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TENTATIVE SCHEDULE

Week Date Topics
1 Feb. 10 Introduction to Scientific and Engineering Computing
2 Feb. 17 Introduction to Program Computing Environment
3 Feb. 24 Variables, Operations and Simple Plot
4 Mar. 03 Algorithms and Logic Operators
5 Mar. 10 Flow Control, Errors and Source of Errors
6 Mar. 17 Functions
6 Mar. 20 Exam 1
7 Mar. 24 Arrays
8 Mar. 31 Solving of Simple Equations
9 Apr. 07 Polynomials Examples
10 Apr. 14 Applications of Curve Fitting
11 Apr. 21 Applications of Interpolation
11 Apr. 24 Exam 2
12 Apr. 28 Applications of Numerical Integration
13 May 05 Symbolic Mathematics
14 May 12 Ordinary Differential Equation (ODE) Solutions with Built-in Functions
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LECTURE # 4

1 NUMERICAL DATA TYPES IN MATLAB

2 ERRORS

3 LOOPS

4 ALGORITHMS

5 DATA ANALYSIS
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BITS, BYTES AND WORDS

VARIABLES ARE REPRESENTED BY WORDS,
COMPOSED OF BYTES,
COMPOSED OF BITS

BIT = elemental circuit, ON (1) / OFF (0)

BYTE = string of 8 BITS

WORD = string of N BYTES
(partially controllable by the programmer)



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

BITS, BYTES AND WORDS

base 10 conversion base 2

1 1 = 20 0000 0001
2 2 = 21 0000 0010
4 4 = 22 0000 0100
8 8 = 23 0000 1000
9 8 + 1 = 23 + 20 0000 1001
10 8 + 2 = 23 + 21 0000 1010
27 16 + 8 + 2 + 1 = 24 + 23 + 21 + 20 0001 1011

one byte = 8 bits
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NUMERICAL DATA TYPES IN MATLAB

NUMERICAL DATA TYPES IN MATLAB

int8(-128,127), int16(-32768, 32767),
int32(- 2 147 483 648, 2 147 483 647),
int64(-9 223 372 036 854 775 808,
9 223 372 036 854 775 807 ),
uint8(0, 255), uint16(0, 65535), uint32(0, 4 294 967 295),
uint64(0, 18 446 744 073 709 551 615)

single(2−126, 3.4 × 1038)

double(2.2251 × 10−308, 1.7977 × 10308)
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NUMERICAL DATA TYPES IN MATLAB

REAL NUMBERS,
FLOATING–POINT NUMBERS

Real numbers, R.

Floating–point numbers, F.

Only a subset F of finite dimension R can be represented.

Any real number x is truncated by the machine as fl(x).
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NUMERICAL DATA TYPES IN MATLAB

FLOATING–POINT NUMBERS

Numeric values with non-zero fractional parts are stored as
floating point numbers.

All floating point values are represented with a normalized
scientific notation.
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NUMERICAL DATA TYPES IN MATLAB

FLOATING–POINT NUMBERS

Floating–point number representation of a real number

x = (−1)s × (0.a1a2a3 . . . at) × βe

a1 6= 0
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NUMERICAL DATA TYPES IN MATLAB

EXAMPLES;

12.7887 = 0.127887 × 102 (base 10)

−0.099 = −0.99 × 10−1 (base 10)
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DIGITAL STORAGE OF INTEGERS

DIGITAL STORAGE OF INTEGERS

Integers can be exactly represented by base 2

Typical size is 16 bits

32 bit and larger integers are available

Note: All standard mathematical calculations in Matlab use
floating point numbers.
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DIGITAL STORAGE OF NON–INTEGER

NUMBERS

Floating point values have fixed number of bits allocated
for storage of the mantissa and fixed number of bits
allocated for storage of the exponent.

Two common precisions are provided in numerical
computing: single precision and double precision.

