
Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman
INTRODUCTION TO SCIENTIFIC &

ENGINEERING COMPUTING

BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

March 08, 2010

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

Tentative Course Schedule, CRN 24023

Week Date Topics
1 Feb. 08 Introduction to Scientific and Engineering Computing
2 Feb. 15 Introduction to Program Computing Environment
3 Feb. 22 Variables, Operations and Simple Plot
4 Mar. 01 Algorithms and Logic Operators
5 Mar. 08 Flow Control, Errors and Source of Errors
6 Mar. 15 Functions
6 Mar. 20 Exam 1
7 Mar. 22 Arrays
8 Mar. 29 Solving of Simple Equations
9 Apr. 05 Polynomials Examples
10 Apr. 12 Applications of Curve Fitting
11 Apr. 19 Applications of Interpolation
11 Apr. 24 Exam 2
12 Apr. 26 Applications of Numerical Integration
13 May 03 Symbolic Mathematics
14 May 10 Ordinary Differential Equation (ODE) Solutions with Built-in Functions

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

LECTURE # 5

LECTURE # 5

1 INLINE FUNCTIONS

2 M-FILE

SCRIPT M–FILES
FUNCTION M–FILES

3 EXAMPLES

4 RECURSIVE FUNCTIONS

5 STRUCTURES

6 EXAMPLES

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

INLINE FUNCTIONS

Short mathematical functions may be written as one=line
inline objects.

Usage:

function name = inline(’function definition’,
’argument1’, ’argument2’,. . .)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

EXAMPLE:

1 Convert degrees to radians

deg2rad=inline(’ deg / 180 * pi ’, ’deg’)

2 Calculate hypothenus

hyp = inline(’sqrt(a^2 + b^2)’, ’a’, ’b’)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

EXAMPLES;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

EXAMPLES;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

EXAMPLES;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

INLINE FUNCTIONS

EXAMPLES;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

SCRIPT M–FILES

Programs are contained in m–files. m–files are plain text
files. Not binary files produced by word processors.

File must have ".m" extension

m–file must be in the path Matlab maintains its own
internal path

The path is the list of directories that Matlab will search
when looking for an m–file to execute.

Manually modify the path with the path, addpath, and
rmpath built-in functions.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

CURRENT DIRECTORY

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

CREATE M–FILE

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

CREATE M–FILE

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

path

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

path

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

addpath

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

addpath

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

rmpath

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

rmpath

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

SCRIPT M–FILES

Not really programs

No input / output parameters

Script variables are part of workspace

Useful for tasks that never change

Use a script to run function for specific parameters
required by the assignment

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

EXAMPLE:

% SIMPLE SCRIPT FILE

theta = linspace (1.4 , 4.6);

tandata = tan(theta);

plot (theta, tandata);

xlabel(’\theta’);

ylabel(’tangent’);

grid;

% File named as ex_05_03.m and run with

% the name of the filename without the ".m".

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

SCRIPT M–FILES

SCRIPT M–FILES

All variables created in a script file are added to the
workplace.

This may have undesirable effects because variables
already existing in the workspace may be overwritten

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

FUNCTION M–FILES

Matlab has many built-in functions.

Use type functionname to verify the functions.

Function m–files differ from a script file in that it
communicates with the MATLAB workspace only through
specially designated input and output arguments.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

FUNCTION M–FILES

Functions use input and output parameters to
communicate with other functions and the command
window

Functions use local variables that exist only while the
function is executing. Local variables are distinct from
variables of the same name in the workspace or in other
functions.

Input parameters allow the same calculation procedure
(same algorithm) to be applied to different data. Thus,
function m-files are reusable.

Functions can call other functions.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

BASIC RULES

General form of a function filename.m file

function [outarg1, outarg2, . . .] =
name(inarg1, inarg2, . . .)

% Comments to be displayed with help name

. . .

outarg1;
. . .

outarg2;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

1 Write a function called FtoC (FtoC.m) to convert
Fahrenheit temperatures into Celsius.

function C=FtoC(F)

% Celsius=FtoC(Fahrenheit)

% Converts Fahrenheit temperatures to Celsius

C=5*(F-32)/9;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

SUMMARY OF INPUT AND OUTPUT ARGUMENTS

Values are communicated through input arguments and
output arguments.

Variables defined inside a function are local to that
function. Local variables are invisible to other functions
and to the command environment.

The number of return variables should match the number
of output variables provided by the function.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

SCOPE

LOCAL VARIABLES

Any variable defined inside a function is inaccessible
outside it.

Such variables are referred to as local. They exist only
inside the function, which has its own workspace separate
from the base workspace of variables defined in the
Command Window.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

SCOPE

GLOBAL VARIABLES

Variables defined in the base workspace are not normally
accessible inside functions.

