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MODEL-BASED DESIGN AND IMPLEMENTATION
OF SCHEDULERS IN ARINC-664 END SYSTEM

AS A SYSTEM ON CHIP

SUMMARY

In the last decades, the amount of exchanged data between avionics systems is
tremendously increased. Traditional communication networks such as MILSTD-1553
and ARINC-429 cannot provide enough bandwidth for avionic systems. Instead,
ARINC-Specification 664 Part 7 (ARINC-664) is proposed for next-generation
aircraft.

ARINC-664 defines an Ethernet-based deterministic network protocol that provides
bounded delay and jitter using redundant communication among the avionics
applications. Achieving the end-to-end bounded delay objectives requires that
incoming Ethernet frames must be regulated according to the ARINC-664 standard.
In ARINC-664, each rate-constrained flow, i.e., Virtual Link (VL), is regulated by
using End Systems (ESs) and Bandwidth Allocation Gap (BAG). Each regulated VL
must be served at a time, so a scheduling mechanism must be used when more than
one queue is ready to be served. ARINC-664 standard does not specify the details of
the scheduling algorithm. However, some algorithms are proposed in the literature for
ARINC-664 scheduling.

Field Programmable Gate Array (FPGA) is one of the most preferred implementation
choices for ARINC-664 due to its low power consumption, low latency data transfer,
and security advantages. Traditional FPGA development requires building design
and verification with Hardware Description Languages (HDLs). Instead of this
time-consuming FPGA development, using a model-based hardware design enables
faster prototyping and testing environment.

In this thesis, first, a Single Queue model is designed and developed in Simulink to
provide a basic queueing infrastructure for ARINC-664 ES. Then, the ARINC-664 ES
model is developed on top of the Single Queue model. The scheduling algorithms
in ARINC-664 ES are designed and developed using HDL convertible components.
The Smallest BAG (SB), the Smallest Size (SS), the Longest Queue (LQ), and the
First-In-First-Out (FIFO) ARINC-664 ES scheduling algorithms are implemented.
This implementation allows collecting the mean, standard deviation, and maximum
of jitter performances of the scheduling algorithms. In addition, an ARINC-664 ES
Dynamic Scheduler model whose components can be converted to HDLs and C/C++
is built. This model contains all the scheduling algorithms, and the user can switch
among the scheduling algorithms while the model is operating.
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ARINC-664 UÇ SİSTEMİNDE ÇİZELGELEYİCİLERİN
MODEL TABANLI TASARIMI VE KIRMIK

ÜSTÜ SİSTEM UYGULAMASI

ÖZET

Birleşik aviyonik mimariler, yeni nesil uçaklarda aviyonik sistemlerin yüksek
miktardaki bilgi alışverişi gereksinimlerini karşılamakta yetersiz hale gelmiştir.
Alternatif olarak, ortak donanım ve yazılım modülleriyle paylaşılan bir bilgi
işlem platformu üzerinde farklı kritiklik seviyelerine sahip birden fazla aviyonik
uygulamasını barındıran Entegre Modüler Aviyonik (Integrated Modular Avionics
- IMA) mimarileri, yapısal boyut, ağırlık ve güç avantajları nedeniyle tercih
edilmektedir.

Ethernet tabanlı gerekirci ağ çözümleri çoğunlukla IMA mimarileri için yüksek hızlı
yerel alan ağı olarak kullanılır. ARINC 429 ve MIL-STD 1553 gibi haberleşme
standartları gerekirci yapıda olmalarına rağmen yeni nesil ağ sistemlerinin yüksek bant
genişliği gereksinimlerini karşılamakta yetersiz kalmaktadır. Son teknoloji Ethernet
tabanlı gerekirci ağ çözümlerine ARINC Spesifikasyonu 664 Bölüm 7 (ARINC-664),
IEEE Zamana Duyarlı Ağ Oluşturma (Time Sensitive Networks - TSN), Zaman
Tetiklemeli Ethernet (Time Triggered Ethernet - TTEthernet) ve Deterministik Ağ
Oluşturma (DetNet) örnek gösterilebilir.

Zaman kritik uygulamaların en temel özellikleri sınırlı gecikme (bounded delay),
düşük oranda bilgi kaybı (low data loss-rate) ve düşük seğirmedir (jitter). ARINC-664
her bir Ethernet paketinin transferi için sınırlı bant genişliği kullanarak sınırlı
gecikme ve düşük seğirme sağlar. ARINC-664 karmaşık bir zaman senkronizasyonu
mekanizması gerektirmez. Aynı zamanda, çakışmaya izin vermemesi, hata kaldırır
yapısı ve yedekli haberleşme topolojisi sayesinde düşük oranda bilgi kaybı sağlar.
Bütün bu özellikleri sayesinde ARINC-664 havacılıktaki zaman kritik sistemlerde
sıklıkla kullanılmaktadır.

ARINC-664 standardı, Airbus tarafından yeni nesil uçak veri ağı olarak geliştirilmiştir.
ARINC-664’te, her akışın, yani Sanal Bağlantı’nın (Virtual Link - VL) hızı
düzenlenmiş ve sınırlandırılmıştır. Bu sınırlama ve düzenleme Bant Genişliği Tahsis
Aralığı (Bandwidth Allocation Gap - BAG) konsepti ile Uç Sistemde (End System
- ES) sızdıran kova (leaky bucket) algoritması kullanılarak sağlanır. ARINC-664,
geleneksel ağ sistemlerinin aksine, bir Ethernet çerçevesinde Ortam Erişim Kontrolü
(Medium Access Control - MAC) hedef adresinde taşınan Sanal Bağlantı Kimliği’ni
(Virtual Link Identification - VL ID) kullanarak paketleri yönlendirir.

ARINC-664 Uç Sistem hem donanım hem de yazılım üzerine uygulanabilir bir
protokoldür. Alan Programlanabilir Kapı Dizileri (Field Programmable Gate Array
- FPGA) düşük güç tüketimi, düşük gecikmeli bilgi transferi ve güvenilirliği
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sebebiyle ARINC-664 Uç Sistem gerçeklemesi için uygundur. FPGA ile uygulama
geliştirirken en bilinen yaklaşım gerçeklenecek olan uygulamaların önce simülasyon
ve modellemelerinin tamamlanıp sonuçların elde edilmesi, daha sonra ise FPGA
implementasyonunun gerçeklenmesidir. Bu yaklaşımda, simülasyon ve modeller
sadece doğrulama ve onaylama amacıyla kullanılır. Bu yaklaşımın geliştirme süresi
ve iş gücü gereksinimi açısından verimli olmadığı açıktır. Alternatif yaklaşım,
simülasyon modelinden Donanım Tanımlama Dili’ne (HDL) ve yazılım koduna
doğrudan dönüştürmeye izin veren MATLAB Simulink programını kullanarak model
tabanlı bir sistem oluşturmaktır.