Fixed number of bits are allocated to each number: single
precision uses 32 bits per floating point number and
double precision uses 64 bits per floating point number
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IEEE STANDARD

Total number of bits are split into separate storage

for both the mantissa and the exponent.

single precision: 1 sign bit, 8 bit exponent,
23 bit mantissa

double precision: 1 sign bit, 11 bit exponent,
52 bit mantissa

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

DIGITAL STORAGE OF NUMBERS

Limiting the number of bits allocated for storage of the
exponent means that there are upper and lower limits on
the magnitude of floating point numbers

Limiting the number of bits allocated for storage of the
mantissa means that there is a limit to the precision
(number of significant digits) for any floating point
number.
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ERRORS

1 PP Physical Problem

2 MP Mathematical Problem

3 NP Numerical Problem

Each of these steps involve errors.
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ERRORS

EXAMPLE:
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ERRORS

EXAMPLE:

Computational Errors

f (x) = (x − 1)7

f (x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x − 1
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ERRORS

EXAMPLE:
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ERRORS

EXAMPLE:
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ERRORS

EXAMPLE:

Calculation of pi

z2 = 2, zn+1 = 2n−1/2
√

1 −
√

1 − 41−nz2
n

n = 2, 3, . . .
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ERRORS

EXAMPLE:
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ERRORS

EXAMPLE:
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ERRORS

COMPUTATIONAL ERRORS

ec: computational Error

x: exact solution of mathematical model

x̂: numerical solution of mathematical model

Absolute Computational Error

eabs
c = |x − x̂|

Relative Computational Error

erel
c = |x − x̂|/|x|
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ERRORS

ERRORS RESULTING FROM PROBLEMS

SYNTAX ERRORS

LOGIC ERRORS

ROUNDOFF ERRORS
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ERRORS

SYNTAX ERRORS

Typo errors.

Incompatible vector sizes.

Name hiding (try "help command").
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ERRORS

LOGIC ERRORS

Try to run the program for some special cases where you
know the answer.

If you don’t know any exact answer, use your insight to
check whether the answer seems to be of the right order
of magnitude.

Try working through the program by hand to see if you
can spot where things start going wrong.
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ERRORS

ROUNDING ERRORS

Finite-precision leads round-off in individual calculations

Effects of round-off accumulate slowly

The round-off errors are inevitable, solution is to create
better algorithms

Subtracting nearly equal may lead to severe loss of
precision
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ERRORS

MACHINE PRECISION

The magnitude of roundoff errors is quantified by machine
precision ǫM

There is a number, ǫM such that

1 + δ = 1

whenever δ < ǫM

In exact arithmetics, ǫM is identically 0.

eps = 2.2204 × 10−16 in Matlab
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NUMERICAL DATA TYPES IN MATLAB

FLOATING–POINT NUMBERS

Roundoff–Error

|x − fl(x)|

|x |
≤

1

2
ǫM

Ref: Standard for Floating Point Arithmetic P754, IEEE.
ǫM = β1−t , here t is the distance between 1 and its closest
floating–point number greater than 1.

In Matlab ǫM is obtained through the command eps.
Number 0 does not belong to F
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NUMERICAL DATA TYPES IN MATLAB

FLOATING–POINT NUMBERS

realmin, and realmax

If x is less than xmin is treated as 0, UNDERFLOW

If x is greater than xmax Inf OVERFLOW

The elements in F are more dense near xmin, and less dense
while approaching xmax .
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NUMERICAL DATA TYPES IN MATLAB

EXAMPLE:
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ERRORS

TRUNCATION ERROR

Example;
Consider the series for sinx

sin(x) = x − x3

3! + x5

5! − . . .

For small x , only a few terms are needed to get an accurate
aproximation to sinx . The higher order terms are truncated.

ftrue = fsum + truncation error

The size of truncation error depends on x and the number of
terms included in fsum
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PRECISION AND ACCURACY
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FLOW CONTROL

1 FOR statements

2 IF statements

3 SWITCH statements

4 WHILE statements
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LOOPS

REPETITIVE TASKS

Loops are used for repetitive tasks.

Basic for Construct

The most common form of the loop is;

for index = j : k

statements
end
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LOOPS

j : k is a vector with elements j , j + 1, j + 2, ..., k.

j : m : k is a vector with elements j , j + m, j + 2m, ... such
that the last element can not exceed k.

index must be a variable. Each time through the loop it
will contain the next element of the vector j : k or
j : m : k.
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LOOPS

index = first : increment : last

The number of times that the loop is executed is defined as
iteration:

iteration = floor( last−first
increment

) + 1 Here floor(x) is a function,
that rounds x down toward −∞

This value is called iteration or trip count
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LOOPS

On completion of the for loop the index contains the last
value used.

