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TENTATIVE SCHEDULE

Week Date Topics
1 Feb. 10 Introduction to Scientific and Engineering Computing
2 Feb. 17 Introduction to Program Computing Environment
3 Feb. 24 Variables, Operations and Simple Plot
4 Mar. 03 Algorithms and Logic Operators
5 Mar. 10 Flow Control, Errors and Source of Errors
6 Mar. 17 Functions
6 Mar. 20 Exam 1
7 Mar. 24 Arrays
8 Mar. 31 Solving of Simple Equations
9 Apr. 07 Polynomials Examples
10 Apr. 14 Applications of Curve Fitting
11 Apr. 21 Applications of Interpolation
11 Apr. 24 Exam 2
12 Apr. 28 Applications of Numerical Integration
13 May 05 Symbolic Mathematics
14 May 12 Ordinary Differential Equation (ODE) Solutions with Built-in Functions
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LECTURE # 7

LECTURE # 7

LINEAR EQUATIONS cont’d.

1 INVERSE OF A MATRIX

2 DETERMINANT

NONLINEAR EQUATIONS

1 BRACKETING METHODS

BISECTION
FALSE POSITION(REGULA–FALSI)

2 OPEN METHODS

NEWTON METHOD
SECANT METHOD
FIXED POINT METHOD

3 MATLAB FUNCTIONS
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SOME MATRIX FUNCTIONS

SOME MATRIX FUNCTIONS

zeros: creates a matrix that all elements are equal to
zero.

ones: creates a matrix that all elements are equal to one.

size: returns the dimension of the matrix.

eye: creates an identity matrix.

diag: creates a diagonal matrix

inv: creates the inverse of a given matrix.

trace: returns the sum of the diagonal terms of a matrix.

det: returns the determinant of a matrix.

\: left division

/: right division



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

LINEAR EQUATIONS

LINEAR EQUATIONS

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . .
am1x1 + am2x2 + . . . + amnxn = bn

A x = b

Unknown variables can be calculated with matrix operations.
If m = n

x = A−1 × b
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INVERSE OF A MATRIX

INVERSE OF A MATRIX

Inverse of matrix A is A−1.

A A−1 = A−1 A = I

A x = b

A−1 A x = A−1 b

So, the solution of A x = b is

x = A−1 b
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DETERMINANT OF A MATRIX

DETERMINANT OF A MATRIX

a = |A|: Determinant of the matrix A.

If the determinant a of a square matrix A = aij is different from
zero, then the inverse matrix A−1 of A exists and is obtained
by A−1 = βij

βij =
αij

a

Here αij is the cofactor of aji in the determinant a of the
matrix A.
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DETERMINANT OF A MATRIX

DETERMINANT OF A MATRIX

det(A) =
n

∑

j=1

αijaij

where n ≥ 1, i = 1, . . . , n
The (n − 1) rowed determinant obtained from the determinant
a by striking out the jth row and ith column in a, and then
multiplying the result by (−1)i+j

A =











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn










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DETERMINANT OF A MATRIX

DETERMINANT OF A MATRIX

A =

[

a11 a12

a21 a22

]

For a 2 × 2 matrix
det(A) = a11 a22 − a12 a21

For a 3 × 3 matrix
det(A) = a11 a22 a33 + a31 a12 a23 + a21 a13 a32

−a11 a23 a32 − a21 a12 a13 − a31 a13 a22
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NONLINEAR EQUATIONS

NONLINEAR EQUATIONS

The Problem: Computing the roots of a real function.

If the degree of the polynomial is greater than four, there
exists no explicit form to obtain the roots.

If the function is not in the form of a polynomial, finding
roots is more difficult.

Solution: Iterative Methods.

Start from initial value and converge(hopefully) to a zero
value α of the function.
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ROOT FINDING

ROOT FINDING

Nonlinear equations can be written as f (x) = 0

Example: If f (x) = x ex , solve f (x) = x ex = 0
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ROOT FINDING

GRAPHICAL INSPECTION
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ROOT FINDING

ROOT FINDING

Finding the roots of a nonlinear equation is equivalent to
finding the values of x for which f (x) is zero.

Any function of one variable can be put in the form
f (x) = 0.

We examine several methods of finding the roots for a
general function f (x).
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ROOT FINDING

ROOT FINDING

A fundamental principle in computer science is iteration.
As the name suggests, a process is repeated until an
answer is achieved.