ARINC-664 Uç Sistemi’nin gönderici tarafında, Sanal Ağ kuyrukları (VL queues),
trafik şekillendirme (traffic shaping), çizelgeleyici (scheduling) ve trafik yedekleyicisi
(redundancy manager) ile alıcı tarafında tutarlılık sezgi programı (integrity checker)
ve fazlalık denetleyicisi (redundancy checker) fonksiyonları bulunmaktadır. Bu
çalışmada Sanal Ağ kuyrukları, trafik şekillendirme ve çizelgeleyici fonksiyonları
MATLAB Simulink üzerinde gerçeklenmiştir.

Kuyruk teorisi (queueing theory), kuyruktaki elemanların bekleme süresi sayısını
tahmin etmek amacıyla yaygın olarak kullanılmaktadır. Bu çalışmada, öncelikle,
kuyruk teorisinin temellerini esas alan tek bir kuyruk üreteci modeli MATLAB
Simulink üzerinde gerçeklenmiştir. Bu üretecin amacı ARINC-664 Uç Sistemi’nde
kullanılacak olan Sanal Ağ kuyruklarına Ethernet paketlerini yüklemektir. Model basit
bir servis edici ile yüklenen Ethernet paketlerinin servis edilmesini sağlamaktadır.
Bu modelin doğru çalışması ARINC-664 Uç Sistem modelinin doğru çalışması için
elzemdir. Bu sebeple bu modelden elde edilen sonuçlar kuyruk teorisinin teorik
sonuçları ile karşılaştırılmıştır ve kuyruk üreteci modelinin doğru bir şekilde çalıştığı
gözlemlenmiştir.

Tek bir kuyruk için hazırlanan kuyruk üreteci modeli kopyalanarak birden fazla
kuyruğa Ethernet paketlerini bağımsız olarak yükleyen bir sistem oluşturulmuştur.
Birden fazla kuyruğun Ethernet paketlerinin servis edilmesi için bir çizelgeleyici
uygulamasının oluşturulması gerekir. Bu amaçla içerisinde trafik düzenleyicisi ve
çizelgeleyici bulunduran bir trafik servis edici modeli MATLAB Simulink üzerinde
gerçeklenmiştir. Bu model donanım tanımlama dillerine dönüştürülebilir şekilde
oluşturulmuştur. Modelde 4 adet çizelgeleyici algoritması gerçeklenmiştir. Bu algo-
ritmalar En Küçük Bant Genişliği Tahsis Aralığı (Smallest BAG), İlk-Giren-İlk-Çıkar
(FIFO), En Küçük Paket (Smallest Size) ve En Uzun Kuyruk (Longest Queue) olarak
sıralanabilir.

Gecikme ve seğirme ağ sistemlerinin servis kalitesi (Quality of Service - QoS)
üzerinde çok önemli bir etkiye sahiptir. Çizelgeleyici algoritmalarının her biri
farklı karakteristiklere sahip olduğu için, bu algoritmaların gecikme sonuçları
birbirinden farklı olacaktır. Bu çalışmada çizelgeleyici algoritmalarının ARINC-664
Uç Sistemi’ndeki her bir kuyruk için seğirme ortalaması, standart sapması ve
maksimum seğirmenin hesaplanması amacıyla bir analiz modülü tasarlanmıştır. Bütün
bu tasarımlar ARINC-664 Uç Sistem modelini oluşturmaktadır.

Yukarıda bahsedilen ARINC-664 Uç Sistem modeli sekiz kuyruk için tasarlanmış ve
analiz sonuçları iki farklı konfigurasyon senaryosu için raporlanmıştır. Bu sonuçlar
incelendiğinde, her bir çizelgeleyici algoritmasının avantajları ve dezavantajları
olduğu görülür. Bu sebeple, kullanıcının sistem çalışırken çizelgeleyici algoritmaları
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arasında geçiş yapabilmesini sağlamak amacıyla bir dinamik çizelgeleyici modülü
tasarlanmıştır. Bu modül bütün çizelgeleyici algoritmalarını içermektedir ve
kullanılan algoritma analiz modülünden çıkan sonuçlara göre değiştirilebilir. Bu
modül de donanım tanımlama dillerine dönüştürülebilir olarak tasarlanmıştır. Daha
sonra, dinamik çizelgeleyici modülünün kendi kararlarını vererek algoritmalar
arasında geçiş yapabilmesini sağlamak amacıyla ARINC-664 Uç Sistemi modeli için
tasarlanan analiz modülü MATLAB Simulink ile C kodunda dönüştürülebilir hale
getirilmiştir. Dinamik sistem modelindeki donanıma tanımlama diline dönüştürülen
kodlar Programlanabilir Lojik (Programmable Logic - PL)’e, C koduna dönüştürülen
kodlar ise İşlemci Alt Sistem (Processor Subsystem - PS)’e gömülerek Gelişmiş
Genişletilebilir Arayüz (Advanced Extensible Interface - AXI) ve İki Kanallı Rastgele
Erişilebilir Bellek (Dual Port Block Random Access Memory - BRAM) ile birbirlerine
bağlanmıştır.

Tezin sonuçları çeşitli senaryolar için çizelgeleyici algoritmasının performanslarını
ve FPGA implementasyonu sonucunda oluşan kaynak kullanımlarını içermektedir.
Bu sonuçlar her çizelgeleyici uygulamasının avantajları ve dezavantajları olduğunu
göstermektedir. Aynı zamanda ARINC-664 Uç Sistem’in MATLAB Simulink ile
hızlı prototipleme ve test etmeye uygun olduğunu ve akıllı bir çizelgeleyiciye
sahip ARINC-664 Uç Sistemi’nin tasarlanabileceğini basit bir senaryo kullanarak
göstermiştir.
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1. INTRODUCTION

Federated avionics architectures have become insufficient to meet the tremendous

computing requirements of next-generation aircraft. Instead, Integrated Modular

Avionics (IMA) architectures [1] hosting multiple avionics applications of different

criticalities on a shared computing platform with common hardware and software

modules are preferred due to their inherent size, weight, and power (SWaP) advantages

[2].

