TENTATIVE SCHEDULE

Introduction
Introduction
to Scientific
to Scientific
and
Engineering
Computing
BIL108E
Karaman

INTRODUCTION TO SCIENTIFIC \& ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

```
\begin{tabular}{c|c|c}
\hline Week & Date & Topics \\
\hline 1 & Feb. 10 & Introduction to Scientific and Engineering Computing \\
2 & Feb. 17 & Introduction to Program Computing Environment \\
3 & Feb. 24 & Variables. Operations and Simple Plot \\
4 & Mar. 03 & Algorithms and Logic Operators \\
5 & Mar. 10 & Flow Control, Errors and Source of Errors \\
6 & Mar. 17 & Functions \\
6 & Mar. 20 & Exam 1 \\
7 & Mar. 24 & Arrays \\
8 & Mar. 31 & Solving of Simple Equations \\
9 & Apr. 07 & Polynomials Examples \\
10 & Apr. 14 & Applications of Curve Fitting \\
11 & Apr. 21 & Applications of Interpolation \\
11 & Apr. 24 & Exam 2 \\
12 & Apr. 28 & Applications of Numerical Integration \\
13 & May 05 & Symbolic Mathematics \\
14 & May 12 & Ordinary Differential Equation (ODE) Solutions with Built-in Functions
\end{tabular}
```

March 01, 2010

LECTURE \# 4

BITS, BYTES AND WORDS

1 NUMERICAL DATA TYPES IN MATLAB
2 ERRORS
3 LOOPS
4 ALGORITHMS
5 DATA ANALYSIS

BIT = elemental circuit, ON (1) / OFF (0)

- BYTE = string of 8 BITS

VARIABLES ARE REPRESENTED BY WORDS, COMPOSED OF BYTES, COMPOSED OF BITS

- WORD = string of N BYTES
(partially controllable by the programmer)

BITS, BYTES AND WORDS

NUMERICAL DATA TYPES IN MATLAB

Introduction Introduction
to Scientific and
Engineering
Computing,
BIL108E
Karaman

base 10	conversion	base 2
1	$1=2^{0}$	00000001
2	$2=2^{1}$	00000010
4	$4=2^{2}$	00000100
8	$8=2^{3}$	00001000
9	$8+1=2^{3}+2^{0}$	00001001
10	$8+2=2^{3}+2^{1}$	00001010
27	$16+8+2+1=2^{4}+2^{3}+2^{1}+2^{0}$	00011011

one byte $=8$ bits

NUMERICAL DATA TYPES IN MATLAB

NUMERICAL DATA TYPES IN MATLAB

REAL NUMBERS,

FLOATING-POINT NUMBERS

- Real numbers, \mathbb{R}.
- Floating-point numbers, \mathbb{F}.

Only a subset \mathbb{F} of finite dimension \mathbb{R} can be represented.
NUMERICAL DATA TYPES IN MATLAB

- int8(-128,127), int16(-32768, 32767), int32(- 2147483 648, 2147483 647), int64(-9 223372036854775 808, 9223372036854775807), uint8(0, 255), uint16(0, 65535), uint32(0, 4294967 295), uint64(0, 18446744073709551615$)$
- single $\left(2^{-126}, 3.4 \times 10^{38}\right)$
- double $\left(2.2251 \times 10^{-308}, 1.7977 \times 10^{308}\right)$

Any real number x is truncated by the machine as $f(x)$.

Introduction
to Scientific
and
Engineering
Engineering
BIL108E

FLOATING-POINT NUMBERS

- Numeric values with non-zero fractional parts are stored as floating point numbers.
- All floating point values are represented with a normalized scientific notation.

