TENTATIVE SCHEDULE

INTRODUCTION TO SCIENTIFIC \& ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman
Technical University of Istanbul
March 22, 2010

LECTURE \# 7

LECTURE \# 7

LINEAR EQUATIONS cont'd.
1 INVERSE OF A MATRIX

- DETERMINANT

NONLINEAR EQUATIONS
1 BRACKETING METHODS

- BISECTION
- FALSE POSITION(REGULA-FALSI)

2 OPEN METHODS

- NEWTON METHOD
- SECANT METHOD
- FIXED POINT METHOD

3 MATLAB FUNCTIONS

SOME MATRIX FUNCTIONS

SOME MATRIX FUNCTIONS

■ zeros: creates a matrix that all elements are equal to zero.

- ones: creates a matrix that all elements are equal to one.

■ size: returns the dimension of the matrix.
■ eye: creates an identity matrix.

- diag: creates a diagonal matrix

■ inv: creates the inverse of a given matrix.

- trace: returns the sum of the diagonal terms of a matrix.

■ det: returns the determinant of a matrix.

- \: left division
- /: right division

LINEAR EQUATIONS

INVERSE OF A MATRIX

LINEAR EQUATIONS

$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}$ Computing, BIL108E
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}$
...
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{n}$

$$
A x=b
$$

Unknown variables can be calculated with matrix operations.
If $m=n$
$x=A^{-1} \times b$

DETERMINANT OF A MATRIX

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

DETERMINANT OF A MATRIX

Introduction
to Scientific
Engineering
Engineering
Computing,
BIL108E
$a=|A|$: Determinant of the matrix A.
If the determinant a of a square matrix $A=a_{i j}$ is different from zero, then the inverse matrix A^{-1} of A exists and is obtained by $A^{-1}=\beta_{i j}$
$\beta_{i j}=\frac{\alpha_{i j}}{a}$
Here $\alpha_{i j}$ is the cofactor of $a_{j i}$ in the determinant a of the matrix A.

DETERMINANT OF A MATRIX

INVERSE OF A MATRIX

Inverse of matrix A is A^{-1}.

$$
A A^{-1}=A^{-1} A=I
$$

$A x=b$
$A^{-1} A x=A^{-1} b$
So, the solution of $A x=b$ is

$$
x=A^{-1} b
$$

DETERMINANT OF A MATRIX

$$
\operatorname{det}(A)=\sum_{j=1}^{n} \alpha_{i j} a_{i j}
$$

where $n \geq 1, i=1, \ldots, n$
The $(n-1)$ rowed determinant obtained from the determinant a by striking out the j th row and ith column in a, and then multiplying the result by $(-1)^{i+j}$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

DETERMINANT OF A MATRIX

NONLINEAR EQUATIONS

DETERMINANT OF A MATRIX

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

For a 2×2 matrix
$\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$
For a 3×3 matrix
$\operatorname{det}(A)=a_{11} a_{22} a_{33}+a_{31} a_{12} a_{23}+a_{21} a_{13} a_{32}$

$$
-a_{11} a_{23} a_{32}-a_{21} a_{12} a 13-a_{31} a_{13} a_{22}
$$

ROOT FINDING

ROOT FINDING

ROOT FINDING

- Nonlinear equations can be written as $f(x)=0$
- Example: If $f(x)=x e^{x}$, solve $f(x)=x e^{x}=0$
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

GRAPHICAL INSPECTION

ROOT FINDING

ROOT FINDING

ROOT FINDING
 ROOT

- Finding the roots of a nonlinear equation is equivalent to finding the values of x for which $f(x)$ is zero.
- Any function of one variable can be put in the form $f(x)=0$.
- We examine several methods of finding the roots for a general function $f(x)$.

ROOT FINDING

- A fundamental principle in computer science is iteration. As the name suggests, a process is repeated until an answer is achieved.
- Iterative techniques are used to obtain the roots of equations, solutions of linear and nonlinear systems of equations, and solutions of differential equations.
- A rule or function for computing successive terms is needed, together with a starting value.
- Then a sequence of values is obtained using the iterative rule $x_{k+1}=g\left(x_{k}\right)$

ROOT FINDING

ROOT FINDING

EXAMPLE:

To find the x that satisfies $\cos (x)=x$
Find the zero crossing of $f(x)=\cos (x)-x=0$

EXAMPLE:
filename: ex_ 07_ 01.m
\%script file
$x=1$ inspace $(-1,1)$;
$y=\cos (x)-x$;
plot(x, y);
axis([min(x),max(x) -2 2]);
grid;

ROOT FINDING

ROOT FINDING

EXAMPLE:

Karaman

ROOT FINDING

EXAMPLE:

NONLINEAR EQUATIONS

ROOT FINDING

The basic strategy for root-finding procedure

METHODS

1 BRACKETING METHODS

- BISECTION(INTERVAL HALVING)
- FALSE POSITION(REGULA-FALSI)

These methods are applied after initial guesses on the root(s) that are identified with bracketing (or guesswork)
2 OPEN METHODS

- NEWTON METHOD(NEWTON-RAPHSON)
- SECANT METHOD

■ FIXED POINT METHOD
These methods may involve one or more initial guesses, however there is no need to bracket the root.