If the vector j : k or j : m : k is empty, statements are not
executed and control passes to the statement following
end .

If the index does appear explicitly in statements, the for

can often be vectorized. It runs faster.

It is good programming style to indent (tabulate) the
statements inside a for loop.
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LOOPS

for in a single line

for index = j : k, statements, end

or

for index = j : m : k, statements, end

Don’t forget the commas.
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LOOPS

More general form of the for is

for index = v

Here v is any vector.

The index moves through each element of the vector.
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LOOPS

EXAMPLES:

% display vector elements from 1 to i

x = [1 : 7];

for i = 1:7

disp(x(1:i))

end
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLES:

Vectorize if possible

Evaluate the expression given below
without the formula for the sum.

100000
∑

n=1

n

clock function

returns a six element vector.

etime function

returns the time in seconds between its two arguments.
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

LOOPS

EXAMPLES

with for loop

t0 = clock;

s = 0;

for n = 1 : 100000

s = s + n;

end

etime(clock, t0)
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLES

with vectorization

t0 = clock;

n = 1 : 100000;

s = sum(n);

etime(clock, t0)
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLES

tic and toc functions
monitor the time to interpret MATLAB statements
Evaluate;

100000
∑

n=1

1

n2
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLES

with for loop

tic

s = 0;

for n = 1 : 100000

s = s + 1 / n^2;

end

toc
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLES

with vectorization

tic

n = 1 : 100000;

s = sum(1 ./ n.^2);

toc
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LOOPS

EXAMPLE:
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CONDITIONAL STATEMENTS

if statements

Relational Operators

Usage;

if condition statement, end

condition is usually a logical expression

if condition is true statement is executed but if condition

is false, nothing happens.

Condition may be a vector or a matrix, in which case it is
true only if all of its elements are nonzero. A single zero
element in a vector or matrix renders it false.
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CONDITIONAL STATEMENTS

LOGICAL EXPRESSIONS

Logical operators are used to combine logical expressions
(with ”and” or ”or”), or to change a logical value with ”not”

Operators:
& AND, | OR, ˜ NOT.

INPUT OUTPUT

A B A&B A|B ˜A ˜B

false false false false true true
false true false true true false
true false false true false true
true true true true false false
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CONDITIONAL STATEMENTS

EXAMPLE

a = rand

if a > 0.5 disp(’greater 0.5’), end

% if logical expression is TRUE ---> 1

% if logical expression is FALSE --> 0
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CONDITIONAL STATEMENTS

EXAMPLE:
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CONDITIONAL STATEMENTS

IF-ELSE

if condition

blockofstatementsA

else

blockofstatementsB

end

blockofstatementsA or blockofstatementsB represents one
or more statements.

If condition is true blockofstatementsA is executed and if
false blockofstatementsB is executed.

else is optional.
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CONDITIONAL STATEMENTS

EXAMPLE

a = rand

if a > 0.5

disp(’a is greater than 0.5’)

else

disp(’a is less than 0.5’)

end
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ERRORS

EXAMPLE:
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CONDITIONAL STATEMENTS

elseif

if condition1
statementA

elseif condition2
statementB

elseif condition3
statementC

...
else

statementE

end

This is called elseif ladder.
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CONDITIONAL STATEMENTS

elseif

1 condition1 is tested. If it is true, statementA are executed;
MATLAB then moves to the next statement after end.

2 If condition1 is false, MATLAB checks condition2. If it is true,
statementB are executed, followed by the statement after end.

3 In this way, all conditions are tested until a true one is found.
As soon as a true condition is found, no further elseifs are
examined andMATLAB jumps off the ladder.

4 If none of the conditions is true, statementE after else are
executed.
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CONDITIONAL STATEMENTS

elseif cont’d.

5 Arrange the logic so that not more than one of the conditions is
true.

6 There can be any number of elseifs, but at most one else.

7 elseif must be written as one word.

8 It is good programming style to indent each group of
statements as shown.
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CONDITIONAL STATEMENTS

NESTED ifs

An if construct can contain further ifs.

