

Introduction to Scientific and Engineering Computing, BIL108E

INTRODUCTION TO SCIENTIFIC & ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

March 22, 2010

TENTATIVE SCHEDULE

ntroduction o Scientific and Engineering Computing, BIL 108E	Week	Date	Topics
	1	Feb 10	Introduction to Scientific and Engineering Computing
Karaman	2	Feb. 17	Introduction to Program Computing Environment
	3	Feb. 24	Variables, Operations and Simple Plot
	4	Mar. 03	Algorithms and Logic Operators
	5	Mar. 10	Flow Control, Errors and Source of Errors
	6	Mar. 17	Functions
	6	Mar. 20	Exam 1
	7	Mar. 24	Arrays
	8	Mar. 31	Solving of Simple Equations
	9	Apr. 07	Polynomials Examples
	10	Apr. 14	Applications of Curve Fitting
	11	Apr. 21	Applications of Interpolation
	11	Apr. 24	Exam 2
	12	Apr. 28	Applications of Numerical Integration
	13	May 05	Symbolic Mathematics
	14	May 12	Ordinary Differential Equation (ODE) Solutions with Built-in Functions

LECTURE # 7

Introduction to Scientific and Engineering Computing, BIL108E

LECTURE # 7

LINEAR EQUATIONS cont'd.

- **I** INVERSE OF A MATRIX
- 2 DETERMINANT
- NONLINEAR EQUATIONS
- **1** BRACKETING METHODS
 - BISECTION
 - FALSE POSITION(REGULA-FALSI)
- **2** OPEN METHODS
 - NEWTON METHOD
 - SECANT METHOD
 - FIXED POINT METHOD
- **3** MATLAB FUNCTIONS

Introduction

to Scientific

and

Engineering

Computing,

BIL108E

SOME MATRIX FUNCTIONS

SOME MATRIX FUNCTIONS

- zeros: creates a matrix that all elements are equal to zero.
- ones: creates a matrix that all elements are equal to one.
- size: returns the dimension of the matrix.
- eye: creates an identity matrix.
- diag: creates a diagonal matrix
- inv: creates the inverse of a given matrix.
- trace: returns the sum of the diagonal terms of a matrix.
- det: returns the determinant of a matrix.
- \: left division
- /: right division

LINEAR EQUATIONS

to Scientific and Engineering Computing BIL108E

LINEAR EQUATIONS

. . .

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$

 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n$

Ax = b

Unknown variables can be calculated with matrix operations. If m = n $x = A^{-1} \times b$

INVERSE OF A MATRIX

troduction	
Scientific	
and	
anu	
ngineering	
omputing,	
BIL108E	

INVERSE OF A MATRIX Inverse of matrix A is A^{-1} .

$$A A^{-1} = A^{-1} A = I$$

A x = b $A^{-1}Ax = A^{-1}h$ So, the solution of Ax = b is

 $x = A^{-1} h$

DETERMINANT OF A MATRIX

Introduction to Scientific and Engineering Computing, BIL108E

a = |A|: Determinant of the matrix A.

If the determinant **a** of a square matrix $A = a_{ii}$ is different from zero, then the inverse matrix A^{-1} of A exists and is obtained by $A^{-1} = \beta_{ii}$ $\beta_{ij} = \frac{\alpha_{ij}}{2}$

Here α_{ii} is the cofactor of a_{ii} in the determinant *a* of the matrix A.

Com BIL

Introduction

to Scientific

and

DETERMINANT OF A MATRIX

DETERMINANT OF A MATRIX

$$det(A) = \sum_{j=1}^{n} \alpha_{ij} a_{ij}$$

where $n \ge 1, i = 1, ..., n$

The (n-1) rowed determinant obtained from the determinant a by striking out the *j*th row and *i*th column in *a*, and then multiplying the result by $(-1)^{i+j}$

DETERMINANT OF A MATRIX

Introduction to Scientific and Engineering Computing BIL108E

DETERMINANT OF A MATRIX

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

For a 2×2 matrix $det(A) = a_{11} a_{22} - a_{12} a_{21}$ For a 3×3 matrix $det(A) = a_{11} a_{22} a_{33} + a_{31} a_{12} a_{23} + a_{21} a_{13} a_{32}$ $-a_{11}a_{23}a_{32} - a_{21}a_{12}a_{13} - a_{31}a_{13}a_{22}$

NONLINEAR EQUATIONS

Introduction to Scientific and

Engineering

Computing,

BIL108E

NONLINEAR EQUATIONS

- The Problem: Computing the roots of a real function.
- If the degree of the polynomial is greater than four, there exists no explicit form to obtain the roots.
- If the function is not in the form of a polynomial, finding roots is more difficult.
- Solution: Iterative Methods.
- Start from initial value and converge(hopefully) to a zero value α of the function.

