

Introduction to Scientific and Engineering Computing, BIL108E

INTRODUCTION TO SCIENTIFIC & ENGINEERING COMPUTING BIL 108E, CRN24023

Dr. S. Gökhan Karaman

Technical University of Istanbul

February 15, 2010

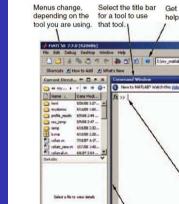
to S

Eng Con

USING MATLAB

oduction	
cientific	
and	
ineering	
nputing,	
L108E	

To start from Windows,


Double click the Matlab icon.

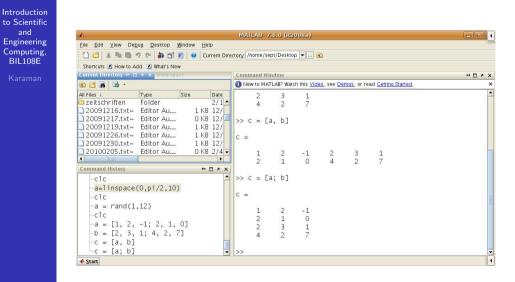
To start from UNIX.

type matlab at the shell prompt.

MATLAB Desktop

Introduction to Scientific and Engineering Computing, BIL108E

4 Stort


and more

View or change the Move maximize help. current directory. minimize or close a window. 1 w Itany mattab filesimy mile - ----New to MATLAST Watch this yides, see Denos, or read Getting Rarted, x Value and History 📲 🗖 🗶 🗙 7/22/08 L1:47 AM dalars ra ts + timesetles(1 ts.Data 18.Data=11:28 loadparane

Drag the separator Enter MATLAB View or execute Click the Start bar to resize statements at the previously run button for quick windows. statements. prompt. access to tools

MATLAB Desktop

Introduction to Scientific and Engineering Computing BIL108E

A				MAT	LAB 7.6	0 (R2	008a)				
Eile <u>E</u> dit ⊻iew	<u>G</u> raphics De <u>b</u> ug [esktop j	Mindow J	delp							
1 🗃 🖌 🖻 🕻	1 7 C 🍓 🗹	🖹 🛛 🕜 🗠 C	urrent Dire	ectory: //	nome/sept/	Deskto	p 🔻 健	Ð			
Shortcuts 🖪 How t	o Add 🖪 What's New	(
Current Directory	Workspac		- 🗆 🔻 🗙	Comn	nand Wind	0W					× 5 🗆 1+
9 🗹 🗐 🖏 🍐	😼 🚾 🔹 Stac <u>k</u> :	Base 👻		Nev	w to MATLA	B? Wati	this Vide	o, see De	mos, or re	ad Getting Started.	>
Name ∠	Value	Min	Max		2	3	1				2
a	[1,2,-1;2,1,0]	-1	2		4	2	7				
ans	'/home/sept/										
H b	[2,3,1;4,2,7]			>> 0	:= [a,	b]					
balance	2.8099e+03										
	<4x3 double>			C =							
∎rate ∎time	0.1200	0.1	0.1 3		12		. 72	~			12
<u>n</u> time	5	5	2		1	2 1	-1	2	3	1	
Command History		14-	× 5 D		2	Т	0	4	2	1	
clc				>> 0	= [a;	h1					
	ce(0,pi/2,10)				Lu,						
-clc	Je(0,p1/2,10)			C =							
a = rand	(1 12)										
clc	(1,12)				1	2	-1				
		0.7			2	1	0				
	2, -1; 2, 1,				1 2 2	2 1 3 2	0 1 7				
	3, 1; 4, 2, 7	J			4	2	7				
-c = [a,											
c = [a;	0]		-	>>							

Engineering Computing,

BIL108E

MATLAB Desktop

Introduction to Scientific and

-					ATLAB 7	.6.0 (R20)	J8a)					
	w <u>G</u> raphics De <u>b</u> ug <u>D</u>											
: 🛅 😂 👗 🖻	a 🛱 🤊 (* 🞒 🖥		Current Dire	ectory	/home/se	ot/Desktop	👻 😢					
Shortcuts 🖪 Ho	ow to Add 🔃 What's New											
Current Director	Workspac	e	+ □ * ×	1	/ariable Ed	itor – c						
1 🖻 🐿 🛍	🍓 😽 🚾 🔹 Stack:	Base 🖛		1	* = 6		- 1	1 Stac	<u>k</u> : Base 🗶		ΞŒΕ	50
Name 4	Value	Min	Max	H	<4x3 dou	ble>	1					
🖽 a	[1,2,-1;2,1,0]		2		1	2	3	4	5	6	7	8
🔜 ans	'/home/sept/			1			2 -1					
🖽 b	[2,3,1;4,2,7]	1	7	2	2	>	1 0	-			-	-
🗄 balance	2.8099e+03			100					-		-	1
	<4x3 double>	-1	7	3	2	-	3 1					
			. 0.1	4	4	1	2 7					
🖽 t ime	3	3	3	5								
				6								
Command Histo	91¥		× 5 🗆 🕂	7								
-c1c			-	8		1			-			
a=lins	pace(0,pi/2,10)			1.55	•				-			
-c1c				Cor	nmand Wir	ndow						→1 [
a = ra	nd(1,12)			1000000			this <u>Video</u> , see	Demos or	read Cetting	harted		1111-1
c1c							0	Contract, or	Tead <u>Setting</u>	2110/12/02		
a = [1	, 2, -1; 2, 1,	01			2	2						
	, 3, 1; 4, 2, 7				2 2 4	1 3 2	1					
		5	200		14	2	/					
c = [a				>>								

USING MATLAB

Introduction to Scientific and Engineering Computing, BIL108E

To end Matlab session,

- From File pulldown menu, select Exit MATLAB.
- Enter exit or quit at the command prompt

COMMAND LINE

Introduction to Scientific and

Engineering

Computing,

BIL108E

- $\blacksquare \gg$ indicates the command prompt
- You can edit a MATLAB command before pressing Enter(executing or running) by using various combinations of the Backspace, Left-arrow, Right-arrow, and Del keys.
- You can select (and edit) commands you have entered using Up-arrow and Down-arrow.
- MATLAB has a useful editing feature called smart recall. Just type the first few characters of the command you want to recall. For example, type the characters 2^* and press the Up-arrow key. This recalls the most recent command starting with 2*.

ARITHMETICS

Introduction to Scientific and Engineering Computing, BIL108E

Matlab command prompt can be used as a calculator.

>>	8 + 9
>>	24 - 12
>>	8 ^ 2
>>	1 / 16
>>	16 \ 1

Backslash means the denominator is to the left of the symbol.

ARITHMETICS

Introduction to Scientific and Engineering Computing, BIL108E

Period in front of the operators means that the operation is done with single numbers.

>> 2	.* 6
>> 1	./ 8
>> 3	.^ 4
>> 5	.^ 2

It is important, when we deal with array of numbers.

