

Introduction to Scientific and Engineering Computing, BIL108E

INTRODUCTION TO SCIENTIFIC & ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

April 5, 2010

12 TANDAL

Tentative Course Schedule, CRN 24023

troduction Scientific and ngineering omputing, BU 1925		Data	Tuin
DILIUUL	1		Introduction to Scientific and Engineering Computing
Karaman	2	Feb. 00 Feb. 15	Introduction to Scientific and Engineering Computing
	3	Feb 22	Variables. Operations and Simple Plot
	4	Mar. 01	Algorithms and Logic Operators
	5	Mar. 08	Flow Control, Errors and Source of Errors
	6	Mar. 15	Functions
	6	Mar. 20	Exam 1
	7	Mar. 22	Arrays
	8	Mar. 29	Solving of Simple Equations
	9	Apr. 05	Polynomials Examples
	10	Apr. 12	Applications of Curve Fitting
	11	Apr. 19	Applications of Interpolation
	11	Apr. 24	Exam 2
	12	Apr. 26	Applications of Numerical Integration
	13	May 03	Symbolic Mathematics
	14	May 10	Ordinary Differential Equation (ODE) Solutions with Built-in Functions

LECTURE # 9

Introduction to Scientific and Engineering Computing, BIL108E

LECTURE # 9

1 INTERPOLATION

- 1 Lagrange Interpolation
- 2 Chebyshev Interpolation
- 3 Linear Interpolation
- 4 Spline Functions
- **2** APPROXIMATION
 - 1 Least Squares Approximation
 - 2 Linear Regression

INTERPOLATION

Introduction to Scientific and

Engineering

Computing, BIL108E Data points for a function (x_i, y_i)

 $i = 0, 1, 2, \ldots, n$

 x_i are all distinct and are called nodes. Approximate function should satisfy $\tilde{f}(x_i) = y_i$, i = 0, 1, ..., n \tilde{f} is called **interpolant** of the set of data y_i

- polynomial interpolant $\tilde{f}(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$
- trigonometric interpolant $\tilde{f}(x) = a_{-M} e^{-iMx} + \ldots + a_0 + \ldots + a_M e^{iMx}$
- rational interpolant

Introduction to Scientific and Engineering Computing, BIL108E

VANDERMONDE MATRIX $\tilde{f}(x) = \sum_{k=0}^{n} c_k \varphi_k(x_i) = y_i, j = 0, 1, 2, ..., n$ If we choose $\varphi_k(x) = x^k$ $p(x) = \sum_{k=0}^{n} c_k x^k$ $\begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ \vdots \\ y_n \end{pmatrix}$ X c = y

n+1 equations for n+1 unknowns c_0, c_1, \ldots, c_n . The matrix with the given structure is named as Vandermonde matrix

INTERPOLATION

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

Draw the graph of the Lagrange polynom $L_2(x)$ for the $x_i = j$, i = 0, 1, 2, 3, 4 supporting points. The supporting points are equispaced.

Lagrange –Polynom $L_2(x) = \frac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)}$ Here $L_2(x_2) = 1$ and $L_2(x_i) = 0$ if $i \neq 0$

$$p(x) = \sum_{j=0}^{n} y_j L_j(x)$$

INTERPOLATION

Introduction to Scientific and Engineering Computing, BIL108E

and

INERPOLATION WITH POLYNOMIALS LAGRANGE INTERPOLATION

$$\varphi_k(x) = \prod_{j=0}^n \frac{x - x_j}{x_k - x_j}$$

$$\Pi_n(x) = \sum_{k=0}^n y_k \varphi_k(x)$$

 \boldsymbol{x}

2

write the equation for all n+1 points. $L_{j}(x) = \prod_{i=0, i \neq j}^{n} \frac{x - x_{i}}{x_{j} - x_{i}}$ = $\frac{(x - x_{0})...(x - x_{j-1})(x - x_{j+1})...(x - x_{n})}{(x_{j} - x_{0})...(x_{j} - x_{j-1})(x_{j} - x_{j+1})...(x_{j} - x_{n})}$ for j = 0, 1, 2, ..., n every $L_{j}(x)$ has the property $L_i(x_i) = 1$ and $L_i(x_i) = 0$ if $i \neq j$.