Ethernet-based deterministic network solutions are primarily used as a high-speed

local area network for IMA systems. State-of-the-art Ethernet-based deterministic

network solutions include ARINC Specification 664 Part 7 (ARINC-664) [3], IEEE

Time-Sensitive Networking (TSN) [4], Time-Triggered Ethernet (TTEthernet) [5], and

IETF Deterministic Networking (DetNet) [6]. The essential necessities of time-critical

applications are bounded latency, low data loss rates, and low packet delay variation

(jitter). ARINC-664 provides bounded latency and jitter by using a limited band rate

for Ethernet frames. It does not require a complex time synchronization mechanism.

Also, it offers low data loss rates with its congestion-free, fault-tolerant, and redundant

communication topology. These features make ARINC-664 an excellent candidate for

time-critical avionic applications.

ARINC-664 standard is developed by Airbus as the next-generation aircraft data

network. In the ARINC-664, each rate-constrained flow, i.e., Virtual Link (VL),

is regulated by using the leaky bucket algorithm at End System (ES) with the

concept of Bandwidth Allocation Gap (BAG). Contrary to traditional network systems,

ARINC-664 routes packets using Virtual Link Identifier (VL ID), which is carried in

the Medium Access Control (MAC) destination address in an Ethernet frame.

ARINC-664 ES can be implemented in either hardware or software, where Field

Programmable Gate Array (FPGA) is a superior implementation choice due to its

low power consumption, low latency data transfer, and security [7]. However, an

FPGA-based design takes a significant effort, especially when several alternative

1



algorithms need to be compared and contrasted. The most common approach is to

perform the modeling and simulation studies before the FPGA implementation. In

this approach, the simulation models are solely used for validation and verification

purposes, and FPGA implementation needs to be done from scratch without reusing

the simulation model code. An alternative approach is to build a model-based system

using MATLAB Simulink, which allows direct conversion from the simulation model

to the Hardware Description Language (HDL) and software code.

1.1 Motivation

This study’s primary purposes are enabling fast hardware and embedded prototyping

with model-based system design and measuring ARINC-664 ES delay statistics for

various scheduling algorithms.

Delay is a critical Quality of Service (QoS) parameter in network systems, and

choosing the scheduling algorithm in a network system has a significant impact on this

parameter. Therefore, this study examines and compares the delay performance of four

ARINC-664 ES scheduling algorithms. An ARINC-664 ES model and a simulation

environment must be built to achieve this. Using a discrete event simulator is a good

choice for building such a system.

MATLAB Simulink, for such purpose, provides fast prototyping and easy

implementation with extensive Simulink libraries. Also, designers can easily manage

the verification, validation, and requirement tracking of hardware and software models

using Simulink libraries. Another essential property of MATLAB Simulink is that the

built models can be converted to HDL and C codes by using MATLAB HDL Coder and

MATLAB Embedded Coder. Due to these advantages, MATLAB Simulink is selected

for implementing the ARINC-664 ES model.

In this thesis, first, MATLAB Simulink models for general purpose D/D/1 and

M/D/1 queues are built and their latency performances are calculated and theoretically

verified. These models are extended to build an HDL convertible ARINC-664 ES

model with various scheduling algorithms such as the Smallest BAG (SB), Longest

Queue (LQ), Smallest Size (SS), and First-In-First-Out (FIFO). Finally, an advanced

2



ARINC-664 ES model, which provides an infrastructure for dynamically switching

among different scheduling algorithms in run-time, is presented.

1.2 Contribution

The first contribution of this thesis is to build a model-based simulation design of

ARINC-664 ES traffic regulator and generate the necessary HDL and C codes for a

System on Chip (SoC) implementation from this simulation design rather than using

traditional methods, i.e., building the entire design from scratch. To the best of our

knowledge, there is no other model-based SoC implementation of ARINC-664 ES

traffic regulator in the literature.

The second contribution is to measure the mean, standard deviation and maximum of

jitter of various scheduling algorithms for ARINC-664 ES and compare the results.

In this regard, the SB, SS, LQ, and FIFO algorithms are implemented, and their

performances are compared.

The third and last contribution is to build a dynamic scheduler for ARINC-664 ES. In

the dynamic scheduler, the user can switch among the scheduling algorithms during

run time based on the outcomes of the statistical performance. Dynamic scheduler

consists of simulation modules that include network traffic generators, Programmable

Logic (PL) implementation, including traffic shaper and scheduling algorithms, and

Processing Subsystem (PS) implementation, which provides statistic calculators.

1.3 Organization of Thesis

This thesis is organized into seven chapters, including the Introduction chapter.

Chapter 2 gives detailed information about ARINC-664, queueing theory, scheduling,

and tools used in this thesis. Chapter 3 reviews the literature by examining similar

works in this field. Chapter 4 presents the Simulink-based Single Queue model

and ARINC-664 ES model with various scheduling algorithms. Chapter 5 presents

the details of the ARINC-664 ES Dynamic Scheduler model. Chapter 6 presents

the theoretical simulation and implementation results for each scheduling algorithm.

Finally, Chapter 7 concludes the thesis.
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2. BACKGROUND

In this chapter, first, the concepts of ARINC-664 are explained. Second, queueing

theory and its basic concepts are presented. Third, the general and ARINC-664

ES-specific scheduling algorithms are overviewed. Finally, the related tools are

explained.

2.1 ARINC-664

Recently, the necessity for reliable and predictable network services in many industries

has emerged. Deterministic networks provide solutions to these necessities with

bounded latency on a per-deterministic-flow basis and guaranteed low delay variation

(jitter) on each flow. Deterministic networks are mainly used in real-time applications,

video streaming, avionics, and automation technologies.

The amount of data that needs to be transferred in avionics systems increases day

by day. Due to their low bandwidth, traditional deterministic network protocols

such as MIL-STD-1553 and ARINC-429 cannot manage this increase. Some

of the State-of-the-art deterministic network protocols are TTEthernet, TSN, and

ARINC-664.

ARINC-664, also known as Avionics Full-Duplex Switched Ethernet (AFDX), is a

safety-critical avionics network communication protocol that guarantees a bounded

end-to-end delay and jitter, provides redundancy and QoS. There are three main

elements in the ARINC-664 network: VL, ES, and Switch.