NUMERICAL DATA TYPES IN MATLAB

and
Engineerin
Computing
BIL108E
Karaman

FLOATING-POINT NUMBERS

Floating-point number representation of a real number
$x=(-1)^{s} \times\left(0 . a_{1} a_{2} a_{3} \ldots a_{t}\right) \times \beta^{e}$
$a_{1} \neq 0$

DIGITAL STORAGE OF INTEGERS

DIGITAL STORAGE OF INTEGERS

- Integers can be exactly represented by base 2
- Typical size is 16 bits
- 32 bit and larger integers are available

Note: All standard mathematical calculations in Matlab use floating point numbers.

DIGITAL STORAGE OF NON-INTEGER NUMBERS

EXAMPLES;

$12.7887=0.127887 \times 10^{2}$ (base 10)
$-0.099=-0.99 \times 10^{-1}$ (base 10)

- Floating point values have fixed number of bits allocated for storage of the mantissa and fixed number of bits allocated for storage of the exponent.
- Two common precisions are provided in numerical computing: single precision and double precision.
- Fixed number of bits are allocated to each number: single precision uses 32 bits per floating point number and double precision uses 64 bits per floating point number

IEEE STANDARD

DIGITAL STORAGE OF NUMBERS

Introduction
Introduction
to Scientific
${ }^{2} \mathrm{and}$
Engineering
Computing,
BIL108E
Karaman

Total number of bits are split into separate storage for both the mantissa and the exponent.

■ single precision: 1 sign bit, 8 bit exponent, 23 bit mantissa

- double precision: 1 sign bit, 11 bit exponent, 52 bit mantissa

64 bits

ERRORS

■ Limiting the number of bits allocated for storage of the exponent means that there are upper and lower limits on the magnitude of floating point numbers
■ Limiting the number of bits allocated for storage of the mantissa means that there is a limit to the precision (number of significant digits) for any floating point number.

ERRORS

1 PP Physical Problem
2 MP Mathematical Problem
3 NP Numerical Problem
Each of these steps involve errors.

ERRORS

ERRORS

EXAMPLE:

Computational Errors
$f(x)=(x-1)^{7}$
$f(x)=x^{7}-7 x^{6}+21 x^{5}-35 x^{4}+35 x^{3}-21 x^{2}+7 x-1$

Introduction
to Scientific
to Scientific
and
Engineering Computing,
BIL108E
BIL108E
Karaman

EXAMPLE:

ERRORS

Introduction
to Scientific
and
Engineering
Computing,
BIL108E
BIL108E

EXAMPLE:

EXAMPLE:
Calculation of $p i$
$z_{2}=2, z_{n+1}=2^{n-1 / 2} \sqrt{1-\sqrt{1-4^{1-n} z_{n}^{2}}}$
$n=2,3, \ldots$

ERRORS

ERRORS

Introduction
Introduction
to Scientific
${ }^{2}$ and
Engineering
Computing.
Karaman
Introduction
to Scientific

EXAMPLE:

to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE:

ERRORS

$\mathbf{e}_{\mathbf{c}}$: computational Error
ERRORS RESULTING FROM PROBLEMS

- SYNTAX ERRORS
- LOGIC ERRORS
- ROUNDOFF ERRORS

ERRORS

ERRORS

SYNTAX ERRORS

Engineering
Computing,
BIL108E
Karaman

LOGIC ERRORS

- Try to run the program for some special cases where you know the answer.
- If you don't know any exact answer, use your insight to check whether the answer seems to be of the right order of magnitude.
- Try working through the program by hand to see if you can spot where things start going wrong.

