Unit Systems \& Dimensional Homogeneity

Exercise 1: The specific weight of water, in the $\mathrm{MK}_{\mathrm{f}} S$ unit system, is given as $\gamma=1000 \mathrm{~kg}_{\mathrm{f}} / \mathrm{m}^{3}$.

- Find out the specific mass value of the water in the $M K_{f} S$ unit system.
- Determine the specific weight and the specific mass of water in the SI unit system.

Exercise 2: Determine the dimensions and units of the quantities given below, both in the $\mathrm{MK}_{\mathrm{f}} \mathrm{S}$ and SI unit systems.
Force, moment, tension, power, work, velocity, acceleration, specific weight, specific mass, dynamic viscosity, kinematic viscosity.

Exercise 3: The weight of oil, occupying a volume of 200 liters, is determined as $182 \mathrm{~kg}_{\mathrm{f}}$. Compute the mass, specific weight and the specific mass of the oil.

Exercise 4: Compute the specific mass and kinematic viscosity of the fluids with the given characteristics.

$\gamma_{\text {ether }}=720 \mathrm{~kg}_{\mathrm{f}} / \mathrm{m}^{3}$	$\mu_{\text {ether }}=23.3 \quad \mathrm{~kg}_{\mathrm{f}} \mathrm{s} / \mathrm{m}^{2}$
$\gamma_{\text {mercury }}=13546 \mathrm{~kg}_{\mathrm{f}} / \mathrm{m}^{3}$	$\mu_{\text {mercury }}=159 \quad \mathrm{~kg}_{\mathrm{f}} \mathrm{s} / \mathrm{m}^{2}$
$\gamma_{\text {glycerine }}=1260 \mathrm{~kg} / \mathrm{m}^{3}$	$\mu_{\mathrm{glycerine}}=81500 \mathrm{~kg}_{\mathrm{f}} \mathrm{s} / \mathrm{m}^{2}$

Exercise 5: The weight of a body is given as $1000 \mathrm{~kg}_{\mathrm{f}}$.

- Determine the mass of this body.
- Determine the weight of this body on the moon, if the standard gravitational acceleration of the moon is $g_{\text {moon }}=1.62 \mathrm{~m} / \mathrm{s}^{2}$.
- Compute for both cases, i.e. on the earth and on the moon, the acceleration that the body encounters when a horizontal force of $400 \mathrm{~kg}_{f}$ acts on the body.

Exercise 6: The volume of glycerin with a mass of 1200 kg is measured as $0.952 \mathrm{~m}^{3}$. Determine the weight, specific mass and the specific weight of the glycerin. Convert these values (which you have computed in the SI unit system) to the $\mathrm{MK}_{\mathrm{f}} \mathrm{S}$ unit system.

Exercise 7: A spherical particle, moving very slowly in a flow field, is subjected to a force given by the equation
$F=3 \pi \mu D V$
where μ is the dynamic viscosity of the fluid, D is the diameter and V is the velocity of the particle.

- Determine the dimension of the constant multiplier 3π.
- Determine if this equation is a dimensionally homogenous equation or not.

Exercise 8: Henry Darcy (1803-1858) found that the head (energy) loss in a pipe flow may be given by the equation

$$
h=f \frac{L}{D} \frac{V^{2}}{2 g}
$$

where h_{k} is the head loss, L is pipe length, D is the diameter of the pipe, f is the Darcy-Weisbach friction coefficient, V is the cross-sectional average velocity, and g is the gravitational acceleration. Determine if Darcy's equation is a dimensionally homogenous equation or not.

Exercise 9: In the British Unit System, the flow rate (discharge) through a spillway is given by the equation

$$
Q=3.09 B H^{3 / 2} .
$$

where $H[L]=f t$ is the water height over the spillway, $B[L]=f t$ is the width of the spillway, and $Q\left[L^{3} T^{-1}\right]=f t^{3} / s$ is the flow rate.

- Does the coefficient 3.09 have a dimension?
- Can we use this equation in a unit system other than the British Unit System?

$$
1 \mathrm{ft}=0.3048 \mathrm{~m} ; 1 \text { inch }=0.0254 \mathrm{~m}
$$