ARITHMETIC OPERATORS

Introduction to Scientific and Engineering Computing, BIL108E

Matlab Operations

Symbol	Operation	Example	Answer
+	Addition	z = 4 + 2	z = 6
-	Subtraction	z = 4 - 2	z = 2
/	Right division	z = 4/2	z = 2
1	Left division	$z = 2 \setminus 4$	z = 2
*	Multiplication	z = 4 * 2	z = 8
^	Exponentiation	$z = 4^{\wedge}2$	z = 16
Functions such as:	square root log2	z = sqrt(4)	z = 2
sqrt, log		$z = \log 2(4)$	z = 2

RELATIONAL OPERATORS

Introduction to Scientific and

Engineering Computing, BIL108E

Operator Name	Operator Symbol	EXAMPLE
less than	<	x <y< td=""></y<>
less than equal to	<=	a<=22
equal to	==	x==100
not equal to	~=	x~=10
greater than equal to	=>	pi=>3
greater than	>	c>100

OPERATOR PRESEDENCE

Introduction to Scientific and Engineering Computing, BIL108E

Precedence	Operators
1.	(,)
2.	^, .^, ', .' (pure transpose)
3.	+ (unary plus), -(unary minus),
	~ (NOT)
4.	*, /, .*, ./, .\
5.	+ (addition), - (subtraction)
6.	:
7.	>, <, >=, <=, ==, ~=
8.	& (AND)
9.	(OR)

Operator presedence from this table and from left to right.

PRECISION FORMATS

Introduction to Scientific and Engineering Computing, BIL108E

Precision Formats

MATLAB Instruction	Display	Numerical Output exp(1)
format short	4 decimal digits (default)	2.7183
format long	16 decimal digits	2.71828182845905
format short e	4 decimal digits plus exponent	2.7183e+000
format long e	15 decimal digits plus exponent	2.71828182845904e+000
format bank	2 decimal digits	2.72
format +	+, -, 0 (positive, negative, and zero)	+
format hex	Hexadecimal	4005bf0a8b14576a
format rat	Rational approximation	1457/536
format compact	Suppress extra line-feeds	2.7183
format loose	Puts the extra line-feeds back in	2.7183

NUMBERS

Introduction to Scientific and

Engineering Computing, BIL108E

Numbers can be defined in the decimal form

Example;

1.732050808, -24, 256.0

In scientific notation e or E could be used to define the exponent. Exponent should be an integer.

The mantissa is multiplied by the power of 10 indicated by the exponent. Example;

12.35e-3 12.35×10^{-3}

DATA TYPES

Introduction to Scientific and Engineering Computing, BIL108E

Default numeric data type is double precision.

Matlab has 14 data types.

Examples:

integer, unsigned integer, string, single precision

SPECIAL VALUES

Introduction to Scientific and Engineering Computing, BIL108E

Matlab warns you in case of errors, but still gives answer.

Example;

- **1**/0
- Inf
- **0**/0 NaN

You can use these symbols in any calculation.

VARIABLES

Introduction to Scientific and

Engineering

Computing, BIL108E

Variable Naming Rules

- It may consist only of the letters a-z, the digits 0-9, and the underscore _.
- It must start with a letter
- The name will be as long as you like but Matlab remembers only the first 63 characters
- Matlab is case sensitive, upper and lower case variables are not the same.

Examples;

r2d2, x3po, luke_filewalker RIGHT

_2d, luke-filewalker, balance\$ WRONG

Good Naming Techniques

Introduction to Scientific and Engineering Computing, BIL108E

Camel Caps (dayOfTheWeek, milleniumBug, StarWars)

using underscore (star_wars, day_of_the_week)

Introduction

and

to Scientif

Engineeri

Computin

BIL108E

RESERVED VARIABLES

List of Reserved Variable Names

Variable	Description
ans	Temporary variable that stores the most recent answer.
computer	Returns the computer type.
version	MATLAB version.
ver	Returns the information about the license and version of the MATLAB package installed in your computer.
license	License information.
pi	The number $\pi = 3.14159$
exp(1)	The value of $e = 2.71$
eps	Represents the accuracy of floating point, the smallest possible positive number with a magnitude of the order of 10 ⁻¹⁰ .
realmin	The smallest real positive number.
realmax	The largest real positive number.
bitmax	The largest positive integer, magnitude of $2^{53} - 1$.
flops	Counts of the floating-point operations. flop(0) starts the count of all algebraic operations such as $+, -, *, /$.
inf	Represents infinity, (1/0).
nan	Not a number, undefined $(0/0)$.
i or j	The value of $\sqrt{-1}$. Denotes the imaginary part of a complex number.
input	Accepts information via keyboard.
date	Represents the current date as a string. For example, 25-Jul-00.
clock	Represents the current date and time as YYMMDDHHMMSS.
beep	Executes a beep sound.
etime (T _f , T _l)	Calculates elapse time in seconds between T_I (initial) and T_f (final). T_I and T_f are in vector form consistins of six elements (year month day hour minute second
tic, toc	Measures the time between the tic and the toc. The tic starts the stopwatch and the toc stops the stopwatch and outputs the elapsed time.
cputime	Total time of MATLAB used in seconds.
Pause	Stops executing a program momentarily.
Pause(n)	Stops executing a program during n seconds.

THE STATEMENT IS

Introduction to Scientific and Engineering Computing, BIL108E

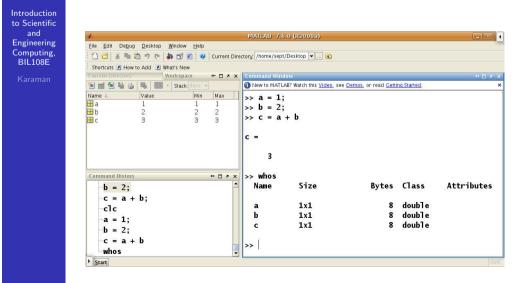
To do arithmetic operations with the variables we should assign values to variables.

>> a = 7; >> b = 8; >> c = a + b; >> t = 12; r = 32; >> u = t * r;

VARIABLES

Several commands can be seperated by comma or semicolon and output disabled with semicolon.

whos represent the locally defined variables and commands in


VARIABLES

Introduction to Scientific and Engineering Computing, BIL108E

Names should not duplicate with built-in functions.

- >> pi = 7; >> sqrt(pi);
- pi has a different value then expected.

MATLAB Desktop

VARIABLES

>> who

>> whos

>> whos

>> clear pi

>> sqrt(pi)

the workspace with size info.

clear deletes the defined variable

Introduction to Scientific and Engineering Computing, BIL108E

VARIABLES

Introduction to Scientific and Engineering Computing, BIL108E

save filename

load filename

These commands are used to save and load the variables in the current workspace to a file.