ARINC-664 is a fault-tolerant deterministic network protocol. It provides redundant

communication on both the network and node levels. An example network topology

with redundant communication of ARINC-664 is shown in Fig. 2.1. End System 1

and End System 2 communicate through Switch A and Switch B in this topology. An

End System sends the same frame to Switch A and Switch B to ensure that if one of

the Switches fails, the other can still complete the transfer.
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Figure 2.1 : ARINC-664 network topology with redundant communication.

2.1.1 Virtual link

In ARINC-664, frames are exchanged through unidirectional connection from one

source to one or more destinations using logical communication channels called VLs.

Each frame has a 16-bit unique VL ID that can be used to transfer incoming traffic

flow to its logically separated VL queue. VL ID information is stored in the destination

address of the MAC. The maximum number of VLs that each ES can use is 128. A

general structure of ARINC-664 frames is shown in Fig. 2.2.

Figure 2.2 : ARINC-664 frame structure.

Each VL’s minimum and maximum frame size is determined by the Lmin and Lmax

parameters, respectively. Lmin limits the smallest and Lmax limits the largest Ethernet

frame size that can be transmitted over the corresponding VL. In ARINC-664, each

VL has a BAG parameter. BAG parameter specifies the frequency of transmission and

smooths the burst frame traffic by using the leaky bucket algorithm for each queue.

AG parameters are set as the multiple of two from 1 millisecond (ms) to 128 ms (1, 2,

4, ... 128 ms). Fig. 2.3 demonstrates how the traffic shaping regulates the unregulated

incoming traffic using the BAG parameter for a single queue, i.e., VL.
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Figure 2.3 : Working principle of traffic shaping for a single queue.

2.1.2 End system

ARINC-664 ES is one of the main components of the ARINC-664 network protocol.

ESs exchange data between each other through Switches. ESs aim to guarantee secure

and reliable data exchanges to the partition software. Each ES incorporates traffic

shaping and scheduling mechanisms to ensure that the bandwidth utilization of each

traffic flow conforms with its contracted limit and that each frame is delivered to the

transmission medium in a timely fashion, respectively. ARINC-664 ES consists of

two parts, the receiver and transmitter. The main elements of the transmitter are the

VL FIFOs, Traffic Regulator, and Redundancy Manager, while the main elements of

the receiver are the Integrity Checker and Redundancy Checker. In the transmitter,

incoming Ethernet frames from the upper layer are stored in distinct VL FIFOs

(queues) based on their VL IDs. Traffic Regulator regulates incoming Ethernet frames

for each queue. Redundancy Manager duplicates Ethernet frames to provide reliable

communication. It also tags the order of each Ethernet frame with a sequence number.

This number can be between 0 and 255. In the receiver, the Integrity Checker module

checks the sequence number of each Ethernet frame to ensure that the incoming frames

are properly ordered, and the Redundancy Checker module allows the first arriving

frame among duplicated frames and drops the other one. Then, the frames are sent to
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the upper layer. The structure of the ARINC-664 ES transmitter is shown in Fig. 2.4

and the structure of the ARINC-664 ES receiver is shown in Fig. 2.5.

Figure 2.4 : Structure of the ARINC-664 ES transmitter.

Figure 2.5 : Structure of the ARINC-664 ES receiver.

The ideal behavior of Fig. 2.3 cannot be achieved since ARINC-664 ES has multiple

VLs served over only one output link (i.e., server). Considering that there are multiple

VL queues and more than one queue can have frames ready to be served, a scheduler

mechanism must be used to decide which queue to be served next. The scheduling

algorithm results in the jitter, and the objective is to utilize a scheduling algorithm that

can yield a minimum jitter. Fig. 2.6 demonstrates the concept of jitter in ARINC-664

ES.

Figure 2.6 : The demonstration of jitter as a result of the scheduling conflict.
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2.1.3 Switch

ARINC-664 Switch is one of the main components of the ARINC-664 network

protocol. Each Switch is responsible for forwarding the incoming VL frames to their

destination ports while enforcing timing, filtering, and policy requirements, limiting

fault propagation, and ensuring time determinism. The filtering function is responsible

for dropping the invalid frames that are corrupted or whose size is not in the Lmin -

Lmax range of the corresponding VL. The policing function is responsible for applying

the frame-based or byte-based token bucket algorithm to guarantee that any of the

frames that violate the allocated bandwidth will be dropped. The forwarding function

is responsible for directing the incoming frames to the corresponding destination ports

according to the configuration table.

2.2 Queueing Theory

Network applications require complex queues with various algorithms. However,

simplifying the application is beneficial when the aim is to analyze a complex queue

[8]. The queueing theory aims to analyze queue systems. A commonly used notation

for queue systems is called Kendall notation [9]. In this notation, arrival process,

service distribution, number of servers, and the buffer size can be notated as follows:

[arrival process]/[service distribution]/[number of servers]/[buffer size]-[queue disci-

pline]

The arrival process defines how an independent source loads the queue, and service

distribution defines the policy for serving queues. The most common notations

for arrival process and service distribution are M, D, and G. M defines the

Markovian-Poisson or exponential process, D defines the deterministic process, and

G defines the general process. The number of servers defines how many servers exist

to serve the queue s. Buffer size defines the number of buffer spaces available in

the queues. If no value is specified, the buffers are assumed unlimited. Scheduling

policy defines the deciding mechanism of which queue to serve next. Queue discipline

defines the serving order, e.g. FIFO, LIFO, and Processor Sharing. Fig. 2.7 represents

a queueing system. In the figure, enqueuing means filling the queue and dequeuing

emptying the queue. An important queueing system parameter is utilization, denoted
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Figure 2.7 : Queueing system.

as U. Utilization can be defined as the number of busy servers divided by the total

servers for a simulation time. In the case of a single server, it can be defined as the

amount of time the server is busy divided by the entire simulation time. From the user’s

perspective, higher utilization means better performance. Let µ denote the service rate,

and λ denote the arrival rate. If

µ > λ (2.1)

the queue is stable. However, if

µ < λ (2.2)

the queue will overflow eventually; hence, it is not stable. Utilization can be defined

as

U = µ/λ (2.3)

Another important queueing system parameter is Little’s Formula. It is used for

predicting the average number of items in a stationary queueing system. The definition

of this formula is

L = λ ·W (2.4)

where L defines the number of items in a queue, and W defines the average waiting

time an item spends in the queueing system.