ROOT FINDING

Introduction to Scientific and Engineering Computing, BIL108E

ROOT FINDING

- Nonlinear equations can be written as f(x) = 0
- Example: If $f(x) = x e^x$, solve $f(x) = x e^x = 0$

ROOT FINDING

ROOT FINDING

ROOT FINDING

- Finding the roots of a nonlinear equation is equivalent to finding the values of x for which f(x) is zero.
- Any function of one variable can be put in the form f(x)=0.
- We examine several methods of finding the roots for a general function f(x).

ROOT FINDING

Introduction to Scientific and

Engineering Computing,

BIL108E

ROOT FINDING

- A fundamental principle in computer science is iteration. As the name suggests, a process is repeated until an answer is achieved
- Iterative techniques are used to obtain the roots of equations, solutions of linear and nonlinear systems of equations, and solutions of differential equations.
- A rule or function for computing successive terms is needed, together with a starting value.
- Then a sequence of values is obtained using the iterative rule $x_{k+1} = g(x_k)$

ROOT FINDING

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE:

To find the x that satisfies cos(x) = x

Find the zero crossing of f(x) = cos(x) - x = 0

ROOT FINDING

Introduction to Scientific and

Engineering

Computing, BIL108E

EXAMPLE:

filename: ex_ 07_ 01.m

```
%script file
x=linspace(-1,1);
y = cos(x) - x;
plot(x,y);
axis([min(x),max(x) -2 2]);
grid;
```


ROOT FINDING

Introductio to Scientific and Engineering Computing BIL108E

EXAMPLE:

ROOT FINDING

Introduction to Scientific

and

Introduction to Scientific and Engineering Computing, BIL108E

ROOT FINDING

ROOT FINDING

The basic strategy for root-finding procedure

Plot the function.

The plot provides an initial guess and an indication of potential problems.

2 Select an initial guess.

3 Iteratively refine the initial guess with a root finding algorithm.

If x_k is the estimate to the root on the k^{th} iteration, then the iterations converge.

NONLINEAR EQUATIONS

Introduction to Scientific and

Engineering

Computing,

BIL108E

METHODS

BRACKETING METHODS

- BISECTION(INTERVAL HALVING)
- FALSE POSITION(REGULA-FALSI)

These methods are applied after initial guesses on the root(s) that are identified with bracketing (or guesswork).

2 OPEN METHODS

- NEWTON METHOD(NEWTON-RAPHSON)
- SECANT METHOD
- FIXED POINT METHOD

These methods may involve one or more initial guesses, however there is no need to bracket the root.

BISECTION METHOD

Introductio to Scientific and Engineering Computing BIL108E

BISECTION METHOD

- *f*: continuos function within [*a*, *b*] which satisfies $f(a)f(b) \leq 0$
- f has at least one zero(α) in (a, b).
- If f has several zeros, use fplot command to locate an interval, which contains only one of them.

BISECTION METHOD

roduction	
Scientific	
and	
gineering	
mputing,	

BISECTION METHOD

- Divide the given interval in halves.
- Select the subinterval, where *f* features a sign change.
- Intervals named as $I^{(i)}$.
- In each step the interval contains α .

BISECTION METHOD

Introduction to Scientific and Engineering Computing, BIL108E

BISECTION METHOD

The method starts by setting: $a^{(0)} = a, \ b^{(0)} = b, \ I^{(0)} = (a^{(0)}, \ b^{(0)})$ $x^{(0)} = (a^{(0)} + b^{(0)})/2$ At each step $(k \ge 1)$ we select the subinterval $I^{(k)} = (a^{(k)}, b^{(k)})$ of the interval $I^{(k-1)} = (a^{(k-1)}, b^{(k-1)})$ The iteration (k-1), $x^{(k-1)} = (a^{(k-1)}, b^{(k-1)})/2$ and if $f(x^{(k-1)}) = 0$ then $\alpha = x^{(k-1)}$

