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Week Date Topics
1 Feb. 08 Introduction to Scientific and Engineering Computing
2 Feb. 15 Introduction to Program Computing Environment
3 Feb. 22 Variables, Operations and Simple Plot
4 Mar. 01 Algorithms and Logic Operators
5 Mar. 08 Flow Control, Errors and Source of Errors
6 Mar. 15 Functions
6 Mar. 20 Exam 1
7 Mar. 22 Arrays
8 Mar. 29 Solving of Simple Equations
9 Apr. 05 Polynomials Examples
10 Apr. 12 Applications of Curve Fitting
11 Apr. 19 Applications of Interpolation
11 Apr. 24 Exam 2
12 Apr. 26 Applications of Numerical Integration
13 May 03 Symbolic Mathematics
14 May 10 Ordinary Differential Equation (ODE) Solutions with Built-in Functions
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LECTURE # 9

INTERPOLATION

Lagrange Interpolation
Chebyshev Interpolation
Linear Interpolation
Spline Functions

APPROXIMATION

Least Squares Approximation
Linear Regression
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Data points for a function (x;, y;)

i=0,1,2,...,n
x; are all distinct and are called nodes.
Approximate function should satisfy f(x;) =y;, i =0,1,...,n
f is called interpolant of the set of data y;
m polynomial interpolant
f(x)=ao+arx+ax>+...4+a,x"
m trigonometric interpolant
F(x)=a_pme ™M 4. 4ag+...4 aye™M

m rational interpolant
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Karaman If we ChOOSG @k(x) = Xk
p(x) = ko i X"
1 xo X(S, o Yo
1 X, ... erl7 Cn Yn
Xc=y

n 4+ 1 equations for n + 1 unknowns ¢, c1, ..., Cp.
The matrix with the given structure is named as
Vandermonde matrix
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INTERPOLATION

INERPOLATION WITH POLYNOMIALS
LAGRANGE INTERPOLATION

o) =]] i

j=o k%
n
Ma(x) = yepu(x)
k=0

write the equation for all n+1 points.
Lj(x) = H?:O,i;éj %
_ (x—x0)...(x=xj—1)(x=Xj41)...(x—xn)
(=x0)---(xj—x—1) 0 —=Xj+1)---(xj—xn)
for j=0,1,2,...,n every Lj(x) has the property
LJ(XJ) =1 and Lj(X,') =0if 7é_j

INTERPOLATION
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Karaman Draw the graph of the Lagrange polynom L(x) for the x; = j,
Jj=0,1,2,3,4 supporting points. The supporting points are
equispaced.
Lagrange —Polynom Ly(x)

_ (x=x0)(x=x1)(x—x2) (x—x3)(x—X4)
(a—x0)(x2a—x1)(x2—x3) (2 —xa)

Here L2(X2) =1 and L2(X,') =0if 7é 0

p(x) =y Li(x)
j=0

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

Karaman

INTERPOLATION

EXAMPLE
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C ting, i :
;TLpll;)EI;Eg function v = polyinterp(x,y,u)

n = length(x);
v = zeros(size(u));
for k = 1:n
w = ones(size(u));
for j = [1:k-1 k+l:n]
wo= (u-x(j))./(x(®)-x ()] . *w;
end
v =v + wy(k);
end

Karaman

To illustrate polyinterp, create a vector of densely spaced evaluation points.

u -.25:.01:3.25;
Then

v = polyinterp(x,y,u);
plot(x,y,’0? ,u,v,’=")
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Karaman x = [-55 -25 5 35 65];

y = [-3.25, -3.2, -3.02, -3.32, -3.1];
format short e;

¢ = polyfit(x, y, 4);

p4x = linspace(x(1), x(end), 100);
p4y = polyval(c,péx);

plot(x,y,’or’)

hold(’on’)

plot(p4x, p4y, ’k-’)

xlabel(’x’)

ylabel(’y’)

legend(’data’, ’4 deg poly.’)

xdat = [-55:10:65];

ydat = [-3.25, -3.37, -3.35, -3.2, -3.12, -3.02, -3.02 ...
-3.07, -3.17, -3.32, -3.3, -3.22, -3.1];

plot(xdat,ydat,’.k’)
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INTERPOLATION

LAGRANGE INTERPOLATION ERROR
EXAMPLE

clear;

clf;

clc;

x = [-55:10:65];

y = [-3.25, -3.37, -3.35, -3.2, -3.12, -3.02, -3.02 ...
-3.07, -3.17, -3.32, -3.3, -3.22, -3.1];

format short e;