Example simulation tables for two Kendall notations are set below. Table 2.1 shows

an example queueing scenario for a D/D/1 queue. This notation means the arrival

rate and the service rate of the queueing system are deterministic. Table 2.2 shows an

example queueing scenario for an M/D/1 queue. This notation means that the arrival

rate of the queueing system is exponential, and the service rate of the queueing system

is deterministic. In each notation, the buffer is unlimited, and there is only a single

server; hence there is no scheduling policy. These tables will be used to verify the

queueing systems in the next chapters.
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Table 2.1 : Simulation table for a D/D/1 queue [8].

Arrival
Time

Service
Duration

Queue Size
on Arrival

Service
Starts

Service
Ends

Delay

1 4 0 1 5 4
5 4 0 5 9 4
9 4 0 9 13 4

13 4 0 13 17 4
17 4 0 17 21 4
21 4 0 21 25 4

Table 2.2 : Simulation table for an M/D/1 queue [8].

Arrival
Time

Service
Duration

Queue Size
on Arrival

Service
Starts

Service
Ends

Delay

1 4 0 1 5 4
3 4 1 5 9 6
4 4 2 9 13 9

12 4 1 13 17 5
17 4 0 17 21 4
18 4 1 21 25 7

2.3 Scheduling

Scheduling is a crucial concept to improve the Quality of Service (QoS) in many

applications. Generally, a scheduling policy aims to reduce and bound jitter. It also

can aim at fairness (e.g., Jain’s index [10]) or maximizing the throughput. Some

traditional scheduling algorithms are the FIFO Scheduling, Earliest Deadline First

(EDF) Scheduling, Shortest-Job-Next Scheduling, and Round Robin (RR) scheduling.

Generalized Processor Sharing (GPS) [11] behavior is an ideal approach to provide

fair scheduling in network systems. Even though GPS has an ideal behavior, it is not

implementable since multiple queues are ready to be served, but only one server serves

them. Instead, GPS-like approaches have been proposed by researchers in recent years.

Some implementable fair queueing based scheduling algorithms are Weighted Fair

Queueing (WFQ) [12], Weighted Round Robin (WRR) [13], and Worst-Case Weighted

Fair Queueing+ (WF2Q+) [14], [15]. WRR is an extension of the well-known RR

scheduling algorithm, which rounds each queue from top to bottom or bottom to top.

11



It differs from RR with the ability to assign different frame weights to different queues.

An alternative approach to WRR is Deficit Round Robin (DRR) algorithm. Contrary

to WRR, DRR assigns byte-based weight, i.e., quantum value, to each queue.

A relatively new defined scheduling algorithm concept is virtual clock-based

scheduling. In literature, there are many virtual clock-based scheduling [16]. Among

them, WF2Q+, an extension of the Worst-Case Weighted Fair Queueing (WF2Q), is

the most popular scheduling algorithm.

Fair queueing algorithms are considered to be useful in next-generation mixed-critical

ARINC-664 Switch technologies. [17] suggests that complex scheduling algorithms

can be considered in mixed-critical applications and [18] proposes a hierarchical

scheduling structure including Strict Priority (SP) and WF2Q+. Fair queueing

scheduling algorithms are beneficial for improving the QoS of network systems.

However, these algorithms are not suitable to the ARINC-664 ES because the BAG

parameter regulates the incoming Ethernet traffic; in other words, the BAG parameter

assigns weights for each queue. ARINC-664 standard does not specify any scheduling

algorithm. However, there are some studies for possible scheduling algorithms in

ARINC-664 ES. These algorithms are the RR, SB, FIFO, SS, and LQ.

The RR is a common scheduling algorithm. It chooses a VL to serve among all the VLs

in some rational order, usually from top to bottom and then starting again at the top.

The Smallest BAG scheduling algorithm serves the VL with the smallest BAG value

among all VLs. In the ARINC-664 standard, there are eight possible BAG parameters

for each queue. So, some of the VLs can have the same priority in the case of multiple

VLs. The FIFO algorithm serves the VL whose Head Of Line (HoL) arrival time is

the smallest among all the queues. Under unregulated Ethernet traffic, this algorithm

does not specify any priority or pattern among queues. The SS algorithm serves the

VL whose HoL frame is among all VLs. The LQ algorithm serves the VL with the

highest number of bytes among all VLs.
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2.4 Related Tools

MATLAB [19] is a numeric computing and programming platform for engineers and

scientists. It performs complex mathematical computations and provides extensive

libraries with a model-based design environment. Also, MATLAB offers many

products for converting hardware or software systems, such as Embedded Coder,

C/C++ Converter, Xilinx Model Composer, and HDL Coder.

Simulink [20] is a MATLAB-based graphical programming environment for

simulating, modeling, and analyzing systems. It is used in many fields, such as digital

signal processing and control theory. It offers many libraries and tools for several

development environments; some can operate with other third-party tools. Simulink

provides state machine templates, large libraries, functions, and requirement tracker

tools to evaluate performance, create design tests, and build prototypes.

Building a Register Transfer Level (RTL) design with traditional methods consumes a

lot of time, and a verification environment must be created from the earliest stages to

ensure that system works properly. MATLAB HDL Coder [21] is an alternative RTL

development method to avoid the drawbacks of traditional RTL design developments

with HDLs [22], [23]. It generates synthesizable Very High Speed Integrated Circuit

Hardware Description Language (VHDL) or Verilog HDL files using Simulink blocks

and MATLAB functions. MATLAB HDL Coder can generate HDL codes with or

without clock enable, synchronous and asynchronous reset. A designer can select the

target device and operation frequency. It also proposes more complex options such as

pipelining.

MATLAB Embedded Coder [24] generates readable C/C++ codes for embedded

processors of various device vendors such as ARM, Intel, and STMicroelectronics.

The user can aim to be efficient, whether in memory or speed usage. Generated C codes

contain necessary header files, Simulink function files, and a main file. The main file is

called "ert_main.c". Ert is the abbreviation of "Embedded Real-Time". This main

function has three subfunctions: Initialize, OneStep, and Terminate. The Initialize

function assigns the initial value of all the parameters of the C code. The OneStep

function executes, and the Terminate function terminates the Simulink model. Fig.
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2.8 shows the working principle of MATLAB HDL Coder and MATLAB Embedded

Coder.

Figure 2.8 : Working principle of MATLAB HDL Coder and Embedded Coder.

Vivado Design Suite [25] is a software program produced by Xilinx for simulation,

synthesis, and implementation of HDL based designs on FPGA. On top of that, Vivado

offers a C-based High Level Synthesis (HLS) platform and an SoC development

environment. The first version of Vivado, the sequel to ISE, was released on April

2012. Vivado can be used in both Graphical User Interface (GUI) and batch mode

with Tool command language (Tcl). It supports 7 Series or newer FPGAs.

