Newton's Law of Viscosity \& Pressure Concept

Exercise 1: Compute the unit change in the volume of water, if $\mathrm{E}_{\text {water }}=2 \times 10^{4} \mathrm{~kg}_{f} / \mathrm{cm}^{2}$ and $\Delta \mathrm{P}=100 \mathrm{~atm}$. Can we conclude that water is an incompressible fluid?

Exercise 2 : In a fluid flow, a difference of $1.5 \mathrm{~cm} / \mathrm{s}$ is determined between the velocities of two consecutive layers which are 1 mm away from each other. The kinematic viscosity of the used fluid is $1 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Determine the shear stress between these two layers using both of the $\mathrm{MK}_{\mathrm{f}} \mathrm{S}$ and SI unit systems.

Exercise 3: A block with a weight of $50 \mathrm{~kg}_{\mathrm{f}}$ has a surface area of $0.2 \mathrm{~m}^{2}$. This block slides down an inclined, smooth plane as shown in the figure given below. Between the block and the smooth surface, there is a 0.003 mm -thick oil layer which causes the block to slide down with a constant velocity of $1.8 \mathrm{~m} / \mathrm{s}$. Determine the velocity profile of the oil layer and compute the dynamic viscosity of oil.

Exercise 4: In a fluid flow, the velocities of two layers -which are 1 cm away from each other- are 2 and $3 \mathrm{~cm} / \mathrm{s}$, respectively. Determine the value of the shear stress between these two layers by taking the specific weight of the fluid as $0.8 \mathrm{t} / \mathrm{m}^{3}$ and its kinematic viscosity as $1 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$.

Exercise 5 : The absolute vapor pressure of water at constant temperature is given as $0.23 \mathrm{t} / \mathrm{m}^{2}$. Compute the relative value of this pressure in $\mathrm{kg}_{\mathrm{f}} / \mathrm{cm}^{2}\left(\mathrm{P}_{\text {atm }}=1 \mathrm{~kg}_{\mathrm{f}} / \mathrm{cm}^{2}\right)$.

Exercise 6 : Compute the absolute and relative pressure values at a distance of 1 km from the sea surface, i.e. at a depth of 1000 m , by assuming that the specific weight of sea water is $1.02 \mathrm{t} / \mathrm{m}^{3}$.

Exercise 7 : A diver works at a depth of 25 m . Compute the pressure difference that this diver will be subjected by descending from the surface to the given depth $\left(\gamma_{\text {seawater }}=1025 \mathrm{~kg}_{\mathrm{f}} / \mathrm{m}^{3}\right)$.

Exercise 8 : Measurements made with a barometer indicated a height of 74 cm mercury at the foot of a mountain and 59 cm at its peak. Determine the height of this mountain ($\gamma_{\mathrm{air}}=1.27 \mathrm{~kg}_{\mathrm{f}} / \mathrm{m}^{3}$).

Exercise 9 : A cylinder, which has a mass of $0.20 \mathrm{~kg}_{\mathrm{f}} \mathrm{s}^{2} / \mathrm{m}$, slides down through a vertical pipe as shown in the figure given below. A thin oil layer is placed between the cylinder and the inner wall of the pipe. The vertical axes of the cylinder and the pipe are superposed.

- Determine the velocity gradient and the shear stress in the oil layer ($\left.\gamma_{\text {oil }}=820 \mathrm{~kg} / \mathrm{m}^{3} ; \nu_{0 i l}=6.10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)$.
- Determine the final (limit) value of the velocity that the cylinder can reach during its motion in the pipe by neglecting the effect of air pressure.