This is called NESTING.

else belongs to the most recent ifs.
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CONDITIONAL STATEMENTS

switch STATEMENT

switch value

case val1
statement1

case val2
statement2

case [val3 val4 val5]
statement3

...
otherweise

statementN

end
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CONDITIONAL STATEMENTS

EXAMPLE:

val = 3;

switch val

case 1

disp(’one’)

case 2

disp(’two’)

case 3

disp(’three’)

otherwise

disp(’not a number between 1-3’)

end
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CONDITIONAL STATEMENTS

EXAMPLE:
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CONDITIONAL STATEMENTS

EXAMPLE:
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LOOPS

WHILE LOOP

While loops are most often used when an iteration is repeated
until some termination criterion is met.

Usage;

while expression

block of statements

end

The block of statements is executed as long as expression is
true.
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LOOPS

WHILE LOOP

To execute a while–end loop properly;

The conditional expression in the while command must
include at least one variable;

The variables in the conditional expression must have been
assigned when MATLAB executes the while command for
the first time;

At least one of the variables in the conditional execution
must be assigned a new value in the commands that are
between the while and the end. Otherwise once the
looping starts it will never stop since the conditional
expression will remain true.



Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

LOOPS

EXAMPLE:

h = 0.001;

x = [0:h:2];

y = 0*x;

y(1) = 1;

i = 1;

while(i<max(size(x)))

y(i+1) = y(i) + h*(x(i)-abs(y(i)));

i = i + 1;

end

plot(x,y)
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

INTERRUPTING THE INFINITE LOOP

In case of an Infinite Loop

% ***

i=100;

while i == 100

disp(i)

end

% ***

Use CTRL+C or CTRL+BREAK to stop the program.
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:
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LOOPS

BREAK, CONTINUE AND RETURN

The break and return statements provide an alternative
way to exit from the flow of the program.

continue passes control to the next iteration of for or
while loop and skips any remaining statements in the
body of the loop.

break is used to escape from an enclosing while or for
loop. Execution continues at the end of the enclosing loop
construct.

return is used to force an exit from a function. This can
have the effect of escaping from a loop. Any statement
following the loop that are in the function body are
skipped (Next week ”Functions”).
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LOOPS

EXAMPLE:

i=0

sum = 0;

while (i <= 100)

if(i == 72)

disp(i);

disp(’loop stopped’);

break;

end

if(i == 12)

disp(i);

disp(’loop continued without ending’);

i = i+1

end

i = i + 1;

sum = sum + i;

end
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LOOPS

EXAMPLE:
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LOOPS

EXAMPLE:

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

PROGRAM DESIGN AND ALGORITHM

Design Process

Structure Plan

To design a successful program you need to understand a
problem thoroughly and break it down into its most
fundamental logical stages.

In other words, you have to develop a systematic procedure or
an algorithm for solving it.
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PROGRAM DESIGN

The program must be readable and hence clearly
understandable.

It is useful to decompose the main program into
subprograms that do specific parts of it.

Add comments and references so that you know exactly
what was done and for what purpose.
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DESIGN PROCESS

1 Problem analysis.

2 Problem statement. Develop a detailed statement of the
mathematical problem to be solved with a computer
program.

3 Processing scheme. Define the inputs required and the
outputs to be produced by the program.

4 Algorithm. Design the step-by-step procedure in a
top-down process that decomposes the overall problem
into subordinate problems.

Introduction
to Scientific

and
Engineering
Computing,
BIL108E

Karaman

DESIGN PROCESS cont’d.

5 Program algorithm. Translate or convert the algorithm
into a computer language.

6 Evaluation. Test all of the options and conduct a
validation study of the program. For example, compare
results with other programs.

7 Application. Solve the problems, the program was
designed to solve. If the program is well designed and
useful, it can be saved in your working directory
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DESIGN PROCESS

EXAMPLE

A function M-file is a script file designed to handle a particular
task that may be activated (invoked) whenever needed.
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DESIGN PROCESS

EXAMPLE

TRAJECTORY

A ball is thrown with an initial angle of θ
and initial velocity of v0.