ERRORS

ERRORS

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

ROUNDING ERRORS

- Finite-precision leads round-off in individual calculations
- Effects of round-off accumulate slowly
- The round-off errors are inevitable, solution is to create better algorithms
- Subtracting nearly equal may lead to severe loss of precision

MACHINE PRECISION

The magnitude of roundoff errors is quantified by machine precision ϵ_{M}
There is a number, ϵ_{M} such that

$$
1+\delta=1
$$

whenever $\delta<\epsilon_{M}$
In exact arithmetics, ϵ_{M} is identically 0 .
eps $=2.2204 \times 10^{-16}$ in Matlab

NUMERICAL DATA TYPES IN MATLAB

NUMERICAL DATA TYPES IN MATLAB

FLOATING-POINT NUMBERS

Roundoff-Error
FLOATING-POINT NUMBERS
realmin, and realmax
If x is less than $x_{\text {min }}$ is treated as 0 , UNDERFLOW
If x is greater than $x_{\max }$ Inf OVERFLOW
The elements in \mathbb{F} are more dense near $x_{\text {min }}$, and less dense while approaching $x_{\text {max }}$.
Ref: Standard for Floating Point Arithmetic P754, IEEE. $\epsilon_{M}=\beta^{1-t}$, here t is the distance between 1 and its closest floating-point number greater than 1.
In Matlab ϵ_{M} is obtained through the command eps.
Number 0 does not belong to \mathbb{F}

Engineering
Computing,
BIL108E
Karaman

$$
\frac{|x-f|(x) \mid}{|x|} \leq \frac{1}{2} \epsilon_{M}
$$

NUMERICAL DATA TYPES IN MATLAB

ERRORS

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE:

and
Engineering
Computing
BIL108E

TRUNCATION ERROR

Example;
Consider the series for $\sin x$
$\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$
For small x, only a few terms are needed to get an accurate aproximation to $\sin x$. The higher order terms are truncated.
$f_{\text {true }}=f_{\text {sum }}+$ truncation error
The size of truncation error depends on x and the number of terms included in $f_{\text {sum }}$

FLOW CONTROL

Introduction
Introduction
to Scientific
and
Engineering
Computing.
BIL108E
Karaman
Numbers: precision and accuracy

1 FOR statements
[IF statements
3 SWITCH statements
4 WHILE statements
Numbers. precision and accuracy
-Low precision: $\pi=3.14$

- High precision: $\pi=3.140101011$
- Low accuracy: $\pi=3.10212$
- High accuracy: $\pi=3.14159$
- High accuracy \& precision: $\pi=3.141592653$

LOOPS

LOOPS

REPETITIVE TASKS

$■ j: k$ is a vector with elements $j, j+1, j+2, \ldots, k$.
$\square j: m: k$ is a vector with elements $j, j+m, j+2 m, \ldots$ such that the last element can not exceed k.

■ index must be a variable. Each time through the loop it will contain the next element of the vector $j: k$ or $j: m: k$.

LOOPS

Introduction to Scientific
and
Engineering
Engineering
BIL108E
Karaman
index $=$ first $:$ increment $:$ last

Enginering
Computing,
BIL108E'
Karaman

The number of times that the loop is executed is defined as iteration:
iteration $=\mathrm{floor}\left(\frac{\text { last-first }}{\text { increment }}\right)+1$ Here floor (x) is a function, that rounds x down toward $-\infty$

This value is called iteration or trip count

- On completion of the for loop the index contains the last value used.
■ If the vector $j: k$ or $j: m: k$ is empty, statements are not executed and control passes to the statement following end.
- If the index does appear explicitly in statements, the for can often be vectorized. It runs faster.
■ It is good programming style to indent (tabulate) the statements inside a for loop.

LOOPS

LOOPS

for in a single line

More general form of the for is
for index $=v$
Here v is any vector.
The index moves through each element of the vector.

LOOPS

LOOPS

Introduction
to Scientific
Engineerin
Computing
BIL108E
Karaman

EXAMPLE:

EXAMPLES:

Introduction
to Scientific
and
andineering
Computing,
Computing,
BIL108E
Karaman
Vectorize if possible

Evaluate the expression given below without the formula for the sum.

$$
\sum_{n=1}^{100000} n
$$

- clock function
returns a six element vector.
- etime function
returns the time in seconds between its two arguments.