Eng Con

MATLAB Desktop

tion tific					
A	MATLAB	7.6.0 (R2008a)			
Eile Edit Debug Desktop	<u>Window</u> Help				
ng, E	하 🗊 🖹 🛛 Current Directory /home/s	ept/Desktop 🔻 📖 😢			
Shortcuts 🕑 How to Add 💌 V	Vhat's New				
an	Workspace III I X Command W				+i 🗆 k
		ATLAB? Watch this <u>Video</u> , see	Demos, or read Getti	ng Started.	
Name L Value	Min Max >> b = >> C =				
Command History	c = 3 >> whos Name	Size	Bytes	Class	Attributes
clc	_				
a = 1;	ab	1x1 1x1	8	doub]e doub]e	
	D	TXT			
b = 2;	c	1x1	8	double	

MATLAB Desktop

Introduction to Scientific Engineering Computing, BIL108E

*:				MATLAB 7.0),0 (R2008a)			
ile <u>E</u> dit De <u>b</u> ug	Desktop Wind	ow <u>H</u> elp						
🗋 🖂 👗 🖡 🖡	0 🕫 🖣 🗇 🕫 🖆	0 2 0	Current Dire	ectory /home/sept	/Desktop 👻 😢			
Shortcuts 🛃 How t	to Add 💽 What's I	New						
urrent Directory	Works		* 🗆 ? X	Command Wine	low			
	- Sta	ack: Base 👻		New to MATL	AB? Watch this <u>Video</u> , see	e Demos, or read Getti	ng Started.	2018 -0 189
lame ∠	Value	Min	Max	>> c = a				
a	1	1	1					
b				c =				
b	2 3	2 3	2 3					
				3				
				2				
				>> whos Name	Size	Bytes	Class	Attributes
Command History			× 5 🗆 +1		1x1	8	doub] e	
a = 1;			^	a b	1x1	8		
b = 2;				10.05	and the second second			
c = a +	h			c	1x1	8	doub] e	
whos								
				>> save	iyvars			
save my	vars			>> clear				
				>> load	ivvars			
clear								

GENERAL FUNCTIONS

Introduction	
to Scientific	
and	
Engineering	
Computing,	
BIL108E	

date, calendar

- **clc** clear command window
- **clf** clear figure window

help

Introduction to Scientific and Engineering Computing, BIL108E

1				MATLAB 7	6.0 (R20	08a)					
<u>Eile E</u> dit De <u>t</u>	bug <u>D</u> esktop <u>W</u> indo	w <u>H</u> elp									
00 8	1 1 7 C 1 1	1 - 0	Current D	Directory: /home/se	pt/Desktop	 ■ … 					
Shortcuts 🖪 H	low to Add 🔃 What's N	lew									
Current Directo	Works	pace	* 🗆 *	× Command Wi	ndow						-+ E - 2
1	🍓 遇 🔚 - Sta	ck: Base 👻		New to MAT	LAB? Watch	this <u>Video</u> ,	see <u>Demo</u>	s, or read 🤇	Getting Start	ed.	
Name ∠	Value	Min	Max	>> date							
🗄 a	1	1	1								
🔬 ans	'16-Feb-201			ans =							
b	2	2	2 3								
ШC	3	3	3	16-Feb-2	010						
ш¢	3	3	3	16-Feb-2	010						
	3	5	3								
E C	3	3	3	16-Feb-2 >> calen		-	ah 201	0			
		3	3	>> calen	ıdar	-	eb 201	1.58	F	ç	
		3	3 H = 7	>> calen	ıdar M	Tu	W	Th	F	s	
		3	1120	>> calen	idar M 1	Tu 2	W 3	Th 4	5	S 6	
Command Hist	οηγ.	3	1120	>> calen × S • 0 7	ndar M 1 8	Tu 2 9	W 3 10	Th 4 11	5 12	13	
Command Hist whos save 1	ory myvars	3	1120	>> calen × S • 0 7 14	ndar M 1 8 15	Tu 2 9 16	W 3 10 17	Th 4 11 18	5 12 19	13 20	
Command Hist whos save r clear	ory myvars	3	1120	>> calen × S 0 7 14 21	ndar M 1 8 15 22	Tu 2 9	W 3 10 17 24	Th 4 11 18 25	5 12	13 20 27	
Command Hist whos save r clear load r	ory myvars	3	1120	>> calen × S • 0 7 14	ndar M 1 15 22 0	Tu 2 9 16 23 0	W 3 10 17 24 0	Th 4 11 18	5 12 19	13 20 27	
save clear load clc	ory myvars	3	1120	>> calen × S 0 7 14 21	ndar M 1 8 15 22	Tu 2 9 16 23	W 3 10 17 24	Th 4 11 18 25	5 12 19 26	13 20	
Command Hist whos save r clear load r	ory myvars	3	5 🗍 -11	>> calen × S 0 7 14 21 28	ndar M 1 15 22 0	Tu 2 9 16 23 0	W 3 10 17 24 0	Th 4 11 18 25 0	5 12 19 26 0	13 20 27	

MATLAB Desktop

Introduction to Scientific and Engineering Eile Edit Debug Desktop Window Help Computing, : 🎦 😅 🐰 ங 🖄 🤊 🥐 👪 🗊 🖹 🛛 🖉 Current Directory: /home/sept/Desktop 💌 ... 🔞 BIL108E Shortcuts 🕑 How to Add 💽 What's New Workspace IF I ? X Command Windo 🛅 📷 🗃 🝇 🚳 🐻 🔤 🔹 Stack: Base 👻 New to MATLAB? Watch this Video, see Demos, or read Getting Started. Name 4. Value Min Max >> date ⊞a 1 1 1 ans '16-Feb-2010' ans = Hb 2 3 2 2 3 3 H c 16-Feb-2010 >> calendar Feb 2010 Tu W Th F S М Command History + 🗆 ? X 0 1 2 3 4 5 11 12 clear 7 8 9 10 14 15 16 17 18 19 load myvars 21 22 23 24 25 26 clc 28 0 0 0 0 0 date 0 0 0 0 0 0 calendar

- >> clc

MATLAB Desktop

Introduction to Scientific and Engineering Computing, BIL108E

Eile Edit Det	bug <u>D</u> esktop <u>W</u>	indow Help		MATLAB 7.6.0 (R2008a)	
108 8			Current Dire	ectory /home/sept/Desktop 👻 🔞	
	low to Add 🕑 What		Trees en en		
Current Directo		orkspace	+ D 7 X	Command Window	
		Stack: Base		New to MATLAB? Watch this Video, see Demos, or read Getting Started.	×
Name 4	Value	Min	Max	>>	
a	1	1	1		
ans	'16-Feb-2				
∎b	2	2	2		
Еc	3	2	2 3		
Command Hist	017		H		
E as	σιγ		X 5 🗆 ++		
clc	ory		The second se		
clc date			The second se		
clc			The second se		
clc date			The second se		
date <mark>calen</mark> clc			The second se		
clc date <mark>calen</mark> clc date	dar		The second se		
clc date <mark>calene</mark> clc	dar		The second se		