BISECTION METHOD

BISECTION METHOD

Introduction
Introduction
to Scientific
and
Engineering
Computing
BIL108E
Karaman

BISECTION METHOD

- f : continuos function within $[a, b]$ which satisfies $f(a) f(b) \leq 0$
- f has at least one zero (α) in (a, b).
- If f has several zeros, use fplot command to locate an interval, which contains only one of them.

BISECTION METHOD

- Divide the given interval in halves.
- Select the subinterval, where f features a sign change.
- Intervals named as $I^{(i)}$.
- In each step the interval contains α.

BISECTION METHOD

BISECTION METHOD

BISECTION METHOD

The method starts by setting:

BISECTION METHOD

$a^{(0)}=a, \quad b^{(0)}=b, \quad I^{(0)}=\left(a^{(0)}, \quad b^{(0)}\right)$
$x^{(0)}=\left(a^{(0)}+b^{(0)}\right) / 2$
At each step $(k \geq 1)$ we select the subinterval
otherwise
if $f\left(a^{(k-1)}\right) f\left(x^{(k-1)}\right)<0$ set $a^{(k)}=a^{(k-1)}, b^{(k)}=x^{(k-1)}$
if $f\left(x^{(k-1)}\right) f\left(b^{(k-1)}\right)<0$ set $b^{(k)}=b^{(k-1)}, a^{(k)}=x^{(k-1)}$
Define
$x^{(k)}=\left(a^{(k)}+b^{(k)}\right) / 2$ and interval $I^{(k+1)}$

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

BISECTION METHOD

Introduction
to Scientific
and
and
Engineering
Computing,
BIL108E
Karaman
BISECTION METHOD $f\left(a^{(k)}\right) f\left(b^{(k)}\right)<0$

BISECTION METHOD

BISECTION METHOD

BISECTION METHOD

■ Each interval contains the zero α

- The interval halves in each step
$\left|e^{(k)}\right|=\left|x^{(k)}-\alpha\right| \leq \frac{1}{2}\left|\prime^{(k)}\right|=\left(\frac{1}{2}\right)^{k+1}(b-a)$
The number of minimum iterations for a given tolerance ϵ :
$k_{\text {min }} \geq \log _{2}\left(\frac{b-a}{\epsilon}\right)-1$
$|\epsilon| \geq\left|\frac{x^{(k+1)}-x^{(k)}}{x^{(k+1)}}\right|$

BISECTION METHOD

Advantages

- Always convergent.

■ The root bracket gets halved with each iteration.

Drawbacks

■ Slow convergence.
■ If one of the initial guesses is close to the root, the convergence is slower.
In spite of its simplicity, the bisection method does not guarantee a monotone reduction of the error, but simply the search interval is halved from one iteration to the next.

BISECTION METHOD

BISECTION METHOD

BISECTION METHOD

initialize: $a=\ldots, b=\ldots$ Karaman Karaman
for $k=1,2, \ldots$
$x_{m}=a+(b-a) / 2$
if $\operatorname{sign}\left(f\left(x_{m}\right)\right)=\operatorname{sign}\left(f\left(x_{a}\right)\right)$
$a=x_{m}$
else
$b=x_{m}$
end
if converged, stop
end
The statement eval (f) is used to evaluate the function at a given value of x.

EXAMPLE

Hand Calculation Example

$$
\begin{array}{ll}
\text { Bisection } & \text { Example: } f(x)=x^{2}-2 x-3=0 \\
\text { Method } & \text { initial estimates }\left[x_{a}, x_{b}\right]=[2.0,3
\end{array}
$$

NEWTON METHOD

NEWTON METHOD

NEWTON METHOD

BIL108E
Karaman

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

NEWTON METHOD

NEWTON METHOD

NEWTON METHOD

Introduction
to Scientific
$\stackrel{\text { and }}{\text { Engineerin }}$
Engineering
BIL108E
Karaman

NEWTON METHOD

The Newton method in general does not converge for all possible choices of $x^{(0)}$, but only for those values of $x^{(0)}$ which are sufficiently close to α. In practice initial value can be obtained:

- with a few iterations of the bisection method or
- with the graph of function f.