LOOPS

Introduction
to Scientific
to Scientific
and
ngineering
Engineering
Computing,
BIL108E
Karaman

EXAMPLE

 > help cputyme
CPUTIME CPU time in seconds.
CPUTIME returns the CPU time in seconds that has been used
by the MATLAB process since MATLAB started.
For example:
t=cputime; your_operation; cputime-t
returns the cpu time used to run your_operation
The return value may overflow the internal representation
and wrap around.
See al so etime, tic, toc, clock
Reference page in Help browser
dor rnutima
help cputime

- 1 start

LOOPS

Introduction
to Scientific
and
Engineering
Engineering
BIL108E

EXAMPLE:

LOOPS

LOOPS

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman
with for loop
t0 = clock;
$\mathrm{s}=0$;
for $n=1: 100000$
$s=s+n ;$
end
etime (clock, t0)

EXAMPLE:

LOOPS

LOOPS

Introduction
to Scientific
and
Engineering
Engineering
BIL108E

EXAMPLE:

LOOPS

LOOPS

$\underset{\substack{\text { Introduction } \\ \text { to Scientific }}}{ }$
to Scientific
and
Engineering
Computing,
EXAMPLE:

Karaman

Computing,
BIL108E

EXAMPLES

with vectorization
tic
$\mathrm{n}=1$: 100000;
$\mathrm{s}=\operatorname{sum}\left(1 \mathrm{I} / \mathrm{n} .{ }^{\wedge} 2\right)$;
toc

LOOPS

CONDITIONAL STATEMENTS

Introduction
to Scientific
to Scientific
and
Engineering
and
Computing
BLL108E
Karaman

EXAMPLE:

Introduction
to Scientific
$\stackrel{\text { and }}{\text { Engineering }}$
Engineering
BIL108E

if statements

- Relational Operators

Usage;
if condition statement, end
■ condition is usually a logical expression
■ if condition is true statement is executed but if condition is false, nothing happens.
■ Condition may be a vector or a matrix, in which case it is true only if all of its elements are nonzero. A single zero element in a vector or matrix renders it false.

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

Introduction
Introduction
to Scientific
and
Engineering
Computing
BIL108E
Karaman

LOGICAL EXPRESSIONS

Logical operators are used to combine logical expressions (with "and" or "or"), or to change a logical value with "not"
Operators:
\& AND, | OR, ~ NOT.

INPUT		OUTPUT			
A	B	$\mathrm{A} \& \mathrm{~B}$	$\mathrm{~A} \mid \mathrm{B}$	${ }^{\sim} \mathrm{A}$	$\sim \mathrm{B}$
false	false	false	false	true	true
false	true	false	true	true	false
true	false	false	true	false	true
true	true	true	true	false	false

EXAMPLE
$\mathrm{a}=\mathrm{rand}$
if $a>0.5$ disp('greater 0.5'), end
\% if logical expression is TRUE ---> 1
\% if logical expression is FALSE --> 0

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

$\underset{\substack{\text { Introduction } \\ \text { to Scentific }}}{ }$
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE:

EFle Edr Debus Deskoon,wncow Help
EFle Edr Debus Deskoon,wncow Help

to Scientific
and
Engineering
Computing,
BIL108E

IF-ELSE

if condition
blockofstatementsA
else
blockofstatements B
end

- blockofstatementsA or blockofstatementsB represents one or more statements.
- If condition is true blockofstatementsA is executed and if false blockofstatements B is executed.
- else is optional.

CONDITIONAL STATEMENTS

ERRORS

Introduction
Introduction
to Scientific
and
Engineering
Computing.
BIL108E
Karaman

EXAMPLE

$\mathrm{a}=\mathrm{rand}$
if $a>0.5$
disp('a is greater than 0.5')
else
disp('a is less than 0.5')
end

EXAMPLE:

- Stan

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

if condition 1

statement A
to Scientific
Engineering
BIL108E
BIL108E
elseif

1 condition 1 is tested. If it is true, statementA are executed MATLAB then moves to the next statement after end.