Xilinx Software Development Kit (SDK) [26] is an Eclipse-based Integrated Design

Environment (IDE) for programming Xilinx’s embedded processors such as Zynq

devices and Microblaze softcore. Xilinx SDK works integrated with Xilinx Vivado. It

provides Board Support Package (BSP) libraries that can control custom RTL designs

and Xilinx Intellectual Property (IP) cores. Also, it brings together homogenous and

heterogeneous multi-processor designs.
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3. LITERATURE REVIEW

Many works are related to MATLAB HDL Coder and Embedded Coder, ARINC-664

simulation and hardware implementation, and performance evaluation of ARINC-664

scheduling algorithms in the literature. In this chapter, these works are reviewed.

3.1 MATLAB HDL Coder and Embedded Coder Applications

In literature, Simulink, Embedded Coder, and HDL Coder are widely used in many

applications such as image and video processing [27], controlling of power systems

[28] and machine learning [29].

A Wireless Communication SoC with both hand-written HDL code and MATLAB

HDL Coder is built in [30]. Then, the utilization results are compared, and the code

readability and development time is examined. This work shows that MATLAB HDL

Coder spends fewer resources, its code is readable if the designer respects the concepts

of the tool, and less time in development was spent than hand-written code.

Digital filter systems are built using three methods including hand-written RTL

code, Vivado High Level Synthesis (HLS), and MATLAB HDL Coder, and their

performances are compared in several aspects such as area optimization, latency,

throughput optimization, and timing optimization in [31]. This work claims that HLS

in FPGA development decreases the amount of time spent on product development

cycles. It also claims that the area, throughput, latency, and timing objectives could

be met easier with Vivado HLS compared to MATLAB HDL Coder. In addition,

it is mentioned that the MATLAB Simulink environment provides many graphical

libraries and block diagrams, especially in the field of control, signal processing, image

processing, etc.

MATLAB codes are converted to C by using MATLAB Embedded Coder in [32].

Then, the pros and cons of Embedded Coder are stated. Generally, the pros are that the
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structure of the code is good, and variables and comments are placed correctly. The

cons are that some names are strange, and the code readability is not very good.

3.2 Model-Based ARINC-664 Design

In [33], a model-based ARINC-664 simulation environment is built to measure

the performance of the network system under various traffic situations by using

OMNET++, a discrete event simulator. This work presents the worst-case end-to-end

delay results of the ARINC-664 network. However, this work only builds the model

for simulation purposes.

Modeling and simulation of the ARINC-664 network system is built by using OPNET

in [34]. It builds the ES and Switch components of the ARINC-664 and simulates

and compares the end-to-end delay, delay jitter, and packet loss rate results of the

ARINC-664 network with traditional Ethernet. The results show that the ARINC-664

provides better performance. However, this work only builds the model for simulation

purposes.

3.3 FPGA Implementation of Scheduler Algorithms and ARINC-664

The FPGA is claimed to be a good choice for implementing scheduling algorithms

in [35] due to its high speed and reconfigurability. Then, it sorts some scheduling

approaches according to some parameters such as simulation delay, resource

utilization, and arbitration completion speed. In conclusion, this work represents a

positive attitude about the FPGA development of scheduling algorithms in network

switches. However, it states that more research is necessary in this field.

An FPGA-based dynamic scheduling system is presented in [36]. The presented

system is capable of switching among Deficit Weighted Round Robin (DWRR) and

WF2Q+ scheduling algorithms by using partial reconfiguration. This research claims

that switching time in partial reconfiguration, which is a critical parameter for these

systems to work efficiently, is negligible for both algorithms. Also, FPGA resources

for both algorithms are presented.

Moving the software components of ARINC-664 to FPGA to mitigate the possible

Single Event Upset (SEU) situations is aimed in [37]. This work concludes that
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the FPGA is a good candidate for ARINC-664 implementation. It also declares that

sampling queues are easier to implement in FPGA, and FPGA can provide robustness

against SEU problems.

ARINC-664 ES is implemented on FPGA in [38]. It provides the architecture details

and resource utilization on both transmitter and receiver. Also, it provides the details

of Direct Memory Access (DMA) technology and Peripheral Component Interface

Express (PCIe), which are used for full-duplex data transferring between software

and hardware. Then, it represents a reconfigurable system that can switch the BAG

parameter of each VL via PCIe in run-time.

The possible ARINC-664 implementation solutions are discussed in [7];

processor-centric and hardware-centric. The entire design, except the physical

interfaces, is located in Processing Subsystem (PS) in the processor-centric solution.

The ARINC-664 protocol is implemented in the hardware below the Internet Protocol

Layer (IP Layer), while the IP layer and above was implemented in the embedded

processor in the hardware-centric solution. Also, it provides some suggestions for

DO-254 and ARINC-664 approaches and briefly explains the concepts of ARINC-664

and similar network protocols.

3.4 ARINC-664 Scheduling Performance Analysis

ARINC-664 jitter and delay performance are evaluated in both ES and network domain

under different scheduling and shaping algorithms and topologies [39], [40], [41].

In [42], the jitter-EDD(Earliest-Due-Date)’s scheduling algorithm is used in both

source and destination hosts to provide a more reliable network system for aircraft.

A simulation scenario with SimEvents, a MATLAB application for building discrete

event simulators [43] is used, which includes 9 Switches and 13 ESs. This work shows

that the end-to-end delay is much smaller with the jitter-EDD mechanism.

The performance of ARINC-664 ES scheduling algorithms (RR, SB, LQ, SS, and

FIFO) on the ARINC-664 network are examined in [44]. Simulations are run on

OMNET++. The maximum jitter, mean jitter, and the percentage of frames whose

jitter is more than 500 microseconds (us) are presented in this research. The results

show that the LQ and FIFO algorithm has the best performance in terms of low jitter.
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Therefore, this research suggests the FIFO and LQ as the best scheduling algorithms

in ARINC-664 ES.

A new shaping methodology for the FIFO scheduling algorithm, which provides

uniform delay, is offered in [45]. This work claims that delay jitter significantly

decreases, but the delay slightly increases on the low priority. This work has proved

that this method will drastically reduce delay jitter with a slight increase of delay on

the low priority queues.