BISECTION METHOD

Introduction to Scientific and Engineering Computing, BIL108E

BISECTION METHOD

otherwise

if
$$f(a^{(k-1)})f(x^{(k-1)}) < 0$$
 set $a^{(k)} = a^{(k-1)}$, $b^{(k)} = x^{(k-1)}$
if $f(x^{(k-1)})f(b^{(k-1)}) < 0$ set $b^{(k)} = b^{(k-1)}$, $a^{(k)} = x^{(k-1)}$

Define

 $x^{(k)} = (a^{(k)} + b^{(k)})/2$ and interval $I^{(k+1)}$

Introductior

to Scientific

and

Engineering

Computing, BIL108E

BISECTION METHOD

BISECTION METHOD $x^{(k)} = (a^{(k)} + b^{(k)})/2$

BISECTION METHOD

TANK CENTRAL C

Introduction to Scientific and Engineering Computing, BIL108E

BISECTION METHOD

BISECTION METHOD

- \blacksquare Each interval contains the zero α
- The interval halves in each step

 $|e^{(k)}| = |x^{(k)} - \alpha| \le \frac{1}{2}|I^{(k)}| = (\frac{1}{2})^{k+1}(b-a)$ The number of minimum iterations for a given tolerance ϵ :

 $k_{min} \ge log_2(rac{b-a}{\epsilon}) - 1$ $|\epsilon| \ge |rac{x^{(k+1)}-x^{(k)}}{x^{(k+1)}}|$

BISECTION METHOD

Introduction to Scientific and Engineering

Computing,

BIL108E

BISECTION METHOD

Advantages

- Always convergent.
- The root bracket gets halved with each iteration.

Drawbacks

- Slow convergence.
- If one of the initial guesses is close to the root, the convergence is slower.

In spite of its simplicity, the bisection method does not guarantee a monotone reduction of the error, but simply the search interval is halved from one iteration to the next.

BISECTION METHOD

Introduction to Scientific and Engineering Computing, BIL108E

BISECTION METHOD

```
initialize: a = \dots, b = \dots
for k = 1, 2, \dots
x_m = a + (b - a)/2
if sign (f(x_m)) = sign (f(x_a))
a = x_m
else
b = x_m
end
if converged, stop
end
```

The statement eval(f) is used to evaluate the function at *a* given value of *x*.

THINK OF IT

Introduction

to Scientific

and

Engineering

Computing,

BIL108E

BISECTION METHOD

EXAMP	LE					
Hand Calculation Example						
Bisection Method		Example : $f(x) = x^2 - 2x - 3 = 0$ initial estimates $[x_a, x_b] = [2.0, 3.2]$				
	iter	x _a	x_b	x _c	$f(x_c)$	Δx
	1	2.0	3 .2	2.6	-1.44	1.2
	2	2.6	3.2	2.9	-0.39	0.6
	3	2.9	3.2	3.05	0.2025	0.3
	4	2.9	3.05	2.975	-0.0994	0.15
	5	2.975	3.05	3.0125	0.0502	0.075
	6	2.975	3.0125	2.99375	-0.02496	0.0375

f(2) = -3, f(3.2) = 0.84

REGULA-FALSI METHOD

Introduction to Scientific and Engineering Computing, BIL108E

REGULA-FALSI METHOD

From geometry, similar triangles have similar ratios of sides.

$$slope = rac{f(x_b) - f(x_a)}{x_b - x_a} = rac{f(x_b) - f(x_c)}{x_b - x_c}$$

- The new approximation for the root: $f(x_r) = 0$
- This can be rearranged to yield Regula-Falsi equation.

$$x_c = x_b - \frac{x_a - x_b}{f(x_a) - f(x_b)} f(x_b)$$

NEWTON METHOD

Introduction to Scientific and Engineering

Computing, BIL108E

NEWTON METHOD

The definition for the derivative is used to find the zero α $y(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)})$

with the equation of the tangent to the curve (x, f(x)) at the point $x^{(k)}$

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

$$f'(x^{(k)}) \neq 0$$

This is the simple form of the function f represented in Taylor series.