2 If condition 1 is false, MATLAB checks condition2. If it is true, statement B are executed, followed by the statement after end.

3 In this way, all conditions are tested until a true one is found. As soon as a true condition is found, no further elseifs are examined andMATLAB jumps off the ladder.If none of the conditions is true, statement E after else are executed.

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

Introduction Introduction
to Scientific
to Scientific
and
Engineering
Computing
BIL108E
elseif cont'd

5 Arrange the logic so that not more than one of the conditions is true.

6 There can be any number of elseifs, but at most one else.
7 elseif must be written as one word.
8 It is good programming style to indent each group of statements as shown.

CONDITIONAL STATEMENTS

switch STATEMENT

switch value
case val1
statement1
case val2
statement 2
case [val3 val4 val5]
statement3
otherweise
statementN
end

NESTED ifs

An if construct can contain further ifs.
This is called NESTING.
else belongs to the most recent ifs.

CONDITIONAL STATEMENTS

EXAMPLE:

val = 3;
switch val
case 1
disp('one')
case 2
disp('two')
case 3
disp('three')
otherwise
disp('not a number between 1-3')
end

CONDITIONAL STATEMENTS

CONDITIONAL STATEMENTS

EXAMPLE:

Computing,
BIL108E
Karaman
EXAMPLE:

LOOPS

LOOPS

Introduction
to Scientific
$\stackrel{\text { and }}{\text { Engineerin }}$
Engineering
Computing,
BIL108E
Karaman

WHILE LOOP

While loops are most often used when an iteration is repeated until some termination criterion is met.

Usage;
while expression

> block of statements
end
The block of statements is executed as long as expression is true.

WHILE LOOP

To execute a while-end loop properly;
■ The conditional expression in the while command must include at least one variable;
■ The variables in the conditional expression must have been assigned when MATLAB executes the while command for the first time;

■ At least one of the variables in the conditional execution must be assigned a new value in the commands that are between the while and the end. Otherwise once the looping starts it will never stop since the conditional expression will remain true.

LOOPS

EXAMPLE:

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

LOOPS

Introduction
to Scientific
$\stackrel{\text { and }}{ }$
Engineering
Computing
BIL108E

INTERRUPTING THE INFINITE LOOP
In case of an Infinite Loop
\% ***
i=100;
while i == 100
disp(i)
end
$\% * * *$
Use CTRL+C or CTRL+BREAK to stop the program.

LOOPS

LOOPS

Introduction
to Scientific
and
Engineerin
Computing
BIL108E
Karaman

EXAMPLE:

Computing,
BIL108E
Karaman

EXAMPLE:

LOOPS

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

BREAK, CONTINUE AND RETURN

- The break and return statements provide an alternative way to exit from the flow of the program.
- continue passes control to the next iteration of for or while loop and skips any remaining statements in the body of the loop.
- break is used to escape from an enclosing while or for loop. Execution continues at the end of the enclosing loop construct.
- return is used to force an exit from a function. This can have the effect of escaping from a loop. Any statement following the loop that are in the function body are skipped (Next week "Functions").

LOOPS

EXAMPLE:

$i=0$
sum $=0$;
while (i <= 100)
if (i == 72)
disp(i);
disp('loop stopped');
break;
end
if(i == 12)
disp(i);
disp('loop continued without ending');
i $=i+1$
end
i $=\mathbf{i}+1$;
sum $=$ sum $+i$.
end

LOOPS

LOOPS

Introduction
to scientific
Engineering
Computing
BIL108E
Karaman
EXAMPLE:
Introduction
to Scientific

PROGRAM DESIGN AND ALGORITHM

PROGRAM DESIGN

- Design Process
- The program must be readable and hence clearly understandable.
To design a successful program you need to understand a problem thoroughly and break it down into its most fundamental logical stages.
In other words, you have to develop a systematic procedure or an algorithm for solving it.