In [46], BAG-based and rate-based scheduling algorithms are compared using the

Network Calculus and Response Time Analysis. An example configuration scenario is

set based on 4 VLs, and the results for the mean, standard deviation, and distributions

of jitter are presented. This research claims that BAG-based scheduling is the optimal

scheduling policy for ARINC-664 ES.

The SS algorithm, i.e., Smallest Frame Earliest (SFE) algorithm, is examined and

compared with Largest Frame Earliest (LFE) and random priority assignment in [47].

It theoretically proves that the SFE provides the minimum average jitter using a 4 VL

scenario.
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4. END SYSTEM SCHEDULER MODELS

Since time-to-market is an important objective, developers need powerful tools for the

rapid prototyping of highly complex systems. Model-based system design is presented

as a solution for rapid prototyping of the ARINC-664 ES.

In this chapter, first, the Single Queue model built using MATLAB Simulink is

described. Then, the structure of the ARINC-664 ES model is described.

4.1 Single Queue Model

As described in Chapter 2, simplifying a queue-based system allows queuing theory

to be used to analyze that system. To fulfill this purpose, in this section, a Simulink

model of a Single Queue system that is responsible for generating, storing, and serving

Ethernet frames with varying lengths and data rates is presented. Fig. 4.1 demonstrates

the architecture of this model consisting of the Loader, Memory, Server, and Analysis

modules.

Figure 4.1 : Simulink model of the Singe Queue.
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The Loader, Memory, and Analysis modules are used solely for simulation purposes,

whereas the Server module is used for the FPGA implementation. The primary

purpose of this model is to verify the Loader module in prior because the ARINC-664

ES model is more complex and hard to verify. Considering that the Loader module will

be used for feeding the queues to evaluate the performance of the hardware convertible

scheduling algorithms, it is clear that the proper functioning of this module is of great

importance. In the Loader module, the MessageGeneratorTrigger block determines

the message generation time according to the traffic model. This block can generate

frames in the deterministic or exponential arriving processes. The MessageGenerator

block creates ARINC-664 frames, which contain VL ID information in its MAC

destination and the length information at the beginning of the frame. The Message

Loader loads Ethernet frames to the memory emulating FIFO by sending 1 byte at

each step. The SchedulerServer block in the Server module is responsible for serving

Ethernet frames using the link capacity information. This block, first, reads the length

information at the beginning of the frame and then reads 1 byte at each step until

the entire frame is read. The service rate of the SchedulerServer block is 1 Gbit/s.

The moments that events occurred are stored in the Analysis module to calculate

performance measures at the end of the simulation.

Experiments are performed for D/D/1 and M/D/1 queuing models, and the simulation

model results are compared with theoretical calculations of the queuing theory by

using Table 2.1 and Table 2.2. In the Analysis module of the Single Queue model,

the aim is to calculate the mean jitter values of each queue. The jitter value must

be calculated for each frame of each queue to achieve this. Storing each arrival and

departure time of frames for jitter measurement is not applicable because it would

require excessive memory usage and downgrade the simulation speed. Instead, service

time can be subtracted from the arrival time for each frame, and the mean value of these

subtractions can be considered as the mean jitter. Even though this method works for

D/D/1 queues, two or more frames can arrive before any of them is served in case of

an M/D/1 queue. So, the subtraction operation in run-time is also not implementable

for M/D/1 queues.

An alternative approach to performing both D/D/1 and M/D/1 measurements is

to calculate the average jitter of arrival time and average jitter of service time
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independently at run-time. These two values are subtracted from each other at the end

of the simulation to find the minimum jitter. The formula for mean jitter calculation is

shown below:

E[U ] = E[Y ]−E[X ] (4.1)

where U denotes the jitter, Y denotes the service time, X denotes the arrival time, and

E denotes the expected value, i.e., mean.

Single Queue model for D/D/1 and M/D/1 is simulated, and its statistics are compared

with the theoretical statistics based on Table 2.1 and Table 2.2. Table 4.1 and Table 4.2

show the example scenario, and compare theoretical results with simulation results for

D/D/1 and M/D/1 queues, respectively.

Table 4.1 : D/D/1 simulation table

Arrival
Rate

Length
(Byte)

Service
Rate

Theoretical
Mean

Simulation
Mean

Number of
Frames

990 Mbit/s 100 1 Gbit/s 0 32 1237500

In case of an arrival rate of 990 Megabit per second (Mbit/s) and service rate of 1

Gigabit per second (Gbit/s) in D/D/1, the queue must be empty 1 percent of the time

and loaded with only one message 99 percent of the time. So, the mean jitter must be

0 in theory. In the simulation, the mean jitter value is 32 nanoseconds (ns) because it

takes 4 cycles, each cycle is 8 ns, for the scheduler to trigger once the queue starts to

fill. These 4 cycles can be described as overhead, independent of the frame length.

Table 4.2 : M/D/1 simulation table

Arrival
Rate

Length
(Byte)

Service
Rate

Theoretical
Mean

Simulation
Mean

Number of
Frames

990 Mbit/s 100 1 Gbit/s 33.4950 91.96 1237500

In case of an arrival rate of 990 Mbit/s and a service rate of 1 Gbit/s in M/D/1, the queue

can be filled with more than one frame at some of the simulation time. In theory, the

mean jitter value is 33.4950 ns. In practice, the mean jitter value is 91.96 ns. 32 ns is

the overhead, independent of the frame length. The rest of the time (59.96 ns) is the

mean jitter value of the simulated M/D/1 model.
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4.2 ARINC-664 End System Model

ARINC-664 ES model is built in Simulink to implement and analyze the scheduling

algorithms. It is an extension of the Single Queue model, which we described in the

previous section. Fig. 4.2 demonstrates the logical structure of the ARINC-664 ES

model consists of the Loaders, Memory, Analysis, and Server modules. In the figure,

N represents the number of VLs. The Loaders, Memory, and Analysis modules are

Figure 4.2 : Simulink model of the ARINC-664 ES

used for simulation, whereas the Server module is used for the FPGA implementation.

In the ARINC-664 ES model, each queue must be filled independently. To achieve this,

the Loaders module, which includes multiple Loader blocks, is added to the simulation

model. Each Loader block can have a deterministic or exponential arriving process.

Note that each Loader block of the ARINC-664 ES model is a copy of the Loader

module of the Single Queue model. Therefore, the Loader block of the ARINC-664 ES

model is already verified. The Memory module contains independent FIFOs for each

VLs. The Server module includes the Shaper, SchedulerDecider, EligibleQueues,

and Scheduler blocks. The Shaper block implements the leaky bucket algorithm. Its

primary purpose is to regulate the incoming Ethernet frame traffic as described in Fig.