INTERPOLATION

Introduction **EXAMPLE** to Scientific Engineering 1.2 Computing, BIL108E 0.8 0.6 0.4 0.2 -0.2-0.4-0.6 0 0.5 1 1.5

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

```
function v = polyinterp(x,y,u)
n = length(x);
v = zeros(size(u));
for k = 1:n
   w = ones(size(u));
   for j = [1:k-1 k+1:n]
      w = (u-x(j))./(x(k)-x(j)).*w;
   end
   v = v + w * y(k);
end
```

To illustrate polyinterp, create a vector of densely spaced evaluation points.

u = -.25:.01:3.25;

Then

```
v = polyinterp(x,y,u);
plot(x,y,'o',u,v,'-')
```

INTERPOLATION

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

x = [-55 - 25 5 35 65];y = [-3.25, -3.2, -3.02, -3.32, -3.1];format short e; c = polyfit(x, y, 4); p4x = linspace(x(1), x(end), 100);p4y = polyval(c,p4x);

plot(x,y,'or') hold('on') plot(p4x, p4y, 'k-') xlabel('x') ylabel('y') legend('data', '4 deg poly.') xdat = [-55:10:65]; ydat = [-3.25, -3.37, -3.35, -3.2, -3.12, -3.02, -3.02 ... -3.07, -3.17, -3.32, -3.3, -3.22, -3.1]; plot(xdat,ydat,'.k')

INTERPOLATION

Introduction to Scientific

and

INTERPOLATION

Introduction to Scientific and

Engineering

Computing,

BIL108E

EXAMPLE

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

clear; clf; clc; x = [-55:10:65]; y = [-3.25, -3.37, -3.35, -3.2, -3.12, -3.02, -3.02 ... -3.07, -3.17, -3.32, -3.3, -3.22, -3.1]; format short e; c = polyfit(x, y, 12); p12x = linspace(x(1), x(end), 100); p12y = polyval(c,p12x);

LAGRANGE INTERPOLATION ERROR

plot(x,y,'or') hold('on') plot(p12x, p12y, 'k-') xlabel('x') ylabel('y') legend('data', '12 deg poly.')

INTERPOLATION

Introduction to Scientific

and

Engineering

Computing,

BIL108E

LANG AND ALL A

INTERPOLATION

Introduction to Scientific and Engineering Computing, BIL108E

INTERPOLATION

Introduction to Scientific

Engineering

Computing, BIL108E CHEBYSHEV INTERPOLATION

$$x_i = \frac{a+b}{2} + \frac{b-a}{2}\widehat{x}_i$$
, where $\widehat{x}_i = -\cos(\pi i/n), i = 0, \dots, n$

THE STATEMENT IS

INTERPOLATION

Introduction to Scientific and Engineering Computing, BIL108E

CHEBYSHEV INTERPOLATION

INTERPOLATION

oduction	
Scientific	
and	
ineering	

Computing, BIL108E

PIECEWISE LINEAR INTERPOLATION

Use linear composite interpolation

- When the function f is nonsmooth or
- When f is known by its values at a set of given points

Given: nodes(not necessarily uniform) $x_0 < x_1 < \ldots < x_n$, interval I_i , $|x_i, x_{i+1}|$ Approximate the function f by a continuous function which,on each interval, is given by the segment joining the two points $(x_i, f(x_i))$ and $(x_{i+1}, f(x_{i+1}))$

ISTANDING IN THE PARTY OF THE P

Introduction to Scientific and Engineering Computing, BIL108E

INTERPOLATION

PIECEWISE LINEAR INTERPOLATION

Piecewise linear interpolation polynomial of f is $\Pi_1^H f$ for $x \in I_i$,

$$\Pi_1^H f(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i)$$

The upper – index H denotes the maximum length of the interval I_i .

For all x in the interpolation interval, $\Pi_1^H f(x)$ tends to f(x) when $H \longrightarrow 0$ provided that f is sufficiently smooth.

