PIECEWISE LINEAR INTERPOLATION

Use linear composite interpolation

- When the function f is nonsmooth or
- When f is known by its values at a set of given points

Given: nodes(not necessarily uniform) $x_{0}<x_{1}<\ldots<x_{n}$, interval $I_{i},\left|x_{i}, x_{i+1}\right|$ Approximate the function f by a continuous function which,on each interval, is given by the segment joining the two points $\left(x_{i}, f\left(x_{i}\right)\right)$ and $\left(x_{i+1}, f\left(x_{i+1}\right)\right)$

INTERPOLATION

INTERPOLATION

PIECEWISE LINEAR INTERPOLATION

Piecewise linear interpolation polynomial of f is $\Pi_{1}^{H} f$ for $x \in I_{i}$,

$$
\Pi_{1}^{H} f(x)=f\left(x_{i}\right)+\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}\left(x-x_{i}\right)
$$

PIECEWISE LINEAR INTERPOLATION
s1=interp1 (x, y, z) is used to calculate the linear interpolation value in a given interval.
x, y : data points
z : arbitrary points with an arbitrary dimension

Introduction to Scientific
Engineering
Computing BIL108E Karaman

EXAMPLE

The function $f(x)=x^{2}+10 /(\sin (x)+1.2)$ (solid line) and its piecewise linear interpolation polynomial $\Pi_{1}^{H} f$ (dashed line)

INTERPOLATION

EXAMPLE

Engineering Computing,
BIL108E BILI08E

Introduction
to Scientific
to Scientific
and
Engineering Computing,
BIL108E
Karaman
EXAMPLE
$\mathrm{x}=1: 6$;
$\mathrm{y}=\left[\begin{array}{lllll}16 & 18 & 21 & 17 & 15\end{array}\right]$;
plot(x,y,'o', x,y,'-');

INTERPOLATION

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E

EXAMPLE

APPROXIMATION

APPROXIMATION

SPLINE FUNCTIONS

Piecewise polynomial interpolation of degree $n \geq 2$ can be defined. In several applications, it is desirable to get

METHODS

approximation by smooth functions which have at least a continuous derivative. Function properties:

1 on each interval $I_{i}=\left[x_{i}, x_{i+1}\right]$, for $i=0, \ldots, n-1, s_{3}$ is a polynomial of degree 3 which interpolates the pairs of values $\left.\left(x_{j}, f\left(x_{j}\right)\right)\right)$ for $j=i, i+1$;s_{3} has continuous first and second derivatives in the nodes $x_{i}, i=1, \ldots, n-1$

A cubic spline creates a smooth curve, using a third degree polynomial.

SPLINE FUNCTIONS

- Nearest neighbor interpolation (method = 'nearest').

This method sets the value of an interpolated point to the value of the nearest existing data point.

- Linear interpolation (method = 'linear'). This method fits a different linear function between each pair of existing data points, and returns the value of the relevant function at the points specified by x_{i}. This is the default method for the interp 1 function.

APPROXIMATION

APPROXIMATION

SPLINE FUNCTIONS
 METHODS

■ Cubic spline interpolation (method $=$ 'spline'). This method fits a different cubic function between each pair of existing data points, and uses the spline function to perform cubic spline interpolation at the data points.

- Cubic interpolation (method = 'pchip' or 'cubic'). These methods are identical. They use the pchip function to perform piecewise cubic Hermite interpolation within the vectors x and y.
$\underset{\substack{\text { Engineering } \\ \text { Computing. }}}{\text {. }}$

Karaman

SPLINE FUNCTIONS

- When the nearest and linear methods are used the values of x_{i} must be within the domain of x. If the spline or the pchip methods are used, x_{i} can have values outside the domain of x and the function interp1 performs extrapolation.
- The spline method can also return errors if the input data points are nonuniform such that some points are much closer than others.

INTERPOLATION

INTERPOLATION

Introduction
to Scientific
to Scientific
Engineerin
Computing
BIL108E
Karaman

EXAMPLE

EXAMPLE

Comparison between the interpolating cubic spline and the Lagrange interpolant for the case considered in Example

APPROXIMATION

ntroduction
to Scientific
and
Engineering
BIL108E
Karaman

EXAMPLE

EXAMPLE

Elle Edat Degua Deskop Window
 2

>> help pchip
PP $=\operatorname{PCHIP}(X, Y)$ provides the piecewise polynomial form of a certai shape-preserving piecewise cubic Hermite interpolant, to the values
Y at the sites X, for later use with PPVAL and the spline utility UNMKPP. X must be a vector. $Y(j)$ is taken as the value to be matched at $X(j)$, If Y is a vector, then $Y(j)$ is taken as
hence Y must be of the same length as X.
 If Y is a matri X or $N D$ array, then $Y(:, \ldots,:, j)$ is taken as the value to
be matched at $X(j)$, hence the last dimension of Y must equal length (X). $W=\operatorname{PCHIP}(x, r, x x)$ is the sane as $Y Y=\operatorname{PPVAL}(P C H I P(x, r), x x)$, thus providing, in Y , the values of the interpolant at XX .
The PCHIP interpolating function, $p(x)$, satisfies:
On each subinterval, $X(k)<=x<=X(k+1), p(x)$ is the cubic Hermite interpolant to the given values and certain slopes at the two endpoints. Therefore, $p(x)$ interpolates Y, i.e., $p(X(j))=Y(:, j)$, and the first derivative. $\operatorname{Do}(x)$. is continuous. but

