Introduction
Introduction
to Scientific
to Scientific
and
Engineering
Computing
BIL108E
Karaman

INTRODUCTION TO SCIENTIFIC \& ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

February 22, 2010

ARRAYS

Introduction
to Scientific
Introduction
to Scientific
and
and
Engineering
Computing,
BIL108E
Karaman

ARRAYS

- x = start : increment : end

■ x = linspace(start, end, size_of_vector) logspace
■ $\mathrm{X}=\left[a_{11}, a_{12}, a_{13} ; a_{21}, a_{22}, a_{23}\right]$
■ $\mathrm{x}=\mathrm{x}^{\prime}$ (transpose of x)

ARRAYS
■ Matlab stores all types of variables as in the form of an array.

- A single element array is called a scalar.
- An array with one column or row is called a vector.
- An array with m rows and n columns, where $m, n \neq 1$ is called a matrix.

ARRAYS

Introduction to Scientic

to Scientific
and
Engineering
Enginering
Computing
BIL108E

ARRAYS

VECTORS

Introduction
to Scientific
to Scientific
and
Engineering
Computing
BIL108E
Karaman

Introduction
to Scientific
to Scientific
and
Engineering Computing, BIL108E
Karaman
ROW VECTOR

$$
\mathbf{a}=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

COLUMN VECTOR

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

VECTOR ADDITION AND SUBTRACTION

Addition and subtraction are element-by element operations
■ $c=a+b, c_{i}=a_{i}+b_{i}, i=1,2, \ldots, n$
$\square d=a-b, d_{i}=a_{i}-b_{i}, i=1,2, \ldots, n$

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right) \pm\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)=\left(\begin{array}{c}
a_{1} \pm b_{1} \\
a_{2} \pm b_{2} \\
\vdots \\
a_{m} \pm b_{m}
\end{array}\right)
$$

VECTOR ADDITION AND SUBTRACTION

VECTOR ADDITION AND SUBTRACTION

MULTIPLICATION BY SCALAR

MULTIPLICATION BY SCALAR

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

- $b=\alpha \times\left(a_{i}\right)=\left(\alpha \times a_{i}\right)$

$$
\mathbf{b}=\alpha \times\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha \times a_{1} \\
\alpha \times a_{2} \\
\vdots \\
\alpha \times a_{n}
\end{array}\right)
$$

TRANSPOSE OF A VECTOR

TRANSPOSE OF A VECTOR

TRANSPOSE OF A VECTOR

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

$$
\mathbf{a}^{\boldsymbol{\top}}=\left(\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right)
$$

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E

OPERATIONS ON ARRAYS

Multiplication and Division
DOT PRODUCT
$C=A . * B=\left(a_{1} \times b_{1}, a_{2} \times b_{2}, \ldots, a_{n} \times b_{n}\right)$
$C=A . / B=\left(a_{1} / b_{1}, a_{2} / b_{2}, \ldots, a_{n} / b_{n}\right)$

Introduction
to
sientific
to Scientific
$\stackrel{\text { and }}{\substack{\text { and } \\ \text { gineering }}}$
Engineering
BIL108E

OPERATIONS ON ARRAYS

!

OPERATIONS ON ARRAYS

MATRIX MULTIPLICATION

Introduction
to Scientific
Scientific
and
Engineering
Computing
BIL108E

Introduction
to Scientific
to Scientific
and

Karaman
Engineering
Computing,
BIL108E
Karaman
MATRIX MULTIPLICATION

$$
\begin{gathered}
c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j} \\
i=1,2, \ldots, m, j=1,2, \ldots, n
\end{gathered}
$$

MATRIX MULTIPLICATION

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

MATRIX MULTIPLICATION

MATRIX MULTIPLICATION

INPUT AND OUTPUT

Introduction
to Scientific
Scientific
and
Engineering
Computing
BIL108E
Karaman

Computing,
Computing,
BIL108E

The input statement
variable $=$ input (' prompt ')
inch = input('Enter length: ');
centimeter = inch * 2.54;
disp([num2str(inch), , inches = ']);
disp(centimeter) ;

INPUT AND OUTPUT

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

INPUT AND OUTPUT

USING SYSTEM COMMANDS

Introduction Introduction
to Scientific to Scientific
and
Engineering
Computing,
BIL108E
Karaman

Introduction to Scientific Scientific and
 Engineering
 Computing, BLL108E
 Karaman

■ The prompt message prompts for the value(s) to be entered. It must be enclosed in apostrophes (single quotes).