Iterative techniques are used to obtain the roots of
equations, solutions of linear and nonlinear systems of
equations, and solutions of differential equations.

A rule or function for computing successive terms is
needed, together with a starting value.

Then a sequence of values is obtained using the iterative
rule xk+1 = g(xk)
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ROOT FINDING

EXAMPLE:

To find the x that satisfies cos(x) = x

Find the zero crossing of f (x) = cos(x) − x = 0
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ROOT FINDING

EXAMPLE:

filename: ex 07 01.m

%script file

x=linspace(-1,1);

y=cos(x)-x;

plot(x,y);

axis([min(x),max(x) -2 2]);

grid;
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ROOT FINDING

EXAMPLE:
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ROOT FINDING

EXAMPLE:
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ROOT FINDING

ROOT FINDING

The basic strategy for root-finding procedure

1 Plot the function.

The plot provides an initial guess and an indication of
potential problems.

2 Select an initial guess.

3 Iteratively refine the initial guess with a root finding
algorithm.
If xk is the estimate to the root on the kth iteration, then
the iterations converge.
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NONLINEAR EQUATIONS

METHODS

1 BRACKETING METHODS

BISECTION(INTERVAL HALVING)
FALSE POSITION(REGULA–FALSI)

These methods are applied after initial guesses on the
root(s) that are identified with bracketing (or guesswork).

2 OPEN METHODS

NEWTON METHOD(NEWTON–RAPHSON)
SECANT METHOD
FIXED POINT METHOD

These methods may involve one or more initial guesses,
however there is no need to bracket the root.
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BISECTION METHOD

BISECTION METHOD

f : continuos function within [a, b] which satisfies
f (a)f (b) ≤ 0

f has at least one zero(α) in (a, b).

If f has several zeros, use fplot command to locate an
interval, which contains only one of them.
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BISECTION METHOD

BISECTION METHOD

Divide the given interval in halves.

Select the subinterval, where f features a sign change.

Intervals named as I (i).

In each step the interval contains α.
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BISECTION METHOD

BISECTION METHOD

The method starts by setting:

a(0) = a, b(0) = b, I (0) = (a(0), b(0))

x (0) = (a(0) + b(0))/2

At each step (k ≥ 1) we select the subinterval

I (k) = (a(k), b(k))
of the interval I (k−1) = (a(k−1), b(k−1))

The iteration (k − 1), x (k−1) = (a(k−1), b(k−1))/2 and

if f (x (k−1)) = 0 then α = x (k−1)
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BISECTION METHOD

BISECTION METHOD

otherwise

if f (a(k−1))f (x (k−1)) < 0 set a(k) = a(k−1), b(k) = x (k−1)

if f (x (k−1))f (b(k−1)) < 0 set b(k) = b(k−1), a(k) = x (k−1)

Define

x (k) = (a(k) + b(k))/2 and interval I (k+1)



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

BISECTION METHOD

BISECTION METHOD x (k) = (a(k) + b(k))/2 Introduction
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BISECTION METHOD

BISECTION METHOD f (a(k))f (b(k)) < 0
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BISECTION METHOD

BISECTION METHOD

Each interval contains the zero α

The interval halves in each step

|e(k)| = |x (k) − α| ≤ 1
2 |I

(k)| = (1
2)k+1(b − a)

The number of minimum iterations for a given tolerance ǫ:

kmin ≥ log2(
b−a

ǫ
) − 1

|ǫ| ≥ | x
(k+1)

−x(k)

x(k+1) |
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BISECTION METHOD

BISECTION METHOD

Advantages

Always convergent.

The root bracket gets halved with each iteration.

Drawbacks

Slow convergence.

If one of the initial guesses is close to the root, the
convergence is slower.

In spite of its simplicity, the bisection method does not
guarantee a monotone reduction of the error, but simply the
search interval is halved from one iteration to the next.
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BISECTION METHOD

BISECTION METHOD

The statement eval(f) is used to evaluate the function at a

given value of x .
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BISECTION METHOD

EXAMPLE
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REGULA–FALSI METHOD

REGULA–FALSI METHOD

From geometry, similar triangles have similar ratios of
sides.

slope =
f (xb) − f (xa)

xb − xa

=
f (xb) − f (xc)

xb − xc

The new approximation for the root: f (xr ) = 0

This can be rearranged to yield Regula–Falsi equation.

xc = xb −
xa − xb

f (xa) − f (xb)
f (xb)
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NEWTON METHOD

NEWTON METHOD

The definition for the derivative is used to find the zero α
y(x) = f (x (k)) + f ′(x (k))(x − x (k))
with the equation of the tangent to the curve (x , f (x)) at the
point x (k)

x (k+1) = x (k) − f (x(k))

f ′(x(k))

f ′(x (k)) 6= 0
This is the simple form of the function f represented in Taylor
series.