TARK TRANSPORT

Introduc

to Scien

Enginee

Comput

BIL108

and

MATLAB Desktop

clc

) <u>Start</u>

				MATLAB 7.6.0 (R2008a)	1
Eile Edit Debug	Desktop Wind	ow <u>H</u> elp			-
: 🛅 🤭 🖌 🐂 🛛	3 7 C 3 6		Current Dire	Directory. /home/sept/Desktop 👻 😢	
Shortcuts 🖪 How 1	to Add 💽 What's	New			
Current Directory	Works	pace	+ □ * ×	× Command Window → □	е х
1	📕 🔜 - Sta	ack: Base 📼		New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	×
Name ∠	Value	Min	Max	>> help date	_
🖽 a	1	1	1	DATE Current date as date string.	
📾 ans	'16-Feb-20			S = DATE returns a string containing the date in de	d
🖽 b	2	2	2	5 = DATE returns a string containing the date in d	1-1
<mark>Ш</mark> с	3	3	3		
				See also <u>now, clock, datenum</u> .	
				See also <u>now, clock, datenum</u> . Reference page in Help browser	
Command History			+ □ ₹ X	Reference page in Help browser doc date	
			× 5 0 **	Reference page in Help browser doc date	
date			* 0 7 X	Reference page in Help browser doc date ×	
date <mark>calenda</mark>	r		× 5 🗆 +1	Reference page in Help browser doc date ×	
date <mark>calenda</mark> clc	r		× 5 0 +1	Reference page in Help browser doc date ×	
date <mark>calenda</mark>			× 5 1 +1	Reference page in Help browser doc date ×	
date calendar clc date			•• • • ×	Reference page in Help browser doc date ×	
date calendar clc date calendar			14 0 8 X	Reference page in Help browser doc date ×	
date calendar clc date	r		× 5 1 41	Reference page in Help browser doc date >>	

S

6

13

20

27

0

0

BUILT-IN FUNCTIONS

MATLAB offers a wealth of built-in math functions that can be quite helpful for many computational problems

- Elementary MATLAB functions (help elfun)
 - Trigonometric functions
 - Exponential functions
 - Complex functions
 - Rounding and remainder functions
- Specialized MATLAB functions (help specfun)
 - Specialized math functions
 - Number theoretic functions
 - Coordinate transformations

and

MATLAB Desktop

Introduction to Scientific Engineering File Edit Debu Computing, 10018 BIL108E Shortcuts 🖪 How Name 💪 Ha ans 1 b Ēc Command Histor clc

help e • <u>Start</u>

				MATLAB 7.6.0 (R2008a)	
<u>E</u> dit De	bug Desktop	<u>Window</u> <u>H</u> elp			
1 😂 🔏	1 0 0 C	🎝 🗹 🖹 🛛 🥹	Current Dire	ctory: /home/sept/Desktop 👻 🔞	
nortcuts 🛃 H	How to Add 🖪 W	hat's New			
rent Directo	ory V	Vorkspace	•+ □ * ×	Command Window ++	•
	👌 🖪 🔤 ·	- Stack: Base -		New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	
ne ∠	Value	Min	Max	>> help elfun	
a ans	1 '16-Feb·	1 -2010'	1	Elementary math functions.	
0	2	2	2		
	3	3	3	Trigonometric.	
				<u>sin</u> - Sine.	
				<u>sind</u> - Sine of argument in degrees.	
				<u>sinh</u> - Hyperbolic sine.	
				asin - Inverse sine.	
mmand His	tory		** 🗆 ? X	<u>asind</u> - Inverse sine, result in degrees.	
clc			-	asinh - Inverse hyperbolic sine.	
date				cos - Cosine.	
calen	dər			<u>cosd</u> - Cosine of argument in degrees.	
clc	iuai			cosh - Hyperbolic cosine.	
	1			acos - Inverse cosine.	
help	date			acosd - Inverse cosine, result in degrees.	
clc			line and the second	acosh - Inverse hyperbolic cosine.	
help	elfun		-		

MATLAB Desktop

Introduction to Scientific and Engineering Computing, BIL108E

A				MATLAB 7.6.0 (R2008a)
<u>File E</u> dit De	<u>b</u> ug <u>D</u> esktop <u>W</u> i	ndow <u>H</u> elp		
: 🛅 🗃 👗 🖷	「	1 E 0	Current Dire	ctory: /home/sept/Desktop 💌 😢
Shortcuts 🛃 H	low to Add 🖪 What	's New		
Current Directo	Wor	rkspace	+ 🗆 * ×	Command Window +1 🗆 7 🗙
	🕹 🖪 🔤 ·	Stack: Base 🔫		New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .
Name 💪	Value	Min	Max	>> help specfun
🖽 a 📾 ans	1 '16-Feb-2	1 010'	1	Specialized math functions.
🖽 b	2	2	2 3	Specialized math functions.
C C	3	5		airy - Airy functions. <u>besselj</u> - Bessel function of the first kind. <u>bessely</u> - Bessel function of the second kind. <u>besselh</u> - Bessel functions of the third kind (Ha
Command Hist -calen -clc -help -clc -help -clc -clc -help	dar date		X 5 0 44	besseli - Modified Bessel function of the first besselk - Modified Bessel function of the second beta - Beta function. betainc - Incomplete beta function. betaln - Logarithm of beta function. ellipj - Jacobi elliptic functions. ellipke - Complete elliptic integral. erf - Error function.
• <u>Start</u>				Toyn.

MATHEMATICAL FUNCTIONS

Introduction to Scientific and Engineering Computing, BIL108E

abs	Absolute value
acos, acosh	Inverse cosine and inverse hyperbolic cosine
acot, acoth	Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch	Inverse cosecant and inverse hyperbolic cosecant
angle	Phase angle
asec, asech	Inverse secant and inverse hyperbolic secant
asin, asinh	Inverse sine and inverse hyperbolic sine
atan, atanh	Inverse tangent (two quadrant) and inverse hyperbolic tangent
atan2	Inverse tangent (four quadrant)
bessel	Bessel function
ceil	Round up
conj	Complex conjugate
cos, cosh	Cosine and hyperbolic cosine
cot, coth	Cotangent and hyperbolic cotangent
csc, csch	Cosecant and hyperbolic cosecant

Introduction to Scientific and Engineering Computing, BIL108E

MATHEMATICAL FUNCTIONS cont'd

Introduction to Scientific and Engineering Computing, BIL108E

erf	Error function
exp	Exponential
fix	Round toward zero
floor	Round down
gamma	Gamma function
imag	Imaginary part
log	Natural logarithm
log2	Dissect floating point numbers into exponent and mantissa
log10	Common logarithm
mod	Modulus (signed remainder after division)
rat	Rational approximation
real	Real part
rem	Remainder after division
round	Round toward nearest integer
sec, sech	Secant and hyperbolic secant
sign	Signum function
sin, sinh	Sine and hyperbolic sine
sqrt	Square root
tan, tanh	Tangent and hyperbolic tangent

LINEAR EQUATIONS

Introduction to Scientific and Engineering

BIL108E Karaman

Computing,

2x - y = 4

$$-x+2y=3$$

$$\left(\begin{array}{c}2\\-1\end{array}\right)x+\left(\begin{array}{c}-1\\2\end{array}\right)y=\left(\begin{array}{c}4\\3\end{array}\right)$$

Column picture

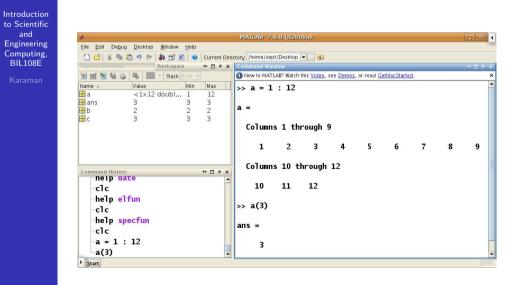
Scalars are not enough to define this kind of data.