¢ = polyfit(x, y, 12);

pl2x = linspace(x(1), x(end), 100);

pl2y = polyval(c,pl2x);

plot(x,y,’or’)

hold(’on’)

plot(pi2x, pl2y, ’k-’)

xlabel(’x’)

ylabel(’y’)

legend(’data’, ’12 deg poly.’)
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CHEBYSHEV INTERPOLATION

1
14-x2

Runge function f(x) =
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INTERPOLATION

CHEBYSHEV INTERPOLATION

a+b b—a
T = 2 +T

7;, where ; = —cos(mi/n), i =0,...,n
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CHEBYSHEV INTERPOLATION
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INTERPOLATION

PIECEWISE LINEAR INTERPOLATION

Use linear composite interpolation
m When the function f is nonsmooth or
m When f is known by its values at a set of given points

Given: nodes(not necessarily uniform) xp < x1 < ... < X,
interval I, |x;, xj+1| Approximate the function f by a
continuous function which,on each interval, is given by the
segment joining the two points (x;, f(x;)) and (xj+1, f(xi+1))
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INTERPOLATION

PIECEWISE LINEAR INTERPOLATION

Piecewise linear interpolation polynomial of f is I'If’f
for x € [,

MF(x) = F) + T
Xi+1 — Xi
The upper — index H denotes the maximum length of the
interval ;.
For all x in the interpolation interval, Mt f(x) tends to f(x)
when H — 0 provided that f is sufficiently smooth.
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PIECEWISE LINEAR INTERPOLATION

sl=interpl(x,y,z) is used to calculate the linear
interpolation value in a given interval.

X, y: data points

z: arbitrary points with an arbitrary dimension
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EXAMPLE
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The function f(z) = x* 4+ 10/(sin(z) + 1.2) (solid line) and its
piecewise linear interpolation polynomial IT f (dashed line)
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EXAMPLE
x = 1:6;
y = [16 18 21 17 15 12];

plot(x,y,’0’,x,y,’=’);

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

Karaman

INTERPOLATION

EXAMPLE

Full degree polynomial interpolation
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EXAMPLE

Fiecewise linear interpolation
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APPROXIMATION

SPLINE FUNCTIONS

Piecewise polynomial interpolation of degree n > 2 can be
defined. In several applications, it is desirable to get
approximation by smooth functions which have at least a
continuous derivative. Function properties:

on each interval I; = [xj, xj+1], for i=0,...,n—1, s3 is a
polynomial of degree 3 which interpolates the pairs of
values (x;, f(x;))) for j =i,i+1;

s3 has continuous first and second derivatives in the nodes
X, i:1,...,n—1

A cubic spline creates a smooth curve, using a third degree
polynomial.

APPROXIMATION
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m Nearest neighbor interpolation (method = 'nearest’).
This method sets the value of an interpolated point to the
value of the nearest existing data point.

m Linear interpolation (method = 'linear’). This method
fits a different linear function between each pair of existing
data points, and returns the value of the relevant function
at the points specified by x;. This is the default method
for the interpl function.
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APPROXIMATION

SPLINE FUNCTIONS
METHODS

m Cubic spline interpolation (method = 'spline’). This
method fits a different cubic function between each pair of
existing data points, and uses the spline function to
perform cubic spline interpolation at the data points.

m Cubic interpolation (method = 'pchip’ or 'cubic’). These
methods are identical. They use the pchip function to
perform piecewise cubic Hermite interpolation within the
vectors x and y.

APPROXIMATION
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Karaman
m When the nearest and linear methods are used the values
of x; must be within the domain of x. If the spline or the
pchip methods are used, x; can have values outside the
domain of x and the function interpl performs
extrapolation.
m The spline method can also return errors if the input data

points are nonuniform such that some points are much
closer than others.
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Comparison between the interpolating cubic spline and the La-
grange interpolant for the case considered in Example
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EXAMPLE

1

| Debug Deskiop Window Help

[ &% 29 ¢ @ d 2| @ curen Directorg|/media/Transcend/saurce_9 [«][_] =

>> help pchip =
PCHIP Piecewise Cubic Hermite Interpolating Polynomial.
PP = PCHIP(X,Y) provides the piecewise polynomial form of a certain
shape-preserving piecewise cubic Hermite interpolant, to the values
Y at the sites X, for later use with PPVAL and the spline utility UNMKPP.
X must be a vector.
If Y is a vector, then Y(j) is taken as the value to be matched at X(j),
hence Y must be of the same length as X.
If Y is a matrix or ND array, then Y(:,...,:,j) is taken as the value to
be matched at X(j), hence the last dimension of Y must equal length(X).

