CHAPTER VIII

SAMPLING DISTRIBUTIONS, ASYMPTOTIC AND EXACT SAMPLING DISTRIBUTIONS

PROBLEM 1

The BOD (biological oxygen demand) in a stream has the mean $\mathbf{9 0} \mathbf{~ m g} / \mathbf{l}$ and standard deviation $\mathbf{2 0} \mathbf{~ m g} / \mathbf{l}$. What is the probability that the annual mean BOD to be computed from $\mathbf{1 2}$ monthly samples will exceed $\mathbf{1 0 0} \mathbf{~ m g} / \mathbf{l}$?
a) Use the asymptotic sampling distribution.
b) Use the exact sampling distribution.

PROBLEM 2

The mean and the standard deviation of the breaking load in experiments performed on 25 concrete columns are found as $\mathbf{1 0} \mathbf{0 0 0} \mathbf{~ k g}$ and 500 kg , respectively. Find the confidence interval of the mean at $\mathbf{P c}=\mathbf{\% 9 0}$.
a) Use the asymptotic sampling distribution.
b) Use the exact sampling distribution.

CHAPTER VIII

SAMPLING DISTRIBUTIONS, ASYMPTOTIC AND EXACT SAMPLING DISTRIBUTIONS

EXERCISES VIII
SOLUTIONS
02.04.2002

SOLUTION 1

a)
$\sigma_{\mathbf{X m}}=\sigma_{\mathrm{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{N}=12$ and $\sigma_{\mathrm{X}}=20$
$\sigma_{\mathrm{Xm}}=20 / 12^{1 / 2}$
$\sigma_{X m}=5,77 \mathrm{mg} / \mathrm{l}$
$\mathbf{Z}=\left(\mathbf{X}-\mathbf{X}_{\mathrm{m}}\right) / \boldsymbol{\sigma}_{\mathrm{Xm}}$
$Z=(100-90) / 5,77$
$Z=1,732$
From the table the following probability is taken;
$P(\mathrm{X}>100)=F_{1}(\mathrm{Z})$
$P(\mathrm{X}>100)=F_{1}(1,732)$
$P(X>100)=0,042$
Thus the probability that the annual mean BOD to be calculated from samples recorded during 12 months is greater than $100 \mathrm{mg} / \mathrm{l}$ is 0,042
b)

Since the sample is a small one, it is preferred to use the t distribution instead of the normal distribution.
$\mathbf{t}=(\mathbf{X}-\mathbf{X m}) /\left(\sigma_{\mathbf{X}} / \mathbf{N}^{1 / 2}\right)$
$\mathrm{t}=(100-90) /\left(20 / 12^{1 / 2}\right)$
$t=1,732$
For $\mathrm{n}=\mathrm{N}-1=12-1=11$ from the table;
$\mathbf{P}(\mathrm{X}>100)=\mathbf{0 , 0 5 7}$
As it is seen; this value is greater than 0,042 calculated with the assumption of asymptotic normal distribution.

SOLUTION 2

a)
$\sigma_{\mathrm{Xm}}=\sigma_{\mathrm{X}} / \mathbf{N}^{1 / 2}$
$\mathrm{N}=25$ and $\sigma_{\mathrm{X}}=500$
$\sigma_{\mathrm{Xm}}=500 / 25^{1 / 2}$
$\sigma_{X m}=100 \mathrm{~kg}$
(1-Pc) / 2
$(1-\mathrm{Pc}) / 2=(1-0,9) / 2$
$(1-P c) / 2=0,05$
Can be read from the normal distribution table as;
$Z_{0,05}=1,645$
The confidence interval will be an interval around $\mathrm{X}_{\mathrm{m}}=10000$ with a width of $1,645 * \sigma_{\mathrm{Xm}}$ on both sides.
$b_{1}=X_{m}-Z_{0,05} * \sigma_{\mathrm{Xm}}$
$\mathrm{b}_{1}=10000-1,645 * 100$
$b_{1}=9835 \mathrm{~kg}$
$b_{2}=X_{m}+Z_{0,05} * \sigma_{\mathrm{Xm}}$
$\mathrm{b}_{2}=10000+1,645 * 100$
$b_{2}=10165 \mathrm{~kg}$
b)

Since the sample is a small one, it is more suitable to use the exact t distribution instead of the normal distribution. (For this it is necessary to assume that the breaking load is normally distributed)
$\sigma_{\mathrm{Xm}}=\sigma_{\mathrm{X}} /(\mathbf{N}-1)^{1 / 2}$
$\mathrm{N}=25$ and $\sigma_{\mathrm{X}}=500$
$\sigma_{\mathrm{Xm}}=500 /(25-1)^{1 / 2}$
$\sigma_{X m}=102 \mathrm{~kg}$
$\mathrm{n}=\mathbf{N}-1$
$\mathrm{n}=25-1$
$n=24$
(1-Pc) / 2
$(1-\mathrm{Pc}) / 2=(1-0,9) / 2$
$(1-P c) / 2=0,05$
Can be read from the table as;
$t_{0,05}=1,711$
Thus the limits of the confidence interval of the mean at $\% 90$ confidence level:
$b_{I}=X_{m}-t_{0,05} * \sigma_{\mathrm{Xm}}$
$\mathrm{b}_{1}=10000-1,711 * 102$
$b_{1}=9825 \mathrm{~kg}$
$b_{2}=X_{m}+t_{0,05} * \sigma_{\mathrm{Xm}}$
$\mathrm{b}_{2}=10000+1,711 * 102$
$b_{2}=10175 \mathrm{~kg}$