VECTORS

Introduction to Scientific and Engineering Computing, BIL108E

A vector is an ordered list of numbers (one-dimensional). In MATLAB they can be represented as a row-vector or a column-vector $(1 \times n)$ or $(n \times 1)$.

Simple vector definition;


COLON : is used to define row vectors in Matlab.

>> a = 1 : 12; >> size(a)

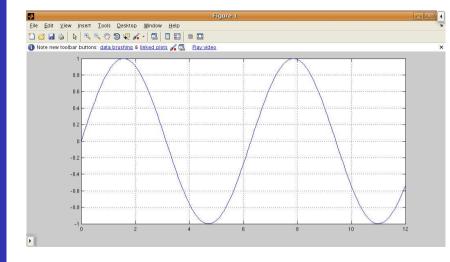
size command shows dimension of the variable, here the size of vector *a*.

MATLAB Desktop

VECTORS

Introduction to Scientific and Engineering Computing, BIL108E

			MATLAB 7.6.0 (R2008a)	
<u>Eile E</u> dit D	e <u>b</u> ug <u>D</u> esktop <u>W</u> indow <u>H</u>			
1 C 🕺	🐚 🛅 🤊 (° 🎒 🔂 🖹		ctory: /home/sept/Desktop 💌 🛍	
Current Direct	ory Workspace	* • • * ×	Command Window	
1 1 2 1	👌 喝 🔚 Stack: Bas	ie. *	New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	
Name ∠	Value	tin Max	>> x = 0 : 0.1 : 12;	
🖽 a	<1×12 doubl 1	1 12		
Hans	3 3		>> y = sin(x);	
iiib iib iic iiix iiiy	2 2 3 3	3 3 2 2 3 3	>> plot(x, y), grid	
H c	3 3	3 3		
H ×	<1x121 dou 0) 12		
HV	<1×121 dou	-1 0.9		
		Andrew Chicker		
Command His	tory	X 5 🗆 🕂		
		–		
	specfun			
clc				
CIC	• 12			
10				
-a = 1				
10	2			
-a = 1	12			
a = 1 a(3) clc): 0.1 : 12;			


Engineering

Computing,

BIL108E

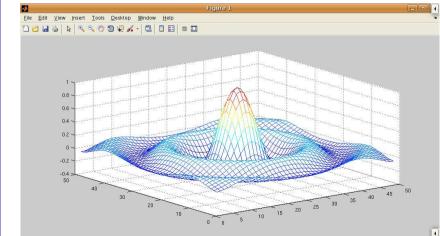
VECTORS

Introduction to Scientific

EXAMPLES

Introduction to Scientific and Engineering Computing, BIL108E

Example; Eile Edit Debug Desktop Window Help 🚹 🗃 🔏 ங 🛱 🤊 🍽 💩 🛒 🖹 😮 Current Directory: /home/sept/Desktop 👻 ... 😢 Workspace 🏨 🖬 🛪 🗙 Command Windo 🛅 📷 🝓 🍇 🖏 🔜 - Stack: 845 New to MATLAB? Watch this <u>Video</u>, see <u>Demos</u>, or read <u>Getting Started</u>. Name ∠ Value Min Max >> [x y] = meshgrid(-12 : 0.5 : 12); 🖽 a <1×12 doubl... 1 12 >> r = sqrt(x.^2 + y.^2) + eps; 🗄 ans 3 3 3 >> z = sin(r) ./ r; Шb 2 >> mesh(z) H c Hr <49x49 dou... 2.2... 16.... Π× <49x49 dou... -12 12 <49x49 dou... -12 12 ⊞y ⊞z <49x49 dou... -0.... 1 Command History X 5 🗆 🕂 x = 0 : 0.1 : 12;y = sin(x);plot(x, y), grid clc [x y] = meshgrid(-12 : 0.5 : $r = sqrt(x.^{2} + y.^{2}) + eps;$ z = sin(r) ./ r; Þ • <u>Start</u>