- A semicolon at the end of the input statement will prevent the value entered from being immediately echoed on the screen.
- You normally do not use input from the command line, since you shouldn't need to prompt yourself in command - line mode.
- Vectors and matrices may also be entered with input, as long as you remember to enclose the elements in square brackets.
- You can enter an expression in response to the prompt - for example, $a+b$ (as long as a and b have been defined) or rand(5). When entering an expression in this way, don't include a semicolon (it is not part of the expression).

Executing operating system commands
Example;
!time

USING SYSTEM COMMANDS
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

fprintf

Introduction
to Scientific
and
Engineering
BIL108E
BILiobe

- fprintf

■ fprintf('formatstring', listofvariables)
■ fprintf('filename', 'formatstring', listofvariables)
Example;
fprintf('myfile', '\%f', x)

fprintf

GENERAL FILE I/O

$\mathrm{a}=1: 7$

$a=1: 7$
$c 1 c$
$\mathrm{a}=1: 7$;
fprintf('elemer-
4 star

>> a = 1:7;
>> a = 1:7;
>> a = = $1: 7$;
>> a = = $1: 7$;
el ement value : [1.000$]$
el ement value : [1.000$]$
el ement value : $\left[\begin{array}{ll}2.000 \\ \text { element value : }\end{array}\right]=\left[\begin{array}{l}3.000\end{array}\right]$
el ement value : $\left[\begin{array}{ll}2.000 \\ \text { element value : }\end{array}\right]=\left[\begin{array}{l}3.000\end{array}\right]$
element value : [4.000]
element value : [4.000]
element value : [5.000]
element value : [5.000]
element value : [6.000$]$
element value : [6.000$]$
element value
element value

* Start
- fopen
- fclose
- fread
- fwrite
- fseek

Engineering
 BIL108E

Karaman
fseek

GOOD PROGRAMMING STYLE

GOOD PROGRAMMING STYLE

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

Here are some hints on how to improve your programming style:

■ You should make liberal use of comments, both at the beginning of a script to describe briefly what it does and any special methods that may have been used, and throughout the coding to introduce different logical sections.

- The meaning of each variable should be described briefly in a comment when it is initialized. You should describe variables systematically, for example, in alphabetical order.
- Blank lines should be freely used to separate sections of coding (e.g., before and after loop structures).

cont'd,

■ Coding (i.e., statements) inside structures (fors, ifs, whiles) should be indented (tabulated) a few columns to make them stand out.

- Blank spaces should be used in expressions to make them more readable - for example, on either side of operators and equal signs. However, blanks may be omitted in places in complicated expressions where this may make the logic clearer.

INTRODUCTION TO GRAPHICS

SIMPLE 2D GRAPHICS

PRESENTING AND VISUALIZING GRAPHICAL DATA
A picture is worth a thousand words.
plot statement
In its sipmplest form plot takes a single vector argument.
Example;
plot(rand (1, 20))
Plots 20 random numbers against the integers 1-20.

SIMPLE 2D GRAPHICS

SIMPLE 2D GRAPHICS

Introduction
Introduction
to Scientific
Engineering
Engineering
BIL108E

Introduction
to Scientific
and
andic
and
Engineering
Computing,
BIL108E
Karaman

- 2D plotting
- 3D plotting

SIMPLE 2D GRAPHICS

- If the argument is a matrix, its columns are plotted against element indexes.
■ Axes are automatically scaled and drawn to include the minimum and maximum data points.