Given

velocity and theta angle

Find

Projectile Flight Path

Projectile speed vs. angle
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DESIGN PROCESS

EXAMPLE

1 v0,x = v0 × cos(θ0)

2 v0,y = v0 × sin(θ0)

3 x(t) = v0,x × t (horizontal distance from origin as a
function of t)

4 y(t) = v0,y × t − 0.5 × gt2 (vertical distance from origin
as a function of t)

5 y(x) =
v0,y

v0,x
× x − 0.5 × g x2

v2
0,x

(with using # 3 and # 4

vertical location of the point is a function of x horizontal
distance)
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DESIGN PROCESS

EXAMPLE

%

% The projectile problem with zero air resistance

% in a gravitational field with constant g.

%

% Written by ####### 01.03.2010

% Written by D. T. Valentine ........ September 2006

% Revised by D. T. Valentine ........ November 2008

% An eight-step structure plan applied in MATLAB:

%
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DESIGN PROCESS

EXAMPLE cont’d.

% 1. Definition of the input variables.

%

% Gravity in m/s**2

g = 9.81;

disp(’*** INPUT DATA FOR PROJECTILE PROBLEM ***’);

vo = input(’Launch speed in m/s: ’);

theta = input(’Launch angle in degrees: ’);

% Convert degrees to radians

theta = pi*theta/180;
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DESIGN PROCESS

EXAMPLE cont’d.

% 2. Calculate the range and duration of the flight.

%

txmax = (2*v0/g) * sin(theta);

xmax = txmax * v0 * cos(theta);
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DESIGN PROCESS

EXAMPLE cont’d.

% 3. Calculate the sequence of time

% steps to compute trajectory.

%

dt = txmax/100;

t = 0:dt:txmax;

%

% 4. Compute the trajectory.

%

x = (v0 * cos(theta)) .* t;

y = (v0 * sin(theta)) .* t -(g/2) .* t.^2;
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DESIGN PROCESS

EXAMPLE cont’d.

% 5. Compute the speed and angular

% direction of the projectile.

% Note that vx = dx/dt, vy = dy/dt.

%

vx = v0 * cos(theta);

vy = v0 * sin(theta) - g .* t;

v = sqrt(vx.*vx + vy.*vy);

th = (180/pi) .* atan2(vy,vx);

%

% 6. Compute the time, horizontal

% distance at maximum altitude.

%

tymax = (v0/g) * sin(theta);

xymax = xmax/2;

ymax = (v0/2) * tymax * sin(theta);
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DESIGN PROCESS

EXAMPLE cont’d.

% 7. Display ouput.

%

disp([’ Range in m = ’,num2str(xmax), ...

’ Duration in s = ’, num2str(txmax)])

disp(’ ’)

disp([’ Maximum altitude in m = ’,num2str(ymax), ...

’ Arrival in s = ’, num2str(tymax)])

plot(x,y,’k’,xmax,y(size(t)),’o’,xmax/2,ymax,’o’)

title([’ Projectile flight path, vo =’,num2str(vo), ...

’ th =’, num2str(180*th/pi)])

xlabel(’ x ’), ylabel(’ y ’) % Plot of Figure 1.

figure % Creates a new figure.

plot(v,th,’r’)

title(’ Projectile speed vs. angle ’)

xlabel(’ V ’), ylabel(’ \theta ’) % Plot of Figure 2.

%

% 8. Stop.

%
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DESIGN PROCESS

EXAMPLE:
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DATA ANALYSIS FUNCTIONS

DATA ANALYSIS FUNCTIONS

max(x) Determines the largest value in x.

min(x) Determines the smallest value in x.

sum(x) Determines the sum of the elements in x.

prod(x) Determines the product of the elements in x.

sort(x) Returns a vector with the values of x in
ascending order.
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DATA ANALYSIS FUNCTIONS

MEAN AND MEDIAN

mean(x) Computes the mean(average value) of the
elements of the vector x.

x̄ =

N
∑

k=1

xk

N

where
N

∑

k=1

xk = x1 + x2 + . . . + xN

median(x) Determines the median value of the elements
in the vector x.
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DATA ANALYSIS FUNTIONS

VARIANCE AND STANDARD DEVIATION

var(x) Computes the variation of the values in x .

std(x) Computes the standard deviation
of the values in x .

The standard deviation is defined as the square root of the
variance.

σ2 =

N
∑

k=1

(xk − x̄)2

(N−1)
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