INTERPOLATION

Introduction to Scientific and Engineering Computing, BIL108E

PIECEWISE LINEAR INTERPOLATION

s1=interp1(x,y,z) is used to calculate the linear interpolation value in a given interval.

x, y: data points

z: arbitrary points with an arbitrary dimension

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

Introduction

to Scientific

Engineering

Computing, BIL108E

The function $f(x) = x^2 + 10/(\sin(x) + 1.2)$ (solid line) and its piecewise linear interpolation polynomial $\Pi_1^H f$ (dashed line)

Intro

to Sc

Engir Comj BIL

INTERPOLATION

luction	
entific	
nd	
eering	
outing,	
108E	

EXAMPLE

x = 1:6; y = [16 18 21 17 15 12]; plot(x,y,'o',x,y,'-');

INTERPOLATION

EXAMPLE

Introduction

to Scientific

INTERPOLATION

EXAMPLE

SPLINE FUNCTIONS

Piecewise polynomial interpolation of degree $n \ge 2$ can be defined. In several applications, it is desirable to get approximation by smooth functions which have at least a continuous derivative. Function properties:

- on each interval I_i = [x_i, x_{i+1}], for i = 0, ..., n 1, s₃ is a polynomial of degree 3 which interpolates the pairs of values (x_j, f(x_j))) for j = i, i + 1;
- 2 s_3 has continuous first and second derivatives in the nodes x_i , i = 1, ..., n-1

A cubic spline creates a smooth curve, using a third degree polynomial.

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

SPLINE FUNCTIONS

METHODS

- Cubic spline interpolation (method = 'spline'). This method fits a different cubic function between each pair of existing data points, and uses the spline function to perform cubic spline interpolation at the data points.
- Cubic interpolation (method = 'pchip' or 'cubic'). These methods are identical. They use the pchip function to perform piecewise cubic Hermite interpolation within the vectors x and y.

APPROXIMATION

Introduction to Scientific and Engineering

Computing, BIL108E

SPLINE FUNCTIONS

METHODS

- Nearest neighbor interpolation (method = 'nearest'). This method sets the value of an interpolated point to the value of the nearest existing data point.
- Linear interpolation (method = 'linear'). This method fits a different linear function between each pair of existing data points, and returns the value of the relevant function at the points specified by x_i . This is the default method for the interp1 function.

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

SPLINE FUNCTIONS

- When the nearest and linear methods are used the values of x_i must be within the domain of x. If the spline or the pchip methods are used, x_i can have values outside the domain of x and the function interp1 performs extrapolation.
- The spline method can also return errors if the input data points are nonuniform such that some points are much closer than others.

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE

Comparison between the interpolating cubic spline and the Lagrange interpolant for the case considered in Example

INTERPOLATION

Introduction to Scientific

and

EXAMPLE Engineering Computing, 53 BIL108E Ele Edit View Insert Tools Debug Desktop Window Help 1 2 2 3 3 3 3 3 3 3 2 4 - 3 0 5 = □ o data ____ spline -3.0 -31 3.3 -3.25 -3.35 -3.4 -20 20

N A X

Introduction

to Scientific

and

Engineering Computing,

BIL108E

INTERPOLATION

EXAMPLE

APPROXIMATION

Introduction to Scientific and

Engineering

Computing,

BIL108E

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE

BIL108E Karaman

clear;clf;clc;

t = linspace (0 , pi /2 ,4) x = cos (t); y = sin (t); xx = linspace (0 ,1 ,40); plot (x ,y , 'o'); hold('on'); plot(xx, pchip (x, y, xx)) plot(xx, spline (x, y, xx)) grid('on') legend('data', 'pchip', 'spline')

APPROXIMATION

Introduction to Scientific

STANNING STANDING

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE

The following data points which are points of the function $f(x) = 1.5^x \cos(2x)$ are given.

Х	0.0	1.0	2.0	3.0	4.0	5.0
у	1.0	-0.6242	-1.4707	3.2406	-0.7366	6.3717

Use linear, spline and pchip interpolation methods to calculate the value of y between the points. Create a figure for each of the interpolation methods. In the figure show the points, a plot of the function and a curve that corresponds to the interpolation method.

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

LEAST SQUARES METHOD

For a linear equation:

- If the number of linear equations is less than the unknowns, the equation system is under –determined (or infinite solutions)
- If the number of linear equations is more than the unknowns, the equation system is over –determined.

REGRESSION ANALYSIS

REGRESSION ANALYSIS

Regression analysis is a process of fitting a function to a set of data points. Curve fitting with polynomials is done with polyfit function which uses the least squares method. Experimental data always has a finite amount of error included in it, due to both accumulated instrument inaccuracies and also imperfections in the physical system being measured. Even data describing a linear system won't all fall on a single straight line.