When the f function is linear it converges in a single step.
(Example: f (x) = a1 x + a0)
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NEWTON METHOD

NEWTON METHOD
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NEWTON METHOD

NEWTON METHOD
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NEWTON METHOD

NEWTON METHOD

The Newton method in general does not converge for all
possible choices of x (0), but only for those values of x (0) which
are sufficiently close to α. In practice initial value can be
obtained:

with a few iterations of the bisection method or

with the graph of function f .
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NEWTON METHOD

NEWTON METHOD

The error at step (k + 1) behaves like the square of the
error at step k multiplied by a constant which is
independent of k.

The iterations can be terminated at the smallest value of
kmin for a given tolerance ǫ

|α − x (kmin)| ≤ ǫ

|xkmin − x (kmin−1)| ≤ ǫ
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NEWTON METHOD

EXAMPLE:

Use the Newton Raphson method to determine the mass
of the bungee jumper with a drag coefficient of 0.25kg/m
to have a velocity of 36m/s after 4s of free fall
(g = 9.81m/s2).

The function to be evaluated and its derivative is shown
below:
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NEWTON METHOD FOR SYSTEM OF

NONLINEAR EQUATIONS

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR
EQUATIONS
Consider a system of nonlinear equations of the form
f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0
. . .
fn(x1, x2, . . . , xn) = 0

f= (f1, f2, . . . , fn)
T

x= (x1, x2, . . . , xn)
T

f (x) = 0
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NEWTON METHOD FOR SYSTEM OF

NONLINEAR EQUATIONS

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR
EQUATIONS

Extend the Newton’s method, replace the first derivative
of the scalar function f

with the Jacobian matrix Jf

(Jf )ij = ∂fi
∂xj

i , j = 1, . . . , n

The method stops when the difference between two
consecutive iterates has an euclidean norm smaller than ǫ
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FIXED POINT ITERATION

FIXED POINT ITERATION

Given a function
α = φ(α)
if such an alpha exist, it is called a fixed point of φ

Algorithm:

x (k+1) = φ(x (k)), k ≥ 0
Fixed point iteration
φ Iteration function
Example:
The Newton method can be regarded as an algorithm of fixed
point iterations whose iteration function is φN

φ(x) = x − f (x)
f ′(x)

All the functions do not have fixed points.
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FIXED POINT ITERATION
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SECANT METHOD

SECANT METHOD

Use secant line instead of tangent line at f (xi )

The formula for the secant method is

xi+1 = xi −
f (xi )(xi−1 − xi )

f (xi−1) − f (xi )

Notice that this is very similar to the False
Position(Regula Falsi) method in form.

Still requires two initial estimates

But it does not bracket the root at all times - there is no
sign test.
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SECANT METHOD
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MATLAB FUNCTION fzero

MATLAB FUNCTION fzero

Solution with Dekker –Brent method.

Bracketing methods: reliable but slow.

Open methods: fast but possibly unreliable.

MATLAB fzero: fast and reliable.

fzero: find real root of an equation (not suitable for double
root).

When output argument flag is negative it means that,
fzero cannot find the zero.

fzero(function, x0)

fzero(function, [x0x1])
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MATLAB FUNCTION fzero

EXAMPLE:

filename: ex fzero.m

% fzero

func = ’x^2-1+exp(x)’;

fzero(func,1)

fzero(func,-1)

fplot(func,[-1 1])
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MATLAB FUNCTION fzero

EXAMPLE:
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MATLAB FUNCTION fzero

EXAMPLE:
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MATLAB FUNCTION fzero

EXAMPLE:
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MATLAB FUNCTION roots

MATLAB FUNCTION roots

Zeros of nth – order polynomial
p(x) = cn xn + cn−1 xn−1 + . . . + c2 x2 + c1 x + c0

