CHAPTER IX

STATISTICAL HYPOTHESES, HYPOTHESES TESTS (PARAMETERS)

EXERCISES IX

PROBLEM 1

It is required that the mean asphalt ratio in a construction material equals 5%. It is assumed that this ratio is normally distributed with a population standard deviation of 0,75%. In a small sample of three elements measured ratios are 4,2%, 4,7%, and 3,7%.

a) Can we assumed that the mean ratio equals 5%. ($\alpha = 0,1$)

b) Whether the ratio is significantly smaller than 5% or not?

c) Calculate the standard deviation of the measured values and solve the question (a) using t distribution.

d) Check if the measured standard deviation $\hat{S}_X = 0,005$ is significantly different from the population parameter $\sigma_X = 0,0075$. The variance has the X^2 distribution.

CHAPTER IX

STATISTICAL HYPOTHESES, HYPOTHESES TESTS (PARAMETERS)

EXERCISES IX

SOLUTIONS

09.04.2002

SOLUTION 1

a)

The mean asphalt ratio is distributed normally with the standard deviation,

 $\sigma_X \,/\, N^{1/2}$

N = 3, $\sigma_X = 0,0075$, and $\alpha = 0,1$

 $H_0: \mu_X = 5\%$ and $H_1: \mu_X \neq 5\%$

From the table $Z_{0,05} = 1,65$

The acceptance region:

 $b_{I} = \mu_{X} - Z_{0,05} * \sigma_{X} / N^{1/2}$ $b_{1} = 0,05 - 1,65 * 0,0075 / 3^{1/2}$ $b_{I} = 0,0429$ $b_{2} = \mu_{X} + Z_{0,05} * \sigma_{X} / N^{1/2}$ $b_{2} = 0,05 + 1,65 * 0,0075 / 3^{1/2}$

$b_2 = 0,0571$

The mean of the three measurements is:

 $x_{m} = (0,042 + 0,047 + 0,037) / 3$

$x_m = 0,042$

 $x_m = 0.042$, which lies outside this region. Therefore the hypothesis H_0 : $\mu_X = 5\%$ is rejected at 10% significance level.

b)

From the table $Z_{0,1} = 1,28$

The lower boundary of acceptance region is

 $b_I = \mu_X - Z_{0,05} * \sigma_X / N^{1/2}$ $b_1 = 0,05 - 1,28 * 0,0075 / 3^{1/2}$

 $b_1 = 0,04445$

Where $Z_{0,1} = 1,28$ is the standard normal variable with a probability of exceedance $\alpha = 0,1$. The measured mean $x_m = 0,042$ is smaller than 0,04445, and the hypothesis H_0 : $\mu_X = 5\%$ is again rejected (but now the hypothesis that is accepted is H_1 : $\mu_X < 5\%$).

c)

In the preceding tests it was assumed that the population standard deviation was known as $\sigma_X = 0,0075$

If this information was not given, we would have to work with the standard deviation of the measured values:

$$\hat{S}_X = \left[(0,042 - 0,042)^2 + (0,047 - 0,042)^2 + (0,037 - 0,042)^2 \right]^{0.5} / (3-1)^{0.5}$$

$\hat{S}_X = 0,005$

In this case the mean follows the t distribution. For $d_{c}f = N-1 = 3 - 1 = 2$ and $\alpha / 2 = 0,05$, the critical t value is read from the table as:

 $t_{0,05} = 2,92.$

The boundaries of the region of acceptance:

 $b_{I} = \mu_{X} - t_{0,05} * \hat{S}_{X} / N^{1/2}$ $b_{1} = 0,05 - 2,92 * 0,005 / 3^{1/2}$ $b_{I} = 0,0416$ $b_{2} = \mu_{X} + t_{0,05} * \hat{S}_{X} / N^{1/2}$ $b_{2} = 0,05 + 2,92 * 0,005 / 3^{1/2}$

$b_2 = 0,0584$

Now the mean of the measurements $X_m = 0,042$ is inside the acceptance region and the hypothesis H_0 : $\mu_X = 5\%$ is accepted. In small samples the acceptance region is wider when t distribution is used ($t_{0.05} = 2,92$ is much larger than $Z_{0.05} = 1,65$).

 $\hat{S}_X = 0,005, \, \sigma_X = 0,0075.$

For small samples the variance has the X^2 distribution with d.f. = N - 1 = 3 - 1 = 2 and for $\alpha = 0,1$, it can be read the critical values of X^2 from the table as $X_{0,95}^2 = 0,104$ and $X_{0,05}^2 = 5,991$. value is read from the table as:

The boundaries of the region of acceptance:

$$b_{1} = X^{2}_{0,05} * \sigma^{2}_{X} / (N - 1)$$

$$b_{1} = 0,104 * 0,0075^{2} / 2$$

$$b_{1} = 2,9 * 10^{-6}$$

$$b_{2} = X^{2}_{0,05} * \sigma^{2}_{X} / (N - 1)$$

$$b_{2} = 5,991 * 0,0075^{2} / 2$$

$$b_{2} = 168,5 * 10^{-6}$$

The measured variance is $\hat{S}_X^2 = 0,005^2 = 25 * 10^{-6}$, which is inside the region of acceptance. The hypothesis H₀: $\sigma_X^2 = 0,0075^2$ is accepted.

d)