DESIGN PROCESS

DESIGN PROCESS cont'd.

1 Problem analysis.
2 Problem statement. Develop a detailed statement of the mathematical problem to be solved with a computer program.
3 Processing scheme. Define the inputs required and the outputs to be produced by the program.
4 Algorithm. Design the step-by-step procedure in a top-down process that decomposes the overall problem into subordinate problems.

5 Program algorithm. Translate or convert the algorithm into a computer language.Evaluation. Test all of the options and conduct a validation study of the program. For example, compare results with other programs.
7 Application. Solve the problems, the program was designed to solve. If the program is well designed and useful, it can be saved in your working directory

DESIGN PROCESS

DESIGN PROCESS

EXAMPLE
TRAJECTORY
A ball is thrown with an initial angle of θ and initial velocity of v_{0}.
Given

- velocity and theta angle

Find

- Projectile Flight Path
- Projectile speed vs. angle

DESIGN PROCESS

DESIGN PROCESS

EXAMPLE

BlL108E Karaman
$1 v_{0, x}=v_{0} \times \cos \left(\theta_{0}\right)$
2 $v_{0, y}=v_{0} \times \sin \left(\theta_{0}\right)$
3 $x(t)=v_{0, x} \times t$ (horizontal distance from origin as a function of t)
$4 y(t)=v_{0, y} \times t-0.5 \times g t^{2}$ (vertical distance from origin as a function of t)
5. $y(x)=\frac{v_{0, y}}{v_{0, x}} \times x-0.5 \times g \frac{x^{2}}{v_{0, x}^{2}}$ (with using \#3 and \#4 vertical location of the point is a function of x horizontal distance)

Engineering
 Computing, BIL108E
 Karaman

EXAMPLE

\%
\% The projectile problem with zero air resistance
$\%$ in a gravitational field with constant g.
\%
\% Written by \#\#\#\#\#\#\# 01.03.2010
\% Written by D. T. Valentine September 2006
\% Revised by D. T. Valentine November 2008
\% An eight-step structure plan applied in MATLAB:
$\%$

DESIGN PROCESS

DESIGN PROCESS

EXAMPLE cont'd.

\% 1. Definition of the input variables.
\%
\% Gravity in m/s**2
g = 9.81;
disp('*** INPUT DATA FOR PROJECTILE PROBLEM ***');
vo = input('Launch speed in m/s: ');
theta $=$ input('Launch angle in degrees: ');
\% Convert degrees to radians
theta $=$ pi*theta/ 180 ;

Introduction
to Scientific
and
Engineering
Computing:
BLioot

EXAMPLE cont'd.
\% 2. Calculate the range and duration of the flight.
\%
txmax $=(2 * v 0 / g) * \sin ($ theta $) ;$
xmax $=$ txmax $*$ v0 * cos(theta);

DESIGN PROCESS

DESIGN PROCESS

Introduction to Scientific
and
Engineering
BIL108E
Karaman

EXAMPLE cont'd.
$\% 3$. Calculate the sequence of time
\% steps to compute trajectory.
\%
dt = txmax/100;
$\mathrm{t}=0: \mathrm{dt}: \mathrm{txmax}$;
\%
\% 4. Compute the trajectory.
\%
$\mathrm{x}=(\mathrm{v} 0 * \cos ($ theta)) .* t;
$\mathrm{y}=(\mathrm{v} 0$ * $\sin (\mathrm{theta}))$.* $\mathrm{t}-(\mathrm{g} / 2) . * \mathrm{t} . \wedge 2$;