TE PERSON AND A PE

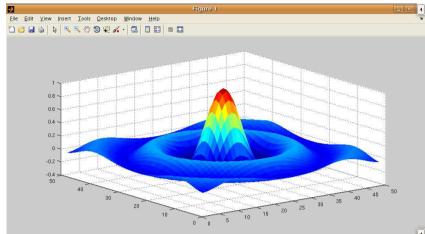
Engineering

Computing, BIL108E

EXAMPLES

Introduction to Scientific

EXAMPLES


Introduction to Scientific and Engineering Computing, BIL108E

Name & Value Min Max Ha <1x12 doubl 1 ans 3 3 Bb 2 2 c 3 3 Br v et c 3 3 bb 2 2 v west of MATLA97 Watch this Yideo, see Demos. or read Gattina Started. >> r = sqrt(X.A2 + y.A2) + eps; >> r = sqrt(X.A2 + y.A2) + eps; >> surf(z), shading flat *> y = sin(x); plot(x, y), grid -clc -x y] = meshgrid(-12 : 0.5 : r = sqrt(x.A2 + y.A2) + eps;		lebug Desktop <u>W</u> indow <u>H</u> elp		
Name & Value Min Max Hat <1x12 doubl 1 12 ans 3 3 3 B b 2 2 2 Command History 12 12 B a <1x12 doubl 1 Ans 3 3 B b 2 2 Command History 12 B a <1x12; 12 Y = sin(x); plot(x, y), grid - [x y] = meshgrid(-12: 0.5: r <49x49 dou -0 Max <49x49 dou -0 Y = sin(x); plot(x, y), grid - [x y] = meshgrid(-12: 0.5: r = sqrt(x.^2 + y.^2) + eps;	1 🗃 👗			
Name L Value Min Max H a <1x12 doubl 1 12 H ans 3 3 3 H b 2 2 2 H c 3 3 3 H b 2 2 2 H c 3 3 3 H b 2 2 2 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 3 3 3 H c 49x49 dou -12 12 H c 49x49 dou -0 1 1 Command History H c * x 1 Y = sin(x); plot(x, y), grid 1 - [x y] = meshgrid(-12 : 0.5 : 1 r = sqrt(x.^2 + y.^2) + eps; A c = sqr		Workspace ++ 🗆 7	Command Window	* 🗆 *
<pre>a <1x12 doubl 1 12 ans 3 3 3 b 2 2 2 c 3 3 3 r <49x49 dou12 12 y <49x49 dou12 12 y <49x49 dou12 12 y <49x49 dou12 12 y <49x49 dou12 12 r <49x49 dou12 12 r <49x49 dou12 12 r <49x49 dou12 12 r = sin(x); -plot(x, y), grid -clc - [x y] = meshgrid(-12 : 0.5 : r = sqrt(x.^2 + y.^2) + eps;</pre>		🛿 🍓 🔚 🐖 🔹 Stack: Base 👻	New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	
<pre>#a < (1x12 doubl 1 12 ans 3 3 3 b 2 2 2 c 3 3 3 fr < 49x49 dou12 12 fr < 49x49 dou12 12 fr < 49x49 dou12 12 fr < 49x49 dou12 12 fr < 49x49 dou0 1 command History</pre>	Name 💪		>> [x v] = mesharid(-12 : 0.5 : 12):	
<pre>#r <49x49 dou 2.2 16 x <49x49 dou12 12 y <49x49 dou12 12 #z <49x49 dou0 1 Command History</pre>		<1×12 doubl 1 12		
<pre>#r <49x49 dou 2.2 16 x <49x49 dou12 12 #y <49x49 dou12 12 #z <49x49 dou0 1 Command History</pre>		3 3 3		
<pre>#r <49x49 dou 2.2 16 x <49x49 dou12 12 #y <49x49 dou12 12 #z <49x49 dou0 1 Command History</pre>		2 2 2		
	EC			
	Hr		>> surf(z), shading flat	
Image: system of the syste	H X			
Command History ** • • • * × y = sin(x); -plot(x, y), grid -clc -[x y] = meshgrid(-12 : 0.5 : -r = sqrt(x.^2 + y.^2) + eps;	y 7			
y = sin(x); plot(x, y), grid -clc -[x y] = meshgrid(-12 : 0.5 : r = sqrt(x.^2 + y.^2) + eps;		<45,45 dou0 1		
y = sin(x); plot(x, y), grid -clc -[x y] = meshgrid(-12 : 0.5 : r = sqrt(x.^2 + y.^2) + eps;				
plot(x, y), grid -clc -[x y] = meshgrid(-12 : 0.5 : r = sqrt(x.^2 + y.^2) + eps;			×	
-clc -[x y] = meshgrid(-12 : 0.5 : -r = sqrt(x.^2 + y.^2) + eps;	y =	sin(x);		
<pre>[x y] = meshgrid(-12 : 0.5 : r = sqrt(x.^2 + y.^2) + eps;</pre>	plot	(x, y), grid		
$r = sqrt(x.^{2} + y.^{2}) + eps;$	clc			
$r = sqrt(x.^{2} + y.^{2}) + eps;$	- Fx - y	$1 = mosharrid(-12 \cdot 0.5 \cdot 1)$		
z = cin(n) / m		sqrt(x.^2 + y.^2) + eps;		
$z = \sin(r) . / r$	r =			
	r =	sin(r) ./ r;		

EXAMPLES

Introduction to Scientific and Engineering Computing, BIL108E

A SAMPLE STATEMENT

EXAMPLES

Introduction to Scientific and Engineering Computing, BIL108E

Given : Balance 2000 USD, 12% rate per year Find : Bank Balance after 3 years? Formula : $balance(1 + r)^n$ First write down a rough algorithm.

- **1** Get the data into Matlab.
- **2** Calculate the balance after 3 years
- **3** Display the new balance

EXAMPLES

Introduction to Scientific and Engineering Computing, BIL108E

balance = 2000; % USD rate = 0.12; % bank rate time = 3; % years balance = balance * (1 + rate)^time; disp('New balance:'); disp(balance)

Introduction to Scientific and Engineering Computing, BIL108E

1				MATLAB 7.6.0 (R2008a)	
<u>File Edit Deb</u>	ug <u>D</u> esktop <u>W</u> indow	Help			
1 6 8 %	10 m m m m m) 🥝 Cu	rrent Direct	ory: /home/sept/Desktop 👻 😢	
Current Director	Workspa	ce •	× s 🗆 +	Command Window	* 🗆 H
	👌 🐻 🔤 🔹 Stack	Base 👻		New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .	
Name ∠	Value	Min	Мах	>> balance = 2000;	
🔣 a	<1x12 doubl.	. 1	12 🔺	>> rate = 0.12 ;	
H ans	3	3	3		
🔠 b	2	2	2	>> time = 3;	
Balance	2.8099e+03	2.8	2.8	>> balance = balance * (1 + rate)^time;	
H c	3	3	3	>> disp('New balance:'), disp(balance)	
H r	<49x49 dou	2.2	16	New balance:	
🖽 rate	0.1200	0.1	0.1	2.8099e+03	
🖽 time	3	3	3	2.00990+03	
1	10 10 1	10	12		
Command Histo			- D * ×	>>	
	.), shading f		-		
1 12 13	.,, shaaring i	a.c.			
clc					
balanc	ce = 2000;				
rate =	0.12;				
time =					
82					
balanc	e = balance *		1000		
	New balance:				

Introduction

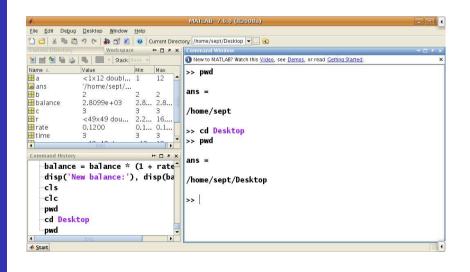
to Scientific

and

Engineering

Computing,

BIL108E


RUNNING SCRIPT FILES

Use file extension .mat for Workspace files and can be opened from Matlab Desktop File menu. Use file extension .m for function files pwd shows the current directory of matlab

- cd change directory to run the script file
- change directory with Matlab desktop Directory Browser.

MATLAB Desktop

Introduction to Scientific and Engineering Computing, BIL108E

linspace FUNCTION

The function linspace creates a vector of equally spaced values.

Example;

linspace(0 , pi/2, 20)

creates a vector with the size of 1×20 from 0 to pi/2

Introduction to Scientific and Engineering Computing, BIL108E

Δ.				MAT	LAB 7.6.0 (I	(2008a)			
Eile Edit Debu	ug <u>D</u> esktop <u>W</u> indow	Help							
1 🗃 🕹 🐚 🛙	13 7 (°) 👬 🗹 🗉) 📀 🗠	urrent Direct	ory. /ho	me/sept/Deskto	op 👻 🛄 🔂			
Current Directory	Workspa	ice	× 5 ⊡ *	Comm	iand Window				
	👌 喝 🔤 🔹 Stack	Base 🕶		Nev	w to MATLAB? W	atch this <u>Video</u> , see	e <u>Demos</u> , or read g	Setting Started	
Name 🖌	Value	Min	Max	>> 2	a = linsr	ace(0, pi/	2, 10)		
🗄 a	[0,0.1745,0.3.	0	1.5 📤				-,,		
👪 ans	'/home/sept/.								
🗄 b	2	2	2	a =					
🗄 balance	2.8099e+03		2.8		_				
<mark>Ш</mark> с	3	З	3	Co	olumns 1	through 5			
🖽 r	<49x49 dou		16						
🖽 rate	0.1200		0.1		0	0.1745	0.3491	0.5236	0.6981
🖽 time	3	3	3						
1	10 10 1			6	Jumps 6	through 10	1		
Command Histo	гу		+ D * X		Ji ami j	chi bugn 10			
cls			•		0.8727	1.0472	1.2217	1.3963	1.5708
clc					0.0/2/	1.0472	1.221/	1.3903	1.5706
				Low F					
pwd	and the second			>>					
-cd Des	ktop								
pwd									
clc									
	nspace(0, pi	/2 10) 📮						
a = 11	inspace(0, pr)	2, 10							

TRANSPOSE OF A VECTOR

Introduction to Scientific and

Engineering

Computing, BIL108E

- a = [1 2 3 5 8 13] is a row vector.
- "[" and "]" used to define a vector.