Their scope is restricted to the workspace itself unless they
have been declared global: global VARIABLENAME

If several functions, and possibly the base workspace,
declare particular variables as global, then they all share
single copies of them.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

SCOPE

GLOBAL VARIABLES cont’d.

Matlab recommends that global variables be typed in
capital letters to remind you that they are global.

The function isglobal(VARNAME) returns 1 if A is global,
and 0 otherwise.

The command who global gives a list of global variables.

The command clear global makes all variables
nonglobal. Example: clear VARNAME makes VARNAME
nonglobal.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

PERSISTENT VARIABLES

Persistent variables remain in existence between function calls.

Example:

function test

persistent count

if isempty(count)

count = 1

else

count = count + 1

end

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

FUNCTIONS WITHOUT RETURN VALUE

Omit the equal sign and output arguments in the function
definition line.

EXAMPLE:

function stars(n)

asterisk = char(abs(’*’)*ones(1,n));

disp(asterisk)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

VECTOR ARGUMENTS

Input and output arguments can be defined as vectors.

A vector is initialized each time the function is called.

EXAMPLE:
dice function generates a vector of n random rolls of a die.

function d= dice(n)

d = floor(6 * rand(1, n) + 1);

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

PASSING AN ARGUMENT

Passing an argument by value:
An input argument is passed by value only if a function
modifies it.

Passing an argument by reference

function y = delzero(x)

y = x(x ~= 0);

% x = delzero(x)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

NUMBER OF ARGUMENTS OF A FUNCTION

Use nargin and nargout functions to display the number of
input and output arguments.

EXAMPLE:

function y = myfunc1(a, b, c)

disp(nargin)

y = nargin;

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

SUBFUNCTIONS

An M-file may contain the code for more than one
function.

The first one in the file is the primary function and is
invoked with the M-file name.

Additional functions are called subfunctions and are
visible only to the primary function and to other
subfunctions.

Each subfunction begins with its own function definition
line.

Subfunctions follow each other in any order after the
primary function.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

RECURSIVE FUNCTIONS

RECURSIVE FUNCTIONS

MATLAB allows functions to call themselves in a process called
recursion.

Recursive function can cost too much time and memory.

Example:

Factorial function can be written in a recursive ”.m” file.

n! = n × (n − 1)!

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

RECURSIVE FUNCTIONS

EXAMPLE:

function y = fact(n)

% Factorial Recursive definition of n!

disp(n)

if n > 1

y = n * fact(n-1);

else

y = 1;

end

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

RECURSIVE FUNCTIONS

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

RECURSIVE FUNCTIONS

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

FUNCTION HANDLES
Function handles points the defined function.

A handle for a function is created with @. A function may
be represented by its handle. In particular, the handle may
be passed as an argument to another function.

feval evaluates a function whose handle is passed to it as
an argument.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

function myplotfunc(funchand, limit1, sample)

% plot the given function

% with the given limits

x = linspace(limit1(1), limit1(2),sample);

y = feval(funchand, x);

plot(x,y)

% fhand = @sin

% myplotfunc(fhandle, [0, pi/2], 100)

% fhand = @cos

% myplotfunc(fhandle, [0, pi/2], 100)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION HANDLES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

FUNCTION M–FILES

EXAMPLE:

The function sin(x) can be written as a Taylor series by

sin(x) =

∞∑

k=1

(−1)k x2k+1

(2k + 1)!

Write a user-defined function file that calculates sin(x) by
using Taylor’s series. For the function name and arguments use
y = Tsin(x , n). The input arguments are the angle x in
degrees, and n the number of terms in the series. Use the
function to calculate sin(150 ◦) using 3 and 7 terms.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

STRUCTURES

Arrays can store variables that may be all numeric or character.
With structure different data types can be stored as one
variable within a structure.

EXAMPLE:

Create a structure called student with one field for a student’s
name, a second for his/her student ID number, and a third for
all her marks to date.

student.name = ’Can Ozgur’;

student.id = ’N010080090’;

student.marks=[80, 60, 40];

% student

% student.marks(2)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

STRUCTURES

Use subscripts to add more elements

EXAMPLE:

student(2).name = ’Ergun Yilmaz’;

student(2).id = ’N010080091’;

student(2).marks=[70, 30, 90];

% student

% student(2).marks(2)

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

STRUCTURES

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

M–FILE DEBUGGING

M–FILE DEBUGGING

The Editor / Debugger enables you to get inside a function,
while it is running.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

References

References for Week 5

1 Brian Hahn, Daniel T.Valentine, Essential Matlab for
Engineers and Scientists, Elsevier, 2010.