LINEAR REGRESSION

LINEAR REGRESSION

Linear form of the least squares method.

- n+1 functions are given.
- Linear function y = a + bx where a and b are constants
- Minimize the euclid norm of the function for the given data points.

APPROXIMATION

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

Linear least-squares approximation of the data of Problem

Introduction

to Scientific

and

Engineering

Computing, BIL108E

APPROXIMATION

euclid norm

 $||x||_2 = \sqrt{\sum_{j=1}^n |x_j|^2}$

LEAST SQUARES METHOD

 $f(x_1, x_2, \ldots, x_n) = ||Ax - b||_2^2$

 $= ||(\sum_{j=1}^{n} a_{k,j} x_j - b_k)_{k=1}^{m}||_2^2$

 $=\sum_{k=1}^{m}(\sum_{i=1}^{n}a_{k,i}x_{i}-b_{k})^{2}$

 $= (Ax - b)^{T} (Ax - b) = x^{T} A^{T} Ax - 2x^{T} A^{T} b + b^{T} b$

LEAST SQUARES METHOD

Introduction to Scientific and Engineering Computing, BIL108E

 $0 = \frac{df}{dx_i} = 2\sum_{k=1}^{m} (\sum_{j=1}^{n} a_{k,j} x_j - b_k) a_{k,i}$ $\left(\begin{array}{c} a+b\,x_1\\ \vdots\\ a+b\,x_n \end{array}\right) = \left(\begin{array}{c} y_1\\ \vdots\\ y_n \end{array}\right)$ $A\left(\begin{array}{c}a\\b\end{array}\right)=y$

or

here

 $\left(\begin{array}{c}1+x_1\\\vdots\\1+x_n\end{array}\right)$

APPROXIMATION

EXAMPLE

Introduction to Scientific and Engineering Computing, BIL108E

The least-squares approximation of the data of the Problem using a cosine basis. The exact data are represented by the small circles

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

Introduction

to Scientific

and

Engineering

Computing, BIL108E

$$S = \left\| \left| A \left(\begin{array}{c} a \\ b \end{array} \right) - y \right\|_{2}^{2} = \sum_{j=1}^{n} (a + b x_{j} - y_{j})^{2}$$

Minimize the euclid norm by finding values of a and b where the derivatives of S with respect to a and b are zero simultaneously.

$$\frac{\partial S}{a} = 2\sum_{j=1}^{n} (a + bx_j - y_j) = 0$$
$$\frac{\partial S}{b} = 2\sum_{j=1}^{n} x_j (a + bx_j - y_j) = 0$$
$$\frac{n}{\sum_{j=1}^{n} x_j} \sum_{j=1}^{n} \frac{x_j}{x_j^2} \left[\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} y_j \\ \sum_{j=1}^{n} x_j y_j \end{bmatrix}$$

APPROXIMATION

EXAMPLE:

Tom and Ben are twin boys born on October 27, 2001. Here is a table of their weights, in pounds and ounces, over their first few months.

% Date Tom Ben $W = [10 \ 27 \ 2001 \ 5 \ 10 \ 4 \ 8]$ 11 19 2001 7 4 5 11 12 03 2001 8 12 6 4 12 20 2001 10 14 8 7 01 09 2002 12 13 10 3 01 23 2002 14 8 12 0

03 06 2002 16 10 13 10];

EXAMPLE cont'd.:

Use datenum to convert the date in the first three columns to a serial date number measuring time in days.

t = datenum(W(:,[3 1 2]));

Make a plot of their weights versus time, with circles at the data points and the pchip interpolating curve in between. Use datetick to relabel the time axis. Include a title and a legend.

APPROXIMATION

and

Engineering

Computing, BIL108E

APPROXIMATION

Introduction to Scientific and Engineering Computing, BIL108E

References

References for Week 9

- 1 Alfio Quarteroni, Fausto Saleri, Scientific Computing with Matlab and Octave, Springer, 2006.
- **2** Moler C, NumericalComputing with Matlab, Mathworks Inc., 2004 (http://www.mathworks.com/moler).
- 3 Hans Rudolf Schwarz, Norbert Köckler, Numerische Mathematik, Vieweg + Teubner, 2009.
- 4 Thomas Huckle, Stefan Schneider, Numerische Methoden, Springer, 2006.