CHAPTER IX

STATISTICAL HYPOTHESES, HYPOTHESES TESTS (PARAMETERS)

EXERCISES IX

PROBLEM 1

It is required that the mean asphalt ratio in a construction material equals 5%. It is assumed that this ratio is normally distributed with a population standard deviation of $0,75 \%$. In a small sample of three elements measured ratios are $4,2 \%, 4,7 \%$, and $3,7 \%$.
a) Can we assumed that the mean ratio equals 5%. $(\alpha=0,1)$
b) Whether the ratio is significantly smaller than 5% or not?
c) Calculate the standard deviation of the measured values and solve the question (a) using t distribution.
d) Check if the measured standard deviation $\hat{S}_{X}=0,005$ is significantly different from the population parameter $\sigma_{X}=0,0075$. The variance has the X^{2} distribution.

CHAPTER IX

STATISTICAL HYPOTHESES, HYPOTHESES TESTS (PARAMETERS)

EXERCISES IX

SOLUTION 1

a)

The mean asphalt ratio is distributed normally with the standard deviation,
$\sigma_{\mathrm{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{N}=3, \sigma_{\mathrm{X}}=0,0075$, and $\alpha=0,1$
$\mathrm{H}_{0}: \mu_{\mathrm{X}}=5 \%$ and $\mathrm{H}_{1}: \mu_{\mathrm{X}} \neq 5 \%$
From the table $\mathrm{Z}_{0,05}=1,65$
The acceptance region:
$b_{1}=\mu_{\mathrm{X}}-Z_{0,05} * \sigma_{\mathrm{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{b}_{1}=0,05-1,65 * 0,0075 / 3^{1 / 2}$
$b_{1}=0,0429$
$\boldsymbol{b}_{2}=\mu_{\mathbf{X}}+Z_{0,05} * \sigma_{\mathbf{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{b}_{2}=0,05+1,65 * 0,0075 / 3^{1 / 2}$
$b_{2}=0,0571$
The mean of the three measurements is:
$\mathrm{x}_{\mathrm{m}}=(0,042+0,047+0,037) / 3$
$x_{m}=0,042$
$x_{m}=0,042$, which lies outside this region. Therefore the hypothesis $H_{0}: \mu_{X}=5 \%$ is rejected at 10% significance level.
b)

From the table $Z_{0,1}=1,28$

The lower boundary of acceptance region is
$\boldsymbol{b}_{1}=\mu_{\mathrm{X}}-Z_{0,05} * \sigma_{\mathrm{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{b}_{1}=0,05-1,28 * 0,0075 / 3^{1 / 2}$
$b_{1}=0,04445$
Where $\mathrm{Z}_{0,1}=1,28$ is the standard normal variable with a probability of exceedance $\alpha=0,1$. The measured mean $\mathrm{x}_{\mathrm{m}}=0,042$ is smaller than 0,04445 , and the hypothesis $\mathrm{H}_{0}: \mu_{\mathrm{X}}=5 \%$ is again rejected (but now the hypothesis that is accepted is H_{1} : $\mu_{\mathrm{X}}<5 \%$).
c)

In the preceding tests it was assumed that the population standard deviation was known as $\sigma_{\mathrm{X}}=0,0075$

If this information was not given, we would have to work with the standard deviation of the measured values:
$\hat{S}_{X}=\left[(0,042-0,042)^{2}+(0,047-0,042)^{2}+(0,037-0,042)^{2}\right]^{0,5} /(3-1)^{0,5}$
$\hat{S}_{X}=0,005$
In this case the mean follows the t distribution. For $d . f$. $=\mathrm{N}-1=3-1=2$ and $\alpha / 2=0,05$, the critical t value is read from the table as:
$\mathrm{t}_{0,05}=2,92$.
The boundaries of the region of acceptance:
$\boldsymbol{b}_{1}=\mu_{\mathrm{X}}-\boldsymbol{t}_{0,05} * \hat{\boldsymbol{S}}_{X} / \mathbf{N}^{1 / 2}$
$\mathrm{b}_{1}=0,05-2,92 * 0,005 / 3^{1 / 2}$
$b_{1}=0,0416$
$\boldsymbol{b}_{2}=\mu_{\mathrm{X}}+\boldsymbol{t}_{0,05} * \hat{\boldsymbol{S}}_{X} / \mathbf{N}^{1 / 2}$
$\mathrm{b}_{2}=0,05+2,92 * 0,005 / 3^{1 / 2}$
$b_{2}=0,0584$
Now the mean of the measurements $X_{m}=0,042$ is inside the acceptance region and the hypothesis $\mathrm{H}_{0}: \mu_{\mathrm{X}}=5 \%$ is accepted. In small samples the acceptance region is wider when t distribution is used $\left(\mathrm{t}_{0,05}=2,92\right.$ is much larger than $\left.\mathrm{Z}_{0,05}=1,65\right)$.
d)
$\hat{S}_{X}=0,005, \sigma_{\mathrm{X}}=0,0075$.
For small samples the variance has the X^{2} distribution with d.f. $=\mathrm{N}-1=3-1=2$ and for $\alpha=$ 0,1 , it can be read the critical values of X^{2} from the table as $X^{2}{ }_{0,95}=0,104$ and $X^{2}{ }_{0,05}=5,991$. value is read from the table as:

The boundaries of the region of acceptance:
$\boldsymbol{b}_{1}=\boldsymbol{X}^{2}{ }_{0,05} * \sigma^{2}{ }_{\mathrm{X}} /(\mathbf{N}-\mathbf{1})$
$\mathrm{b}_{1}=0,104 * 0,0075^{2} / 2$
$b_{1}=2,9 * 10^{-6}$
$b_{2}=X^{2}{ }_{0,05} * \sigma^{2}{ }_{\mathrm{X}} /(\mathbf{N}-\mathbf{1})$
$\mathrm{b}_{2}=5,991 * 0,0075^{2} / 2$
$b_{2}=168,5 * 10^{-6}$

The measured variance is $\hat{S}_{X}^{2}=0,005^{2}=25 * 10^{-6}$, which is inside the region of acceptance. The hypothesis $\mathrm{H}_{0}: \sigma^{2}{ }_{x}=0,0075^{2}$ is accepted.

