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Tentative Course Schedule, CRN 24023

Week Date Topics
1 Feb. 08 Introduction to Scientific and Engineering Computing
2 Feb. 15 Introduction to Program Computing Environment
3 Feb. 22 Variables, Operations and Simple Plot
4 Mar. 01 Algorithms and Logic Operators
5 Mar. 08 Flow Control, Errors and Source of Errors
6 Mar. 15 Functions
6 Mar. 20 Exam 1
7 Mar. 22 Arrays
8 Mar. 29 Solving of Simple Equations
9 Apr. 05 Polynomials Examples
10 Apr. 12 Applications of Curve Fitting
11 Apr. 19 Applications of Interpolation
11 Apr. 24 Exam 2
12 Apr. 26 Applications of Numerical Integration
13 May 03 Symbolic Mathematics
14 May 10 Ordinary Differential Equation (ODE) Solutions with Built-in Functions
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LECTURE # 6

LECTURE # 6 LINEAR ALGEBRA

1 INNER PRODUCT OF VECTORS

2 OUTER PRODUCT OF VECTORS

3 MATRIX DEFINITION

MATRIX OPERATIONS
SQUARE MATRIX
TRANSPOZE OF A MATRIX
SYMMETRIC MATRIX
IDENTITY MATRIX
INVERSE MATRIX
EXAMPLES

4 LINEAR EQUATIONS

5 SOLUTIONS

6 EXAMPLES
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VECTORS

VECTORS

A vector is an ordered list of numbers (one-dimensional).
In MATLAB they can be represented as a row-vector or a
column-vector (1 x n) or (n x 1).
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VECTOR INNER PRODUCT

VECTOR INNER PRODUCT

In physics, analytical geometry, and engineering, the dot
product has a geometric interpretation.
a·b = a1 b1 + a2 b2 + . . . + an bn

c = dot(a, b)

Returns the scalar product of the vectors a and b.

a and b must be vectors of the same length.

When a and b are both column vectors, dot(a,b)
is the same as a * b’.
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VECTOR INNER PRODUCT

EXAMPLE:

filename: ex 06 01.m

a = [1 2 3];

b = [5 8 13];

c = dot(a,b)

a * b’

a’ * b
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VECTOR INNER PRODUCT

EXAMPLE:
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VECTOR INNER PRODUCT

EXAMPLE:
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VECTOR INNER PRODUCT

VECTOR INNER PRODUCT

The rules of linear algebra impose compatibility
requirements on the inner product.

The inner product of x and y requires that x be a row
vector y be a column vector.

a =
[

x1 x2 . . . xn

]









y1

y2

. . .
yn









=

= x1y1 + x2y2 + . . . xnyn
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VECTOR INNER PRODUCT

VECTOR INNER PRODUCT

The * operator performs the inner product if two vectors
are compatible.

The inner product result is a scalar.
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VECTOR OUTER PRODUCT

VECTOR OUTER PRODUCT

The outer product creates a matrix.

A = uvT

a(i , j) = aij = u(i)v(j)

A =











u1

u2
...

um











[

v1 v2 . . . vn

]

=











u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn

...
...

...
...

umv1 umv2 . . . umvn










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VECTOR OUTER PRODUCT

EXAMPLE:

filename: ex 06 02.m

u = (0:3); % u and v are

v = (3: -1:0); % column vectors

s = u’ * v

t = v’ * u
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VECTOR OUTER PRODUCT

EXAMPLE:
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VECTOR OUTER PRODUCT

EXAMPLE:
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MATRICES

MATRICES

Columns and Rows of a Matrix are Vectors

Addition and Subtraction

Multiplication by a scalar

Transpose

Linear Combinations of Vectors

Matrix – Vector Product

Matrix – Matrix Product
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MATRIX OPERATIONS

MATRIX OPERATIONS

Addition and subtraction
C = A + B

c(i , j) = a(i , j) + b(i , j)
i = 1, 2, . . . ,m and j = 1, 2, . . . , n

Multiplication by a scalar
B = λA

b(i , j) = λa(i , j) i = 1, 2, . . . ,m and j = 1, 2, . . . , n
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MATRIX OPERATIONS

EXAMPLE:

filename: ex 06 03.m

% ex_06_03.m

A= magic(3)

B= [1 2 3; 5 8 13; 21 34 55]

C = A + B

C = B + A

C = A - B

B = [1 2 3; 5 8 13]

C = A + B
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MATRIX OPERATIONS

EXAMPLE:
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MATRIX OPERATIONS

EXAMPLE:
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MATRIX OPERATIONS

EXAMPLE:
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MATRIX OPERATIONS
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MATRIX OPERATIONS

EXAMPLE:
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SQUARE MATRIX

SQUARE MATRIX

If the number of rows are equal to number of columns,
than the matrix is a square matrix.