EXAMPLE cont'd.
\% 5. Compute the speed and angular
\% direction of the projectile.
$\%$ Note that $v x=d x / d t, v y=d y / d t$.
\%
$\mathrm{vx}=\mathrm{v} 0 * \cos ($ theta) ;
vy $=\mathrm{v0}$ * $\sin (\mathrm{theta}) ~-\mathrm{g} . * \mathrm{t}$;
v = sqrt(vx.*vx + vy.*vy);
th $=(180 / \mathrm{pi}) . *$ atan2(vy,vx);
\%
\% 6. Compute the time, horizontal
\% distance at maximum altitude.
\%
tymax $=(v 0 / g) * \sin ($ theta) ;
xymax = xmax/2;
ymax $=(v 0 / 2) *$ tymax $* \sin ($ theta $) ;$

DESIGN PROCESS

DESIGN PROCESS

Introduction
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

EXAMPLE cont'd.

\% 7. Display ouput

\%
disp([' Range in $m=$, num2str(xmax)
, Duration in $\mathrm{s}=$, num2str(txmax)]
disp(' ')
disp([' Maximum altitude in $m=$ ',num2str(ymax), ...
' Arrival in $\mathrm{s}=$ ', num2str(tymax)]
plot (x, y, ' k ', xmax, $\mathrm{y}(\operatorname{size}(\mathrm{t})$), 'o', $\mathrm{xmax} / 2, \mathrm{ymax}$, 'o')
title([' Projectile flight path, vo $=>$, num2str(vo)
, th $=$ ', num2str ($180 *$ th/pi)]
xlabel(' x '), ylabel(' y ') \% Plot of Figure 1
figure \% Creates a new figure.
plot(v,th,'r)
title(' Projectile speed vs. angle ,
xlabel(' V'), ylabel(' \theta ') \% Plot of Figure 2
$\%$
$\%$
\%

Introduction to Scientific and
Engineering Engineering
Computing, BIL108E

EXAMPLE:

DESIGN PROCESS

DESIGN PROCESS

EXAMPLE

- Q Applications places system ©

ex_0
12

4 stan

DESIGN PROCESS

Introduction
to Scientific
and
Engineering
Engineering
Computing
BIL108E
Karaman

EXAMPLE:

DATA ANALYSIS FUNCTIONS

DATA ANALYSIS FUNCTIONS

EXAMPLE:

[^0]Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

- $\max (\mathrm{x})$ Determines the largest value in x .
- $\min (x)$ Determines the smallest value in x.
- sum(x) Determines the sum of the elements in x.
- $\operatorname{prod}(\mathrm{x})$ Determines the product of the elements in x .
- sort(x) Returns a vector with the values of x in ascending order.

DATA ANALYSIS FUNCTIONS

DATA ANALYSIS FUNTIONS

Introduction to Scientific
and
Engineerin
Engineering
BIL108E
Karaman

MEAN AND MEDIAN

■ mean(x) Computes the mean(average value) of the elements of the vector x.
$\bar{x}=\frac{\sum_{k=1}^{N} x_{k}}{N}$
where $\sum_{k=1}^{N} x_{k}=x_{1}+x_{2}+\ldots+x_{N}$

- median (x) Determines the median value of the elements in the vector x.

Karaman

VARIANCE AND STANDARD DEVIATION

■ $\operatorname{var}(\mathrm{x})$ Computes the variation of the values in x.

- std (x) Computes the standard deviation of the values in x.
■ The standard deviation is defined as the square root of the variance.
$\sigma^{2}=\frac{\sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)^{2}}{(N-1)}$

References

Introduction
to Scientific
$\stackrel{\text { and }}{\text { Endiner }}$
Engineering
Computing,
BIL108E
Karaman

References for Week 4
1 Alfio Quarteroni, Fausto Saleri, Scientific Computing with Matlab and Octave, Wissenschaftliches Rechnen mit Matlab, , Springer Verlag, 2006.

2 Cleve Moler, Numerical Computing with Matlab, Mathworks, 2008.
3 Brian Hahn, Daniel T.Valentine, Essential Matlab for Engineers and Scientists, Elsevier, 2010.

[^0]: Karaman