NEWTON METHOD

NEWTON METHOD FOR SYSTEM OF NONLINEAR EQUATIONS

EXAMPLE:

- Use the Newton Raphson method to determine the mass of the bungee jumper with a drag coefficient of $0.25 \mathrm{~kg} / \mathrm{m}$ to have a velocity of $36 \mathrm{~m} / \mathrm{s}$ after 4 s of free fall $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$.
- The function to be evaluated and its derivative is shown below:
$f(m)=\sqrt{\frac{g m}{c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)-v(t)$
$\frac{d f(m)}{d m}=\frac{1}{2} \sqrt{\frac{g}{m c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)-\frac{g}{2 m} t \sec h^{2}\left(\sqrt{\frac{g c_{d}}{m} t}\right)$

NEWTON METHOD FOR SYSTEM OF NONLINEAR EQUATIONS

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR EQUATIONS
Consider a system of nonlinear equations of the form
$f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$
$f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$
$f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$
$\mathbf{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)^{T}$
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$
$f(x)=0$

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Bllobe
Karaman

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR

 EQUATIONS- Extend the Newton's method, replace the first derivative of the scalar function f
with the Jacobian matrix J_{f}
$\left(J_{f}\right)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}$
$i, j=1, \ldots, n$
- The method stops when the difference between two consecutive iterates has an euclidean norm smaller than ϵ

FIXED POINT ITERATION

FIXED POINT ITERATION

Given a function
$\alpha=\phi(\alpha)$
if such an alpha exist, it is called a fixed point of ϕ
Algorithm:
$x^{(k+1)}=\phi\left(x^{(k)}\right), k \geq 0$
Fixed point iteration
ϕ Iteration function
Example:
The Newton method can be regarded as an algorithm of fixed point iterations whose iteration function is ϕ_{N}
$\phi(x)=x-\frac{f(x)}{f^{\prime}(x)}$
All the functions do not have fixed points.

FIXED POINT ITERATION

SECANT METHOD

EXAMPLE:

and
Engineering
Computing
BIL108E
Karaman

Simple Fixed-Point Iteration

Two Alternative
Graphical Methods

(b)

SECANT METHOD

SECANT METHOD

to Scientific
and
Engineering
Computing, BIL108E BLIoó Karamar

Introduction
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

SECANT METHOD

- Use secant line instead of tangent line at $f\left(x_{i}\right)$
- The formula for the secant method is

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

- Notice that this is very similar to the False Position(Regula Falsi) method in form.
- Still requires two initial estimates
- But it does not bracket the root at all times - there is no sign test.

MATLAB FUNCTION fzero

MATLAB FUNCTION fzero

Solution with Dekker -Brent method.

- Bracketing methods: reliable but slow.
- Open methods: fast but possibly unreliable.
- MATLAB fzero: fast and reliable.
- fzero: find real root of an equation (not suitable for double root).
- When output argument flag is negative it means that, fzero cannot find the zero.
fzero(function, x_{0})
fzero(function, $\left[x_{0} x_{1}\right]$)

MATLAB FUNCTION fzero

MATLAB FUNCTION fzero

Introduction
Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE:
filename: ex_ fzero.m

\% fzero

func = ' $\mathrm{x}^{\wedge} 2-1+\exp (\mathrm{x})^{\prime}$;
fzero(func,1)
fzero(func,-1)
fplot(func,[-1 1])

EXAMPLE:

MATLAB FUNCTION fzero

Introduction
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE:

MATLAB FUNCTION fzero

EXAMPLE:

MATLAB FUNCTION roots

MATLAB FUNCTION roots

MATLAB FUNCTION roots

EXAMPLE:

filename: ex_ fzero.m

- Zeros of $n^{\text {th }}$ - order polynomial $p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}$
- Coefficient vector $c=\left[c_{n}, c_{n-1}, \ldots, c_{2}, c_{1}, c_{0}\right]$
\%ex_poly
$\mathrm{x}=\mathrm{linspace}(0,4,100)$;
$\mathrm{p}=\left[\begin{array}{llll}1 & -6 & 11 & -6\end{array}\right]$;
$\mathrm{y}=\mathrm{polyval}(\mathrm{p}, \mathrm{x})$;
plot(x, y)
grid('on')
roots (p)

MATLAB FUNCTION roots

MATLAB FUNCTION roots

Intoduction
to Scientific
and
Engineering
N
Connting
Computing
BLLL108E
BLL108E

EXAMPLE:

Introduction
to Scientific
$\stackrel{\text { and }}{\text { and }}$
Engineering
BIL108E

Karaman

EXAMPLE:

MATLAB FUNCTION roots

BISECTION METHOD

EXAMPLE:

Computing BLL108E

Karaman

SOURCE:
function [zero ,res ,niter]= bisection(fun ,a,b,tol ,... nmax , varargin)
\%BISECTION Find function zeros
\% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX) tries to find a zero
\% ZERO of the continuous function FUN in the interval
\% [A,B] using the bisection method. FUN accepts real
$\%$ scalar input x and returns a real scalar value. If
\% the search fails an errore message is displayed. FUN
$\%$ can also be an inline object.