EXAMPLE:

filename: ex 06 04.m

% SQUARE MATRIX EXAMPLE

A = magic(4)

dimA = size(A)

dimA_row = dimA(1)

dimA_column = dimA(2)

A’
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SQUARE MATRIX

EXAMPLE:



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SQUARE MATRIX

EXAMPLE:
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SQUARE MATRIX

EXAMPLE:
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SQUARE MATRIX

EXAMPLE:
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SQUARE MATRIX

EXAMPLE:



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SQUARE MATRIX

EXAMPLE:
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MATRIX TRANSPOSE

MATRIX TRANSPOSE

B = AT

b(i , j) = a(j , i)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n
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MATRIX MULTIPLICATION

MATRIX MULTIPLICATION

cij =

p
∑

k=1

aikbkj

i = 1, 2, . . . ,m, j = 1, 2, . . . , n
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MATRIX MULTIPLICATION

EXAMPLE:

filename: ex 06 05.m

% MATRIX MULTIPLICATION EXAMPLE

A = [1 2 1; 0 1 2; 0 0 2]

B = [1 2 0; -1 1 2; 0 1 2]

C = A * B

C = B * A

B = [1 2 0; -1 1 2]

C = A * B

A = [1 2 1]

B = [1 2 0; -1 1 2; 0 1 2]

C = A * B

A = [1 2 1; 0 1 2; 0 0 2]

B = [1 2 0]

C = A * B

A = [1 2; 0 1; 0 2]
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

MATRIX MULTIPLICATION
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MATRIX MULTIPLICATION
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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MATRIX MULTIPLICATION

EXAMPLE:
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DIAGONAL MATRICES

DIAGONAL MATRICES

Diagonal matrices have non-zero elements only on the main
diagonal.

C = diag(c1, c2, . . . , cn)

C =











c1 0 . . . 0
0 c2 . . . 0
...

... . . .
...

0 0 . . . cn










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DIAGONAL MATRICES

EXAMPLE:

filename: ex 06 06.m

% DIAGONAL MATRICES

x = [1 2 3 5 8];

C = diag(x)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

DIAGONAL MATRICES

EXAMPLE:
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DIAGONAL MATRICES

EXAMPLE:
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IDENTITY MATRICES

IDENTITY MATRICES

An identity matrix is a square matrix with ones on the main
diagonal.

An identity matrix is special because

AI = IA = A

for any compatible matrix A. This is like multiplying by one in
scalar arithmetic.

I =











1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1










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IDENTITY MATRIX

EXAMPLE:

filename: ex 06 07.m

% IDENTITY MATRIX

I = eye (4);

A = magic(4);

C = A * I

C = I * A

I = eye (4,3)
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IDENTITY MATRIX

EXAMPLE:
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IDENTITY MATRIX

EXAMPLE:
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IDENTITY MATRIX

EXAMPLE:
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IDENTITY MATRIX

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SYMMETRIC MATRICES

SYMMETRIC MATRICES

aij = aji

EXAMPLE:

filename:ex 06 08.m

% SYMMETRIC MATRIX

A = [1 2 4; 2 1 8; 4 8 1];

dimA = size(A);

m = dimA(1);

n = dimA(2);

if (isequal(A, A’) == 1)

disp(’A IS A SYMMETRIC MATRIX.’)

else

disp(’A IS NOT A SYMMETRIC MATRIX.’)

end



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SYMMETRIC MATRICES

EXAMPLE:
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SYMMETRIC MATRICES

EXAMPLE:
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INVERSE OF A MATRIX

INVERSE OF A MATRIX

Inverse of matrix A is A−1. A A−1 = A−1 A = I

A x = b

A−1 A x = A−1 b

So, the solution of A x = b is

x = A−1 b
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INVERSE OF A MATRIX

EXAMPLE:

filename: ex 06 09.m

A = [2 -1 0; 1 2 1; 0 -1 2]

B = inv(A)

A * B

B * A
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INVERSE OF A MATRIX

EXAMPLE:
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INVERSE OF A MATRIX

EXAMPLE:
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INVERSE OF A MATRIX

EXAMPLE:
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SOME MATRIX FUNCTIONS

SOME MATRIX FUNCTIONS

zeros: creates a matrix that all elements are equal to
zero.

ones: creates a matrix that all elements are equal to one.

size: returns the dimension of the matrix.

eye: creates an identity matrix.

diag: creates a diagonal matrix

inv: creates the inverse of a given matrix.

trace: returns the sum of the diagonal terms of a matrix.

det: returns the determinant of a matrix.

\: left division

/: right division
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SOME MATRIX FUNCTIONS

EXAMPLES:
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SOME MATRIX FUNCTIONS
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SOME MATRIX FUNCTIONS
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SOME MATRIX FUNCTIONS
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LINEAR EQUATIONS

LINEAR EQUATIONS

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

. . .
an1x1 + an2x2 + . . . + an nxn = bn

A x = b

Unknowns could be calculated with matrix operations.
x = A−1 × b
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SOLUTION OF LINEAR EQUATIONS

EXAMPLE:

Use matrix operations to solve the following systems of
linear equations.

4x − 2y + 6z = 8
2x + 8y + 2z = 4
6x + 10y + 3z = 0
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SOLUTION OF LINEAR EQUATIONS

EXAMPLE:

A = [4 -2 6;...

2 8 2;...

6 10 3];

b = [8;4;0];

% ***

% SOLVING BY USING LEFT DIVISION

% ***

X_left = A \ b

% ***

% SOLVING BY USING INVERSE

% ***

X_inv = inv(A) * b
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SOLUTION OF LINEAR EQUATIONS

EXAMPLE:
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SOLUTION OF LINEAR EQUATIONS

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

References

References for Week 6

1 Alfio Quarteroni, Fausto Saleri, Wissenschaftliches
Rechnen mit Matlab, Springer, 2006.

2 Klemens Burg, Herbert Haf, Friedrich Wille, Höhere
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