SIMPLE 2D GRAPHICS

Introduction
to Scientific
and
Engineerin
Engineering
Computing,
BIL108E
Karaman

- Stant
- Stant
- Stant

SIMPLE 2D GRAPHICS

SIMPLE 2D GRAPHICS

Introduction to Scientific

and
and
and
Engineering
omputing,
BIL108E
Karaman
Introduction to Scientific
Engineerin
Computing
Karaman

SIMPLE 2D GRAPHICS

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

Elle Eall Debus Deskop Window Help

$\mid \gg$ |
4ex_03_07.m
$1 \quad 1 \quad$.
ommand history
c1c

$y=\cos (x)$;
stant

DRAWING STRAIGHT LINES

Straight-line graphs are drawn by giving the x and y coordinates of the end points by two vectors.
plot([0 2], [2 2])
Matlab has a set of easy-to-use plotting commands.
ezplot('tan(x)')

SIMPLE 2D GRAPHICS

Introduction
to Scientific
to Scientific
and
Engineering
and Computing, BIL108E
Karaman

SIMPLE 2D GRAPHICS

SIMPLE 2D GRAPHICS

Introduction to Scientific
Engineering
Computing
BIL108E
Karaman

SIMPLE 2D GRAPHICS

Engineering
Computing,
BIL108E
Karaman

SIMPLE 2D GRAPHICS

Introduction to Scientific $\stackrel{\text { and }}{ }$ Engineering BIL108E

Graphs may be labeled with the following statements:
■ gtext('text') writes a string in the graph window. Text may be placed also with Tools-Edit Plot from the figure window.

■ grid add/removes grid lines.
■ text(x, y, 'text') writes text at the point specified by x and y.
■ title('text') writes the text as a title at the top of the graph.
■ xlabel('horizontal') labels the x-axis.
■ ylabel('vertical') labels the y-axis.

MULTIPLE PLOTS

LINE STYLES, MARKERS AND COLOR

Multiple plots on the same axis

■ Use hold to keep the current plot on the axes. Released with either hold off or hold.
■ Use plot with multiple arguments. $\operatorname{plot}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$

- Use plotyy to have independent y-axis on the left and on the right plotyy $\left(x, y_{1}, x, y_{2}\right)$
■ Use the form $\operatorname{plot}(x, y)$, where x and y may be both matrices or one may be a vector and one a matrix.

Line style, markers and color for a graph may be selected with a string argument to plot.
Example;
$\mathrm{x}=0$: pi/20 : 3*pi;
$\mathrm{y}=\cos (\mathrm{x})$;
plot(x, y, '--')
hold
plot($x, \cos (2 * x), ~ ' o ')$
plot (x, $\left.\cos (4 * x),{ }^{\prime}{ }^{\prime} \mathrm{m}^{--}\right)$
Available color symbols $\mathbf{c}, \mathbf{m}, \mathbf{y}, \mathbf{k}, \mathbf{r}, \mathbf{g}, \mathbf{b}, \mathbf{w}$

MULTIPLE PLOTS

AXIS SETTINGS

Axis limits can be overriden with
axis([xmin, xmax, ymin, ymax])

- Sets the scaling on the current plot.

■ Use Inf or -Inf for the autoscaled limit.
■ Use axis auto to return to the automatic axis scaling.
■ $\mathrm{v}=$ axis returns the current axis scaling in the vector v .
■ Use axis manual to freeze current scaling, so subsequent plots use the same limits.
■ Use axis equal to make equal unit length on both axis. The effect is undone with axis normal.

■ Turn axis labeling and tick marks with axis off and axis on

MULTIPLE PLOTS - subplot

MULTIPLE PLOTS - subplot

To show a number of plots in the same figure window use
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(-3: 0.3: 3)$;
$\mathrm{z}=\mathrm{x} . * \exp \left(\mathrm{x} .{ }^{\wedge} 2-\mathrm{y} . \wedge 2\right)$;
subplot(2,2,1)
mesh (z),title('subplot $(2,2,1)$ ')

MULTIPLE PLOTS - subplot

gineering
omputing,
Karaman
to Scientific
and
to Scientific
and subplot function.
subplot(m, n, p)
divides the figure window into $m x n$ small sets and selects the p th set for the current plot.