To generate the column vector, transpose the vector.

b = [1 2 3 5 8 13], (') apostrophe is used to transpose vector a. Size of a is $1 \times n$

Size of b is $n \times 1$

In mathematics a column vector is shown as a^i and a row vector is shown as a_j . A matrix could be shown as a_{ij} , ora^i_i

SUBSCRIPT

Introduction to Scientific and Engineering Computing, BIL108E

rand(i,j) command is used for creating a random variable
matrix with values between 0 and 1.

a=rand(1,12) creates a 1x12 row vector.

a(3) gives the third element of the vector

a(3:5) gives the elements between 3 and 5

to

MATLAB Desktop

A			MATLAB 7.6.0 (R	2008a)			
Eile Edit Debug Desktop	Window Help						
🗋 🗃 🖉 👘 🛍 🤊 (°) 🌢			tory: /home/sept/Deskto	p 🔻 😢			
	Vorkspace	•+ □ * X	Command Window				-4
🗎 🖬 🗃 🐜 🌭 🖦 🔤 -	• Stack: Base 👻		New to MATLAB? Watch	atch this <u>Video</u> , see	Demos, or read (Setting Started.	
Name ∠ Value	Min	Мах	>> a = rand(1, 10)			
	0.90 0.0						
	0.91 0.1	0.9	a =				
⊞b 2 ⊞balance 2.8099e	2	2					
	+05 2.0	3	Columns 1	through 5			
	dou 2.2	5	Corumns 1	chi ougn 5			
Hrate 0.1200		0.1	0.8147	0.9058	0.1270	0.9134	0.6324
🖽 time 3	3	3	0.814/	0.9058	0.1270	0.9134	0.0324
· · · ·		12 1	C 1 C				
Command History	1	+ - * ×	Columns 6	through 10			
рма		-					
cd Desktop			0.0975	0.2785	0.5469	0.9575	0.9649
pwd							
-clc			>> a(3:4)				
a = linspace(0	ni/2 10	۱ I					
-clc	, p1/2, 10	,	ans =				
a = rand(1, 10)	1000	0.1270	0.9134			
a(3:4)							

BRANIE CANTON

Introduction to Scientific and Engineering Computing, BIL108E

A matrix is a rectangular array of numbers (multidimensional). In MATLAB, a two-dimensional matrix is defined by its number of rows and columns $(n \times m)$ or $(m \times n)$.

A matrix can be created like a vector.

Examples;

MATRIX

- a = [1 2 -1; 2 1 0]
- **b** = [2, 3, 1 ; 4, 2, 7]

A matrix can also be constructed from other matrices.

- \blacksquare c = [a , b]
- c = [a ; b]

MATLAB Desktop

Introduction to Scientific and Engineering Computing, BIL108E

Δ	MATLAB 7.6.0 (R2008a)									
<u>File E</u> dit De <u>b</u>	oug <u>D</u> esktop <u>W</u> indow	Help								
1 6 🕹	1 7 C 4 1 E	0 Curren	Direct	ory /home/sept/D	esktop 🖣	· 😢				
Current Director	Workspac	.e 🛏 🗆	× s	Command Wind	ow					** 🗆 🐔 🗡
🖲 📷 🐿 骗	🍓 🐻 🔝 - Stack:	Base 🕶		New to MATL	AB? Watch	this <u>Video</u> ,	see <u>Demos</u>	, or read G	etting Started.	×
Name ∠	Value	Min Max								-
🗄 a	[1,2,-1;2,1,0]	-1 2	-	>> c = [a	, b]					
🗄 ans	[0.1270,0.91									
1 b	[2,3,1;1,2,7]	1 7	-	c =						
balance		2.8 2.8	🏽							
L C	<4x3 double>			1	2		2	2		
∎r ∎rate	<49x49 dou			1 2	2 1	-1	2 1	3 2	1 7	
time	0.1200 3	0.1 0.1		2	1	0	1	2	1	
		10 10	•							
				>> c = [a	; b]					
Command Histo	огу	H 🗆	× 5							
	1/4 40		-	c =						
	and(1, 10)			8000						
-a(3:4))			1	2	-1				
clc				2	1	0				
a = [1	L 2 -1; 2 1 0]			2	-					
1322 C. 1	2, 3, 1; 1, 2,			2	2 1 3 2	1				
		1		1	2	7				
-c = [a			3320	10						
∽c = [a	a; b]		-	>>						
📣 Start				100						101

MATLAB Desktop

Introduction to Scientific and Engineering Eile Edit Debug Desktop Window Help Computing, 🎦 😅 🐇 🐚 🛅 🤊 (*) 🍓 📆 🗐 🕘 Current Directory: /home/sept/Desktop 👻 ... 😢 BIL108E Workspace 🗰 🖬 🛪 🗙 🛅 📷 🗃 🍇 🚵 🐻 🔤 🔹 Stack: 8 New to MATLAB? Watch this Video, see Demos, or read Getting Started. Name ∠ Value Min Max >> a = [1 2 -1; 2 1 0][1,2,-1;2,1,0] -1 2 Ha [0.1270,0.91... 0.1... 0.9... H ans Hb [2,3,1;1,2,7] 7 1 2.8099e+03 2.8... 2.8... Halance 2 -1 Hec 3 3 1 <49x49 dou... 2.2... 16... Hr 2 1 0 🗄 rate 0.1200 0.1... 0.1... **H**time 3 3 3 >> b = [2, 3, 1; 1, 2, 7] 12 • Command History × 5 🗆 +1 a = linspace(0, pi/2, 10)2 3 1 clc 1 2 7 a = rand(1, 10) a(3:4) >> clc a = [1 2 -1; 2 1 0]b = [2, 3, 1; 1, 2, 7]A Start

Capturing Output

Introduction to Scientific and Engineering Computing, BIL108E

diary FILENAME

It creates a file with the name *FILENAME* and appends all the output to this file till we end it with the command

diary off

VERTICAL MOTION UNDER GRAVITY

Introduction to Scientific and Engineering Computing, BIL108E

EXAMPLE: VERTICAL MOTION UNDER GRAVITY

If a stone is thrown vertically upward with an initial speed u its vertical displacement s after an elapsed time t is given by the formula $s = ut - gt^2/2$, where g is the acceleration due to gravity. Air resistance is ignored.