When the f function is linear it converges in a single step. (Example: $f(x) = a_1 x + a_0$)

NEWTON METHOD

Introduction to Scientific and Engineering Computing, BIL108E

NEWTON METHOD

and

Computing, BIL108E

NEWTON METHOD

NEWTON METHOD

Introduction to Scientific and Engineering Computing, BIL108E

NEWTON METHOD

The Newton method in general does not converge for all possible choices of $x^{(0)}$, but only for those values of $x^{(0)}$ which are sufficiently close to α . In practice initial value can be obtained:

- with a few iterations of the bisection method or
- with the graph of function f.

NEWTON METHOD

Introduction to Scientific and Engineering Computing, BIL108E

NEWTON METHOD

- The error at step (k + 1) behaves like the square of the error at step k multiplied by a constant which is independent of k.
- The iterations can be terminated at the smallest value of k_{min} for a given tolerance ϵ

$$\begin{aligned} |\alpha - x^{(k_{\min})}| &\leq \epsilon \\ |x^{k_{\min}} - x^{(k_{\min}-1)}| &\leq \epsilon \end{aligned}$$

.. 、

NEWTON METHOD

EXAMPLE:

- Use the Newton Raphson method to determine the mass of the bungee jumper with a drag coefficient of 0.25kg/m to have a velocity of 36m/s after 4s of free fall (g = 9.81m/s²).
- The function to be evaluated and its derivative is shown below:

$$f(m) = \sqrt{\frac{gm}{c_d}} \tanh\left(\sqrt{\frac{gc_d}{m}t}\right) - v(t)$$

$$\frac{df(m)}{dm} = \frac{1}{2} \sqrt{\frac{g}{mc_d}} \tanh\left(\sqrt{\frac{gc_d}{m}t}\right) - \frac{g}{2m} t \sec h^2 \left(\sqrt{\frac{gc_d}{m}t}\right)$$

NEWTON METHOD FOR SYSTEM OF NONLINEAR EQUATIONS

Introduction to Scientific and Engineering Computing, BIL108E

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR EQUATIONS

- Extend the Newton's method, replace the first derivative of the scalar function f with the Jacobian matrix J_f
 (1) = ^{∂fi}
 - $(J_f)_{ij} = \frac{\partial f_i}{\partial x_j}$ $i, j = 1, \dots, n$
- \blacksquare The method stops when the difference between two consecutive iterates has an euclidean norm smaller than ϵ

NEWTON METHOD FOR SYSTEM OF NONLINEAR EQUATIONS

Introduction to Scientific and

Engineering Computing, BIL108E

NEWTON METHOD FOR THE SYSTEM OF NONLINEAR EQUATIONS

Consider a system of nonlinear equations of the form

$$f_1(x_1, x_2, \dots, x_n) = 0 f_2(x_1, x_2, \dots, x_n) = 0$$

$$f_n(x_1, x_2, \ldots, x_n) = 0$$

$$\mathbf{f} = (f_1, f_2, \dots, f_n)^T$$
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$
$$f(x) = 0$$

FIXED POINT ITERATION

Introduction to Scientific and Engineering

Computing, BIL108E

FIXED POINT ITERATION

Given a function $\alpha = \phi(\alpha)$ if such an alpha exist, it is called a fixed point of ϕ

Algorithm:

$$x^{(k+1)} = \phi(x^{(k)}), \ k \ge 0$$

Fixed point iteration

 ϕ Iteration function

Example:

The Newton method can be regarded as an algorithm of fixed point iterations whose iteration function is ϕ_N $\phi(x) = x - \frac{f(x)}{f'(x)}$

All the functions do not have fixed points.

Introduction to Scientific and Engineering Computing, BIL108E

and

Computing

BIL108E

FIXED POINT ITERATION

EXAMPLE: Introduction to Scientific Engineering $f(x) \neq$ Simple $f(x) = e^{-x} - x$ f(x) = 0Root Fixed-Point Iteration (a) Two Alternative f(x)Graphical Methods $f_1(x) = x$ $f_1(x) = f_2(x)$ $f_2(x) = e^{-x}$ $f(x) = f_1(x) - f_2(x) = 0$ Root (b)

SECANT METHOD

Introduction to Scientific and

Engineering

Computing,

BIL108E

SECANT METHOD

- Use secant line instead of tangent line at $f(x_i)$
- The formula for the secant method is

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

- Notice that this is very similar to the False Position(Regula Falsi) method in form.
- Still requires two initial estimates
- But it does not bracket the root at all times there is no sign test.