BISECTION METHOD

SOURCE cont'd.:

\% ZERO=BISECTION(FUN , A,B,TOL ,NMAX , P1 , P2 ,...) passes
\% parameters P1 , P2 ,... to the function FUN(X,P1, P2 ,...
\% [ZERO , RES , NITER] = BISECTION (FUN , . .) returns the val
\% of the residual in ZERO and the iteration number at
\% which ZERO was computed.
$\mathrm{x}=[\mathrm{a},(\mathrm{a}+\mathrm{b}) * 0.5, \mathrm{~b}] ; \mathrm{fx}=\mathrm{feval}(\mathrm{fun}, \mathrm{x}, \operatorname{varargin}\{:\}$);
if $f x(1) * f x(3)>0$
error ([' The sign of the function at the , ,.. 'endpoints of the interval must be different , elseif $f x(1)==0$
zero $=$ a; res $=0$; niter $=0$; return
elseif $\mathrm{fx}(3)==0$
zero $=\mathrm{b}$; res $=0$; niter $=0$; return end

BISECTION METHOD

SOURCE cont'd.:

```
niter = 0;
```

$I=(b-a) * 0.5$;
while $\mathrm{I}>=$ tol \& niter <= nmax
niter $=$ niter +1 ;
if $f x(1) * f x(2)<0$
$\mathrm{x}(3)=\mathrm{x}(2) ; \mathrm{x}(2)=\mathrm{x}(1)+(\mathrm{x}(3)-\mathrm{x}(1)) * 0.5$;
$f x=$ feval (fun,x, varargin $\{:\}$) ; $I=(x(3)-x(1)) * 0$
elseif fx (2)* fx(3) < 0
$\mathrm{x}(1)=\mathrm{x}(2) ; \mathrm{x}(2)=\mathrm{x}(1)+(\mathrm{x}(3)-\mathrm{x}(1)) * 0.5$;
$f x=$ feval (fun,x, varargin $\{:\}$) $; I=(x(3)-x(1)) * 0$
else
$x(2)=x($ find $(f x==0)) ; I=0 ;$
end

BISECTION METHOD

SOURCE cont'd.:

if niter > nmax
fprintf (['bisection stopped without converging , ,... 'to the desired tolerance because the ' 'maximum number of iterations was , ,... 'reached $\backslash n$ ']);
end
zero $=x(2) ; x=x(2) ;$ res $=$ feval (fun , x, varargin $\{:\}$); return

NEWTON METHOD

SOURCE cont'd.:

\% ZERO=NEWTON(FUN ,DFUN ,XO ,TOL ,NMAX ,P1 ,P2 ,...) passe \% parameters P1 ,P2 ,... to functions: FUN(X,P1 ,P2 ,...) $\%$ and $\operatorname{DFUN}(\mathrm{X}, \mathrm{P} 1, \mathrm{P} 2, \ldots)$.
\% [ZERO ,RES ,NITER]= NEWTON(FUN ,...) returns the value \% the residual in ZERO and the iteration number at which
\% ZERD was computed.

NEWTON METHOD

SOURCE:

function [zero ,res , niter]= newton(fun ,dfun ,x0 ,tol ,. nmax , varargin)
\%NEWTON Find function zeros.
\% ZERO=NEWTON(FUN ,DFUN ,XO ,TOL ,NMAX) tries to find the \% zero ZERD of the continuous and differentiable
\% function FUN nearest to XO using the Newton method.
\% FUN and its derivative DFUN accept real scalar input
$\% \mathrm{x}$ and returns a real scalar value. If the search fails
$\%$ an errore message is displayed. FUN and DFUN can also
$\%$ be inline objects.

NEWTON METHOD

SOURCE cont'd.:

$\mathrm{x}=\mathrm{x} 0$;
$f x=$ feval (fun,x, varargin $\{:\}$);
dfx $=$ feval(dfun ,x,varargin $\{:\}$)
niter $=0 ;$ diff $=$ tol +1 ;
while diff >= tol \& niter <= nmax
niter $=$ niter +1 ; diff $=-\mathrm{fx} / \mathrm{dfx}$;
$\mathrm{x}=\mathrm{x}+\operatorname{diff} ; \operatorname{diff}=\operatorname{abs}(\operatorname{diff})$;
$f x=$ feval (fun , x, varargin \{:\});
$d f x=$ feval (dfun,x, varargin $\{:\}$);

NEWTON METHOD

References

fprintf (['newton stopped without converging to , ,.. 'the desired tolerance because the maximum '

References for Week 7
'number of iterations was reached\n']);
end
zero $=x ;$ res $=\mathrm{fx} ;$
return
1 Alfio Quarteroni, Fausto Saleri, Wissenschaftliches Rechnen mit Matlab, Springer, 2006.