We would like to compute the value of s over a period of about 12.3 seconds at intervals of 0.1 seconds, and plot the distance versus time graph over this period.

VERTICAL MOTION UNDER GRAVITY

Introduction to Scientific and Engineering Computing, BIL108E

> % Assign the data (g, u, and t) to MATLAB variables % Calculate the value of s according to the formula % Plot the graph of s against t % Stop

VERTICAL MOTION UNDER GRAVITY

Introduction to Scientific and Engineering Computing, BIL108E

This plan may seem trivial and a waste of time to write down. Yet you would be surprised how many beginners, preferring to rush straight to the computer, start with step 2 instead of step 1. It is well worth developing the mental discipline of structure-planning your program first. You can even use cut and paste to plan as follows:

Introduction to Scientific and Engineering

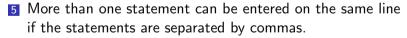
Computing, BIL108E

- **1** Type the structure plan into the Editor
- **2** Paste a second copy of the plan directly below the first.
- **3** Translate each line in the second copy into a MATLAB statement or statements
- Finally, paste all the translated MATLAB statements into the Command Window and run them
- 5 If necessary, go back to the Editor to make corrections

VERTICAL MOTION UNDER GRAVITY

Introduction to Scientific and Engineering Computing BIL108E

% Vertical motion under gravity $g = 9.81;$ % acceleration due
% to gravity
u = 60; % initial velocity in
% metres/sec
t = 0 : 0.1 : 12.3; % time in seconds
$s = u * t - g / 2 * t ^2; %$ vertical displacement
% in metres
<pre>plot(t, s), title('Vertical motion under gravity')</pre>
<pre>xlabel('time'), ylabel('vertical displacement')</pre>
grid
disp([t' s']) % display a table


VERTICAL MOTION UNDER GRAVITY

Introduction to Scientific and Engineering Computing, BIL108E

- **1** Anything in a line following the symbol % is ignored by MATLAB and may be used as a comment (description).
- **2** The statement t = 0: 0.1: 12.3 sets up a vector.
- **3** The formula for *s* is evaluated for every element of the vector t, making another vector.
- 4 The expression t.² squares each element in t. This is called an array operation and is different from squaring the vector itself.

VERTICAL MOTION UNDER GRAVITY

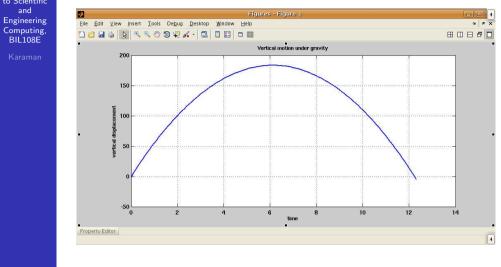
Introduction to Scientific and Engineering Computing, BIL108E

- 6 A statement or group of statements can be continued to the next line with an ellipsis of three or more dots (\ldots) .
- **7** The statement disp([t' s']) first transposes the row vectors t and s into two columns and constructs a matrix from them, which is then displayed.

VERTICAL MOTION UNDER GRAVITY

nd	M MATLAB 7,6,0 (R2008a)	
eering	Eile Edit Debug Desktop Window Help	1
uting,	🖺 😂 🐇 ங 🛍 🧐 帐 🎒 🗊 😰 🥥 Current Directory. /home/sept/Desktop 👻 😰	
108E	Current Directory Workspace 🗰 🖬 🛪 🗙 Command Window 🛶	1 7
man	🕲 📹 ங 💺 💺 📕 🖬 🔹 Stack: Base 🛩	
inan	Name \angle Value Min Max >> $g = 9.81;$	
	\blacksquare a $[1,2,-1;2,1,0]$ -1 2 \blacksquare $>>$ \parallel = 60.	
	\blacksquare ans [0.1270,0.91 0.1 0.9] $+ - 0 + 0 + 1 + 12 + 2$	
	B b [2,3,1;1,2,7] 1 7 >> t = 0 : 0.1 : 12.3; B balance 2.8099e+03 2.8 2.8 >> s = u * t − g / 2 * t .^2;	
	C <4x3 double> -1 7 ->> plot(t, s), title('Vertical motion under gravity')	
	g 9.8100 9.8 9.8 >> xlabel('time'), ylabel('vertical displacement')	
	Fr <49x49 dou 2.2 16	
	Herate 0.1200 0.1 0.1	
	<pre>////////////////////////////////////</pre>	
	Command History H C 2 X	
	q = 9.81;	
	u = 60;	
	t = 0; t = 0 : 0.1 : 12.3;	
	s = u * t - g / 2 * t .^2;	
	plot(t, s), title('Vertical m	
	-xlabel('time'), ylabel('verti	
	grid	

VERTICAL MOTION UNDER GRAVITY


Introduction to Scientific and Engineering Computing, BIL108E

Δ			MATLAB 7.6.0 (R2008a)
<u>Eile Edit Deb</u>	ug <u>D</u> esktop <u>W</u> indow	Help	
1 6 8 1	1 9 C A 2 2	Current Dire	rectory: /home/sept/Desktop 👻 😢
Current Directory	Workspa	ce ++ 🗆 a :	× Command Window ↔ □ ₹
10 mi 10 lii (👌 🐻 🔤 🔹 Stack:	Base 👻	New to MATLAB? Watch this <u>Video</u> , see <u>Demos</u> , or read <u>Getting Started</u> .
Name ∠	Value	Min Max	>> q = 9.81;
a	[1,2,-1;2,1,0]	-1 2	>> u = 60;
🗄 ans	[0.1270,0.91		
H b	[2,3,1;1,2,7]	1 7	>> $t = 0 : 0.1 : 12.3;$
🗄 balance	2.8099e+03	2.8 2.8	>> s = u * t - g / 2 * t .^2;
H c	<4x3 double>	-1 7	<pre>- >> plot(t, s), title('Vertical motion under gravity')</pre>
∃g	9.8100	9.8 9.8	<pre>>> xlabel('time'), ylabel('vertical displacement')</pre>
Br	<49x49 dou	2.2 16	>> grid
🗄 rate	0.1200	0.1 0.1	
1	1 101 1		<pre> * >> disp([t' s']) </pre>
Command Histo	iru	(50+	0 0
			0.1000 5.9509
u = 60			0.2000 11.8038
t = 0	: 0.1 : 12.3;		0.3000 17.5586
s = u	*t-a/2*	t.^2:	0.4000 23.2152
	, s), title('	and the second se	
10 10 000 000		and the second second second	
xlabel	('time'), yla	bel (verti	
grid			0.7000 39.5966
	t' s'])		0.8000 44.8608
disp()			

VERTICAL MOTION UNDER GRAVITY

Introduction to Scientifi<u>c</u>

Introduction to Scientific and Engineering Computing, BIL108E

References for Week 2

- **1** Brian Hahn, Daniel T.Valentine, Essential Matlab for Engineers and Scientists, Elsevier, 2010.
- 2 Misza Kalechman, Practical Matlab Basics for Engineers, CRC Press, 2009.