Introduction to Scientific and Engineering Computing, BIL108E

SECANT METHOD

MATLAB FUNCTION fzero

Introduction to Scientific and

Engineering

Computing, BIL108E

MATLAB FUNCTION fzero

Solution with Dekker -Brent method.

- Bracketing methods: reliable but slow.
- Open methods: fast but possibly unreliable.
- MATLAB fzero: fast and reliable.
- fzero: find real root of an equation (not suitable for double root).
- When output argument flag is negative it means that, fzero cannot find the zero.

 $fzero(function, x_0)$ $fzero(function, [x_0x_1])$

MATLAB FUNCTION fzero

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE:

filename: ex_ fzero.m

% fzero func = $'x^2-1+exp(x)';$ fzero(func,1) fzero(func,-1) fplot(func,[-1 1])

MATLAB FUNCTION fzero

Introduction to Scientific EXAMPLE: Engineering Computing, BIL108E Eile Edit Debug Desktop Window Help 🚹 🖆 🐇 🐂 🛅 🤊 (*) 🐉 🗊 🖹 🕘 Current Directory: /media/Transcend/source 👻 ... 😰 Current Directory 🏎 🗖 🔻 🐨 🖡 🕻 🖻 🖆 🖪 🖥 🔹 • >> type ex_fzero.m All Files ∠ Type ■ ex_07_01.m M-file % fzero 🖺 ex_fzero.m M-file func = 'x^2-1+exp(x)'; M-file 1 ex_poly.m fzero(func,1) fzero(func,-1) fplot(func,[-1 1]) >> 4 Command History 🗰 🖬 🛪 🗙 clc type ex_fzero.m 📣 <u>S</u>tart

MATLAB FUNCTION fzero

Introduction to Scientific and Engineering Computing, BIL108E

MATLAB FUNCTION fzero

Introduction to Scientific and

Engineering

EXAMPLE:

Computing,	MATLAB 7.6.0 (R2008a)				
BIL108E	Elle Edit Debug Desktop Window Help				
Karaman	🖺 😂 🐇 🐂 🛍 🥙 🍽 巐 💅 🖻 🛛 Current Directory. //media/Transcend/source 🛡 🔞				
Karaman	Current Directory 🏎 🗖 🛪 🗙 Wor	** 🗆 * ×			
	🖻 🗂 🖪 🖥 🔹		-		
	All Files ∠ Type	% fzero			
	ex_07_01.m M-file	$func = 'x^2-1+exp(x)';$			
	ex_fzero.m M-file	fzero(func,1)			
	ex_poly.m M=me	fzero(func,-1)			
		fplot(func,[-1 1])			
		>> ex_fzero			
		ans =			
			224		
		5.4422e-18			
		ans =			
	4				
	Command History 🖛 🗖 🛪 🗙	-0 7146			
	type ex_fzero.m				
	ex fzero	ss arid('on')			
	arid('on')				
	Astart				
	Start .		- CH		

MATLAB FUNCTION roots

Introduction to Scientific and Engineering Computing, BIL108E

MATLAB FUNCTION roots

- Zeros of n^{th} order polynomial $p(x) = c_n x^n + c_{n-1} x^{n-1} + \ldots + c_2 x^2 + c_1 x + c_0$
- Coefficient vector $c = [c_n, c_{n-1}, \ldots, c_2, c_1, c_0]$
- c = poly(r)
- x = roots(c)

MATLAB FUNCTION roots

Introduction to Scientific and Engineering Computing,

BIL108E

EXAMPLE: filename: ex_ fzero.m

%ex_poly x=linspace(0,4,100); p = [1 -6 11 -6];y = polyval(p,x); plot(x,y) grid('on') roots(p)

MATLAB FUNCTION roots

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE:

MATLAB FUNCTION roots

Introduction to Scientific

and

BIL108E

EXAMPLE:

MATLAB FUNCTION roots

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE:

A	MATLAB 7.6.0 (R2008a)	
Eile Edit Debug Desktop Windo	w Help	
1 6 8 9 9 6 5 5	👔 🥹 Current Directory: /media/Transcend/source 💌 👔	
Current Directory + - * × Wor	Command Window 👐	l * ×
B C R D C R	<pre>>> type ex_poly.m %ex_poly x=linspace(0,4,100); p = [1 -6 11 -6]; y = polyval(p,x); plot(x,y) grid('on') roots(p)</pre>	
<pre>(does) Command History ← □ * x Command History</pre>	<pre>>> ex_poly ans =</pre>	

Introduction

to Scientific

and

Engineering

Computing,

BIL108E

BISECTION METHOD

SOURCE:

function [zero ,res ,niter]= bisection(fun ,a,b,tol ,...
nmax ,varargin)

%BISECTION Find function zeros.

% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX) tries to find a zero

% ZERO of the continuous function FUN in the interval

% [A,B] using the bisection method. FUN accepts real

% scalar input x and returns a real scalar value. If

% the search fails an errore message is displayed. FUN

% can also be an inline object.

NIL STANDARD

BISECTION METHOD

Introduction to Scientific and Engineering Computing, BIL108E

SOURCE cont'd.:

```
% ZERO=BISECTION(FUN ,A,B,TOL ,NMAX ,P1 ,P2 ,...) passes
% parameters P1 ,P2 ,... to the function FUN(X,P1 ,P2 ,...
% [ZERO ,RES ,NITER ]= BISECTION(FUN ,...) returns the val
% of the residual in ZERO and the iteration number at
% which ZERO was computed.
x = [a, (a+b)*0.5 , b]; fx = feval(fun ,x,varargin {:});
if fx (1)*fx(3) > 0
    error ([' The sign of the function at the ' ,...
        'endpoints of the interval must be different '
elseif fx(1) == 0
    zero = a; res = 0; niter = 0; return
elseif fx(3) == 0
    zero = b; res = 0; niter = 0; return
end
```


BISECTION METHOD

```
SOURCE cont'd.:
Introduction
to Scientific
  and
Engineering
           niter = 0:
Computing,
BIL108E
           I = (b - a) * 0.5;
           while I >= tol & niter <= nmax
               niter = niter + 1;
               if fx (1) * fx(2) < 0
                   x(3) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;
                   fx = feval(fun , x, varargin \{:\}); I = (x(3)-x(1))*0
               elseif fx (2) * fx(3) < 0
                    x(1) = x(2); x(2) = x(1)+(x(3)-x(1))*0.5;
                   fx = feval(fun , x, varargin \{:\}); I = (x(3)-x(1))*0
               else
                    x(2) = x(find(fx == 0)); I = 0;
               end
           end
```


BISECTION METHOD

Introductio to Scientific and Engineering Computing BIL108E

SOURCE cont'd.:

if niter > nmax

fprintf (['bisection stopped without converging ',... 'to the desired tolerance because the ' 'maximum number of iterations was ',... 'reached\n']):

end

zero = x(2); x = x(2); res = feval(fun ,x,varargin {:}); return

Introduction to Scientific

and

Engineering

Computing,

BIL108E

NEWTON METHOD

SOURCE:

function [zero ,res ,niter] = newton(fun ,dfun ,x0 ,tol ,. nmax ,varargin)

%NEWTON Find function zeros.

% ZERO=NEWTON(FUN ,DFUN ,XO ,TOL ,NMAX) tries to find the % zero ZERO of the continuous and differentiable

% function FUN nearest to XO using the Newton method.

% FUN and its derivative DFUN accept real scalar input

% x and returns a real scalar value. If the search fails % an errore message is displayed. FUN and DFUN can also

NEWTON METHOD

Introduction to Scientific and Engineering Computing, BIL108E

SOURCE cont'd.:

% ZERO=NEWTON(FUN ,DFUN ,XO ,TOL ,NMAX ,P1 ,P2 ,...) passe % parameters P1 ,P2 ,... to functions: FUN(X,P1 ,P2 ,...) % and DFUN(X,P1 ,P2 ,...).

% [ZERO ,RES ,NITER] = NEWTON(FUN ,...) returns the value % the residual in ZERO and the iteration number at which % ZERO was computed.

Introduction

to Scientific

and

Engineering

Computing, BIL108E

NEWTON METHOD

% be inline objects.

SOURCE cont'd.:

```
x = x0:
fx = feval(fun ,x,varargin {:});
dfx = feval(dfun ,x,varargin {:});
niter = 0; diff = tol +1;
while diff >= tol & niter <= nmax
    niter = niter + 1; diff = - fx/dfx;
   x = x + diff; diff = abs(diff);
   fx = feval(fun ,x,varargin {:});
   dfx = feval(dfun ,x,varargin {:});
end
```