Coefficient vector c = [cn, cn−1, . . . , c2, c1, c0]

c = poly(r)

x = roots(c)
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MATLAB FUNCTION roots

EXAMPLE:

filename: ex fzero.m

%ex_poly

x=linspace(0,4,100);

p = [1 -6 11 -6];

y = polyval(p,x);

plot(x,y)

grid(’on’)

roots(p)
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MATLAB FUNCTION roots

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

MATLAB FUNCTION roots

EXAMPLE:
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MATLAB FUNCTION roots

EXAMPLE:
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BISECTION METHOD

SOURCE:

function [zero ,res ,niter ]= bisection(fun ,a,b,tol ,...

nmax ,varargin)

%BISECTION Find function zeros.

% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX) tries to find a zero

% ZERO of the continuous function FUN in the interval

% [A,B] using the bisection method. FUN accepts real

% scalar input x and returns a real scalar value. If

% the search fails an errore message is displayed. FUN

% can also be an inline object.
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BISECTION METHOD

SOURCE cont’d.:

% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX ,P1 ,P2 ,...) passes

% parameters P1 ,P2 ,... to the function FUN(X,P1 ,P2 ,...).

% [ZERO ,RES ,NITER ]= BISECTION(FUN ,...) returns the value

% of the residual in ZERO and the iteration number at

% which ZERO was computed.

x = [a, (a+b)*0.5 , b]; fx = feval(fun ,x,varargin {:});

if fx (1)*fx(3) > 0

error ([’ The sign of the function at the ’ ,...

’endpoints of the interval must be different ’]);

elseif fx(1) == 0

zero = a; res = 0; niter = 0; return

elseif fx(3) == 0

zero = b; res = 0; niter = 0; return

end
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BISECTION METHOD

SOURCE cont’d.:

niter = 0;

I = (b - a)*0.5;

while I >= tol & niter <= nmax

niter = niter + 1;

if fx (1)* fx(2) < 0

x(3) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;

fx = feval(fun ,x,varargin {:}); I = (x(3)-x(1))*0.5;

elseif fx (2)* fx(3) < 0

x(1) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;

fx = feval(fun ,x,varargin {:}); I = (x(3)-x(1))*0.5;

else

x(2) = x(find(fx ==0)); I = 0;

end

end



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

BISECTION METHOD

SOURCE cont’d.:

if niter > nmax

fprintf ([’bisection stopped without converging ’ ,...

’to the desired tolerance because the ’ ,...

’maximum number of iterations was ’ ,...

’reached\n’]);

end

zero = x(2); x = x(2); res = feval(fun ,x,varargin {:});

return
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NEWTON METHOD

SOURCE:

function [zero ,res ,niter ]= newton(fun ,dfun ,x0 ,tol ,...

nmax ,varargin)

%NEWTON Find function zeros.

% ZERO=NEWTON(FUN ,DFUN ,X0 ,TOL ,NMAX) tries to find the

% zero ZERO of the continuous and differentiable

% function FUN nearest to X0 using the Newton method.

% FUN and its derivative DFUN accept real scalar input

% x and returns a real scalar value. If the search fails

% an errore message is displayed. FUN and DFUN can also

% be inline objects.
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NEWTON METHOD

SOURCE cont’d.:

% ZERO=NEWTON(FUN ,DFUN ,X0 ,TOL ,NMAX ,P1 ,P2 ,...) passes

% parameters P1 ,P2 ,... to functions: FUN(X,P1 ,P2 ,...)

% and DFUN(X,P1 ,P2 ,...).

% [ZERO ,RES ,NITER ]= NEWTON(FUN ,...) returns the value of

% the residual in ZERO and the iteration number at which

% ZERO was computed.
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NEWTON METHOD

SOURCE cont’d.:

x = x0;

fx = feval(fun ,x,varargin {:});

dfx = feval(dfun ,x,varargin {:});

niter = 0; diff = tol +1;

while diff >= tol & niter <= nmax

niter = niter + 1; diff = - fx/dfx;

x = x + diff; diff = abs(diff );

fx = feval(fun ,x,varargin {:});

dfx = feval(dfun ,x,varargin {:});

end
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NEWTON METHOD

SOURCE cont’d.:

if niter > nmax

fprintf ([’newton stopped without converging to ’ ,...

’the desired tolerance because the maximum ’

’number of iterations was reached\n’]);

end

zero = x; res = fx;

return
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