The command subplot ($1,1,1$) returns to a single set of axes.
subplot (2,2,2)
mesh(z)
view $(-37.5,70)$, title('subplot $(2,2,2)$ ')
subplot $(2,2,3)$
mesh(z)
view ($37.5,-10$), title('subplot $(2,2,3)$ ')
subplot $(2,2,4)$
mesh(z)
view $(0,0)$, title('subplot $(2,2,4)$ ')
subplot(2,2,2)
mesh(z)
view $(-37.5,70)$,title('subplot $(2,2,2)$ ')
subplot $(2,2,3)$
mesh(z)
subplot $(2,2,4)$
mesh(z)
view $(0,0)$, title('subplot $(2,2,4)$ ')

figure

Introduction
to Scientific
and
Engineering
Engineering
Computing, BIL108E
Karaman

Introduction
to Scientific
and
Engineering
BIL108E
BIL108E
figure (h), creates a new figure window or make the h th figure window current.
h is called figure handle
clf clears current figure
cla deletes all plots and text from the current axes.

LOGARITHMIC PLOT

LOGARITHMIC PLOT

Introduction
Introduction
to Scientific
to Scientific
and
Engineering
Computing
BIL108E
Karaman

- loglog plots both axis in logarithmic scale
- semilogx plots only x axis in logarithmic scale
- semilogy plots only y axis in logarithmic scale
$\mathrm{x}=0: 0.01: 4 ;$
semilogy(x, exp(x)), grid

LOGARITHMIC PLOT

-

POLAR PLOT

Introduction
to Scientific
and
Engineering
Engineering
Computing,
BIL108E
Karaman

The point (x, y) in cartesian coordinates represented by the point (θ, r) in polar coordinates
$x=r \cos (\theta)$
$y=r \sin (\theta)$
polar(theta, r)

SIMPLE 3D GRAPHICS

Introduction
to Scientific
to Scientific
and
Engineering
Computing,
BIL108E
Karaman

The plot3 function
Usage;
plot3(x, y, z)
Example;
$\mathrm{t}=0: \mathrm{pi} / 40$: $8 * \mathrm{pi}$
$\mathrm{plot} 3(\exp (-0.02 * t) . * \sin (\mathrm{t}), \exp (-0.02 * \mathrm{t}) . * \cos (\mathrm{t}), \mathrm{t})$,
xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

SIMPLE 3D GRAPHICS

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

comet3

comet3 is similar to plot3
except it draws an animated graphic.

MESH SURFACES

MESH SURFACES

$\operatorname{mesh}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
$\operatorname{surf}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
contour
$[\mathrm{x}, \mathrm{y}]=\operatorname{meshgrid}(0: 5)$

MESH SURFACES

Elle Edil Debug Deskiop window Help

MESH SURFACES

MESH SURFACES

$[\mathrm{x} y]=$ meshgrid $(0: 5) ;$
$z=x . \wedge 2-y \cdot 2$
$\operatorname{surf}(z)$

MESH SURFACES

$$
[\mathrm{x} y]=\operatorname{meshgrid}(-2: .2: 2) ;
$$

$\mathrm{z}=\mathrm{x} . * \exp \left(-\mathrm{x} .{ }^{\wedge} 2-\mathrm{y} .{ }^{\wedge} 2\right)$;
meshc (z)

MESH SURFACES

Introduction
to Scientific
and
Engineering
Computing,
BIL108E

MATRIX VISUALIZATION

MATRIX VISUALIZATION

Introduction
Introduction
to Scientific
and
Engineering
Computing,
BIL108E
Karaman
$\operatorname{mesh}(A)$
spy (A)
A complete list of graphics functions
MATLAB help
a $=$ zeros $(30,30)$;
$\mathrm{a}(:, 15)=0.2 *$ ones $(30,1)$;
$\mathrm{a}(7,:)=0.1 *$ ones $(1,30)$;
$a(15,15)=1$;

Introduction
to Scientific
and
Engineering
Engineering
BIL108E
Karaman

Introduction
to Scientific
to Scientific
and
Engineering
omputing,
BIL108E
Karaman
mesh (a)

References

References for Week 3
1 Brian Hahn, Daniel T.Valentine, Essential Matlab for Engineers and Scientists, Elsevier, 2010.
[2 Misza Kalechman, Practical Matlab Basics for Engineers, CRC Press, 2009.

