Hydrostatic Pressure Forces

Exercise 1: Determine the horizontal and vertical forces acting on the surfaces below the joints (Computations will be made for the unit width of the wall).

Exercise 2: Show on the figure below, the horizontal and vertical forces acting on the surfaces $A B C D$ and ABCDE.

Exercise 3: Gate $A B$ shown in the figure below is 2 m wide and hinged at the point A. Determine the magnitude and direction of the force that is exerted at the point B in order to hold the gate closed for the cases listed below.

- Left and right parts are filled with water.
- Left and right parts are filled with oil $\left(\gamma_{o i l}=0.8 \mathrm{t} / \mathrm{m}^{3}\right)$.

Exercise 4: The gate $A B$ with a weigth of $40 t$, shown in the figure on the right, is 4 m wide and hinged at the point A.
Determine the maximum water height at the left side of the gate that will keep its lower edge at the point B.

Exercise 5: The gate $A B$, shown in the figure on the right, has a width of 5 m . It is hinged at the point B and is supported by the smooth wall at the point A.

- Determine the magnitude and application point of the resultant pressure force.
- Determine the reaction force at the point A.

Exercise 6: A cylindrical barrier blocks a certain volume of oil ($\gamma_{\text {oil }}=0.8 \mathrm{t} / \mathrm{m}^{3}$) as shown in the figure. Considering that the width of the cylinder is 1 m :

- Compute the vertical and horizontal components of the hydrostatic pressure force acting on the cylinder.
- Determine the resultant force and the coordinates of its application point relative to the point A.

Exercise 7: Determine the vertical and horizontal components of the hydrostatic force acting on the curved $A B C D$ surface shown in the figure below by taking its width as 3 m .

Exercise 8: Compute the components of the net force acting on the semicylindrical $A B C$ surface shown in the figure below. The width of the system is for a 5 m .