APPROXIMATION

APPROXIMATION

Introduction
to Scientific

Engineering
Computing,
BIL108E
Karaman

EXAMPLE

clear; clf;clc;
t = linspace (0 , pi /2 ,4)
$\mathrm{x}=\cos (\mathrm{t}) ; \mathrm{y}=\sin (\mathrm{t})$;
xx = linspace ($0,1,40$);
plot (x,y , 'o');
hold('on');
plot($x x, \operatorname{pchip}(x, y, x x))$
plot($x x, \operatorname{spline~(x,~y,~xx))~}$
grid('on')
legend('data', 'pchip', 'spline')

APPROXIMATION

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

EXAMPLE

The following data points which are points of the function $f(x)=1.5^{x} \cos (2 x)$ are given.

x	0.0	1.0	2.0	3.0	4.0	5.0
y	1.0	-0.6242	-1.4707	3.2406	-0.7366	6.3717

Use linear, spline and pchip interpolation methods to calculate the value of y between the points. Create a figure for each of the interpolation methods. In the figure show the points, a plot of the function and a curve that corresponds to the interpolation method.

EXAMPLE

APPROXIMATION

Introduction to Scientific

to Scientific
and
Engineering
Engineering
BIL108E

LEAST SQUARES METHOD

For a linear equation:

- If the number of linear equations is less than the unknowns, the equation system is under -determined (or infinite solutions)
- If the number of linear equations is more than the unknowns, the equation system is over -determined.

REGRESSION ANALYSIS

LINEAR REGRESSION

Introduction to Scientific
and
Engineering
Computing,
BIL108E
Karaman

REGRESSION ANALYSIS

Regression analysis is a process of fitting a function to a set of data points. Curve fitting with polynomials is done with polyfit function which uses the least squares method. Experimental data always has a finite amount of error included in it, due to both accumulated instrument inaccuracies and also imperfections in the physical system being measured. Even data describing a linear system won't all fall on a single straight line.

APPROXIMATION

LINEAR REGRESSION

Linear form of the least squares method.

- $\mathrm{n}+1$ functions are given.
- Linear function $y=a+b x$ where a and b are constants
- Minimize the euclid norm of the function for the given data points.

APPROXIMATION

EXAMPLE

LEAST SQUARES METHOD

euclid norm
$\|x\|_{2}=\sqrt{\sum_{j=1}^{n}\left|x_{j}\right|^{2}}$
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\|A x-b\|_{2}^{2}$
$=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b$
$=\left\|\left(\sum_{j=1}^{n} a_{k, j} x_{j}-b_{k}\right)_{k=1}^{m}\right\|_{2}^{2}$
$=\sum_{k=1}^{m}\left(\sum_{j=1}^{n} a_{k, j} x_{j}-b_{k}\right)^{2}$

APPROXIMATION

APPROXIMATION

Introduction
to Scientific
Engineerin
Computing
BIL108E
Karaman

LEAST SQUARES METHOD

$0=\frac{d f}{d x_{i}}=2 \sum_{k=1}^{m}\left(\sum_{j=1}^{n} a_{k, j} x_{j}-b_{k}\right) a_{k, i}$

$$
\left(\begin{array}{c}
a+b x_{1} \\
\vdots \\
a+b x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

or

$$
A\binom{a}{b}=y
$$

here

$$
\left(\begin{array}{c}
1+x_{1} \\
\vdots \\
1+x_{n}
\end{array}\right)
$$

$$
S=\left\|A\binom{a}{b}-y\right\|_{2}^{2}=\sum_{j=1}^{n}\left(a+b x_{j}-y_{j}\right)^{2}
$$

Minimize the euclid norm by finding values of a and b where the derivatives of S with respect to a and b are zero simultaneously.

$$
\begin{gathered}
\frac{\partial S}{a}=2 \sum_{j=1}^{n}\left(a+b x_{j}-y_{j}\right)=0 \\
\frac{\partial S}{b}=2 \sum_{j=1}^{n} x_{j}\left(a+b x_{j}-y_{j}\right)=0 \\
{\left[\begin{array}{ll}
n & \sum_{j=1}^{n} x_{j} \\
\sum_{j=1}^{n} x_{j} & \sum_{j=1}^{n} x_{j}^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{n} y_{j} \\
\sum_{j=1}^{n} x_{j} y_{j}
\end{array}\right]}
\end{gathered}
$$

Introduction
to Scientific and
Engineering Computing, Computing,
BIL108E

APPROXIMATION

APPROXIMATION

EXAMPLE

Introduction
to Scientific
Engineering
Engineering
Computing,
BIL108E

EXAMPLE:

- Tom and Ben are twin boys born on October 27, 2001. Here is a table of their weights, in pounds and ounces, over their first few months.

\% Date Tom Ben

W = [10 27200151048
1119200174511
1203200181264
12202001101487
010920021213103
01232002148120
03062002161013 10];

APPROXIMATION

APPROXIMATION

Introduction
Introduction
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE cont'd.:

Use datenum to convert the date in the first three columns to a serial date number measuring time in days.

Make a plot of their weights versus time, with circles at the data points and the pchip interpolating curve in between. Use datetick to relabel the time axis. Include a title and a legend.

EXAMPLE cont'd.:

References

EXAMPLE:

Karaman

References for Week 9
1 Alfio Quarteroni, Fausto Saleri, Scientific Computing with Matlab and Octave, Springer, 2006.
2 Moler C, NumericalComputing with Matlab, Mathworks Inc., 2004 (http://www.mathworks.com/moler).
3 Hans Rudolf Schwarz, Norbert Köckler, Numerische Mathematik, Vieweg + Teubner, 2009.

4 Thomas Huckle, Stefan Schneider, Numerische Methoden, Springer, 2006.