YY = PCHIP(X,Y,XX) is the same as YY = PPVAL(PCHIP(X,Y),XX), thus
providing, in YY, the values of the interpolant at XX.

The PCHIP dinterpolating function, p(x), satisfies:

On each subinterval, X(k) <= x <= X(k+1), p(x) is the cubic Hermite
interpolant to the given values and certain slopes at the two endpoints.

Therefore, p(x) interpolates Y, i.e., p(X(3)) = Y(:,j), and

the first derivative. Do(x). is continuous. but

[ Te |
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EXAMPLE

clear;clf;clc;

t = linspace (0 , pi /2 ,4)
x=cos (t); y=sin (t );

xx = linspace (0 ,1 ,40);

plot (x ,y , ’07);

hold(’on’);

plot(xx, pchip (x, y, xx))
plot(xx, spline (x, y, xx))
grid(’on’)

legend(’data’, ’pchip’, ’spline’)
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APPROXIMATION
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APPROXIMATION

EXAMPLE

The following data points which are points of the function
f(x) = 1.5° cos(2x) are given.

x 00 1.0 2.0 3.0 4.0 5.0

y 1.0 -0.6242 -1.4707 3.2406 -0.7366 6.3717
Use linear, spline and pchip interpolation methods to calculate
the value of y between the points. Create a figure for each of
the interpolation methods. In the figure show the points, a plot
of the function and a curve that corresponds to the
interpolation method.
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APPROXIMATION

LEAST SQUARES METHOD

For a linear equation:
m If the number of linear equations is less than the
unknowns, the equation system is under —determined
(or infinite solutions)

m If the number of linear equations is more than the
unknowns, the equation system is over —determined.
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REGRESSION ANALYSIS

REGRESSION ANALYSIS

Regression analysis is a process of fitting a function to a set of
data points. Curve fitting with polynomials is done with

polyfit function which uses the least squares method.

Experimental data always has a finite amount of error included
in it, due to both accumulated instrument inaccuracies and also
imperfections in the physical system being measured. Even data
describing a linear system won't all fall on a single straight line.
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LINEAR REGRESSION

LINEAR REGRESSION

Linear form of the least squares method.
m n+1 functions are given.
m Linear function y = a+ bx where a and b are constants

m Minimize the euclid norm of the function for the given
data points.
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EXAMPLE

g

05 06 07 08

0 01 02 03 04
g

Linear least-squares approximation of the data of Problem
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LEAST SQUARES METHOD

euclid norm
Ixll2 = /22721 X[
f(XlaX27 s 7Xn) = ||AX - b”%

= (Ax—b)T (Ax—b)=xTATAx —2xT AT b+ bT b
= (X721 3k % — byl

= > orea (307 Ak xi — bi)?
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LEAST SQUARES METHOD

0= g_xf,- =2 ZT:l(Zle akjXj — bk)aki

a+bx1 )%1
a+ bx, Yn
or
a
A(5)-r
here
14+ x
1+ x,
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Minimize the euclid norm by finding values of a and b where
the derivatives of S with respect to a and b are zero
simultaneously.

2 n
= (a+bx—y)?
2 j=1

oS "
i | Cy) =
3 E (a+bxi—yj)=0
Jj=1
oS °
722?:1:&(a+b>9—yj)—0

APPROXIMATION

APPROXIMATION
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T

The least-squares approximation of the data of the Problem
using a cosine basis. The exact data are represented by the small circles
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EXAMPLE:

m Tom and Ben are twin boys born on October 27, 2001.
Here is a table of their weights, in pounds and ounces,
over their first few months.

% Date Tom Ben
W = [10 27 2001 5 10 4 8
11 19 2001 7 4 5 11
12 03 2001 8 12 6 4
12 20 2001 10 14 8 7
01 09 2002 12 13 10 3
01 23 2002 14 8 12 0
03 06 2002 16 10 13 10];
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APPROXIMATION

EXAMPLE cont'd.:

Use datenum to convert the date in the first three columns to
a serial date number measuring time in days.

t = datenum(W(:,[3 1 2]1));

Make a plot of their weights versus time, with circles at the
data points and the pchip interpolating curve in between. Use
datetick to relabel the time axis. Include a title and a legend.
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EXAMPLE cont'd.:

Twins' weights

ab O Tom
[0 Ben

L L . L
Novi1 Decl1 Jan02 Feb02 Mard2
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APPROXIMATION

EXAMPLE:

Interpolation
T T

W linear
P poly
K spline

F pchip

0 1 2 3 4 5 G
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