2.3. The EligibleQueues block keeps track of the eligibility of each VL based on the
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leaky bucket and the scheduling algorithm. A queue becomes eligible if it is ready

for being served and remains eligible until it is decided that it will be served. The

SchedulerDecider block determines which VL must be served among eligible queues

according to the scheduling algorithm. The SchedulerServer block serves the Ethernet

frame from one of the queues according to the outcome of the SchedulerDecider block.

Its operation speed is 1 Gbit/s. In the SchedulerServer block, as in the Single Queue

model, the length information is read from the first two bytes of each frame. Then,

the SchedulerServer block reads the entire frame based on the length information by

serving 1 byte at each step. The SchedulerDecider block determines which VL must

be served among eligible queues according to the scheduling algorithm

4.2.1 Implementation of the server module

The Server module is hardware convertible; thus, its design should pay attention to

the clock and hardware limits. The proposed ARINC-664 ES model operates at 1

Gbit/s and processes 8 bits at each transaction. Therefore, the operation frequency

of the Server module must be at least 125 MHz. The SchedulerDecider block is the

most challenging part of the Server module in converting the model to HDL. The

SB, FIFO, SS, and LQ scheduling algorithms are implemented in this thesis. The

SchedulerDecider block implementation for each scheduling algorithm is presented

below. For the sake of simplicity, all scheduling algorithms are implemented for 8

queues; however, they can be extended to 128 queues which is the maximum number

of VLs defined by the ARINC-664 ES standard.

The SB scheduling algorithm serves the queue with the smallest BAG value among

all eligible queues. Fig. 4.3 shows the structure of the SchedulerDecider block,

and Fig. 4.4 shows the Simulink implementation of the SchedulerDecider block of

8 queues for SB. In Fig. 4.3, the mechanism of the SB scheduling algorithm consists

of three subsystems; the Masker, MinimumFinder1, and MinimumFinderFinal, and

two functions; Min4 and Min2. The Min4 function finds the minimum value among

4 inputs, and Min2 finds the minimum value among 2 inputs. The Masker subsystem

aims to eliminate the queues that are not ready to be served due to the Shaper block.

In the case of the SB algorithm, the Masker subsystem sets its output to the maximum

32-bits integer value if the corresponding queue is not eligible. Later, masked BAG
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values are compared in the MinimumFinder1 and MinimumFinderFinal subsystems.

The operation frequency of the SchedulerDecider block is 125 MHz, so finding the

minimum BAG value in one step is not an applicable method. Instead, the smallest

BAG value among every 4 queues is found parallelly in the MinimumFinder1 by

using the Min4 function, and the two outputs of the MinimumFinder1 are compared

with each other in the MinimumFinderFinal by using the Min2 function. Then, the

output of the MinimumFinderFinal is sent to the output of the SchedulerDecider

block. If this value is the maximum 32-bit integer value, it means that none of the

queues is eligible at the moment, and none of the queues should be served. So,

the SchedulerDecider block of the SB scheduling algorithm is triggered again and

operates the same functions until the output value becomes valid. When the output

value becomes valid, the selected queue is served.

Figure 4.3 : Structure of the Scheduler Decider block of SB for 8 queues.

The FIFO scheduling algorithm serves the queue whose Head of Line (HoL) arrival

time is the smallest among all eligible queues. Implementation of this algorithm

follows a similar procedure as the SB algorithm. However, the HoL arrival time

of each queue must be known in advance in the FIFO algorithm. A second

First-Word-Fall-Through (FWFT) FIFO for each VL is placed in the Memory module,

and the arrival time of each frame is stored inside of these FIFOs to achieve this.

A 64-bit free-running time counter is used inside of the Memory module to obtain

arrival time. Each time a frame transmission starts from the Loaders module to the

Memory module, the value of the free-running counter is written to the FIFO. The FIFO

scheduling algorithm mechanism is almost the same as the SB scheduling algorithm.

The only difference is that the input parameters of the Masker, MinimumFinder1, and

MinimumFinderFinal subsystems are 64-bits.
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Figure 4.4 : Simulink implementation of the Scheduler Decider block of SB for 8
queues.
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The SS algorithm serves the queue whose HoL frame is the smallest among all eligible

queues. Implementation of this algorithm follows a similar procedure as the FIFO

algorithm. However, the SS scheduling algorithm needs each queue’s HoL frame

length information in advance rather than the arrival time. A second FWFT FIFO for

each VL is placed to the Memory module, and the frame length of each queue is stored

inside of these FIFOs to achieve this. The mechanism of the SS scheduling algorithm

is almost the same as the SB and FIFO scheduling algorithms. The only difference

is that the parameters of the Masker, MinimumFinder1, and MinimumFinderFinal

subsystems are 16 bits.

The LQ algorithm serves the queue with the highest number of bytes among all

eligible queues. Implementation of this algorithm follows a similar procedure as

the SB algorithm. However, contrary to the SB, the LQ scheduling algorithm

finds the maximum value among all queues. Fig. 4.5 shows the mechanism

of the LQ scheduling algorithm which consists of three subsystems; the Masker,

MaximumFinder1 and MaximumFinderFinal, and two functions; Max4 and Max2.

The Max4 function finds the maximum value among 4 inputs, and Max2 finds the

maximum value among 2 inputs. The Masker subsystem sets its output value to 0 if the

corresponding queue is not eligible. The fullest queue among every 4 queues is found

parallelly in the MaximumFinder1 subsystem by using the Max4 function and the 2

output values of the MaximumFinder1 are compared in the MaximumFinderFinal by

using the Max2 function. Then, the output of the MaximumFinderFinal is sent to

the output of the SchedulerDecider block. If this value is 0, it means that none of

the queues are eligible at the moment, and none of the queues should be served. So,

the SchedulerDecider block of the LQ scheduling algorithm is triggered again and

operates the same functions until the output value becomes valid. When the output

value becomes valid, the selected queue is served.

Figure 4.5 : Structure of the Scheduler Decider block of LQ for 8 queues.
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As an addition, the Server module of the SB algorithm for 32 queues is designed.

Fig. 4.6 shows the structure of the SchedulerDecider block, and Fig. 4.7

shows the Simulink implementation of the SchedulerDecider block of SB algorithm

for 32 queues. In Fig. 4.6, the mechanism of the SB scheduling algorithm

consists of four subsystems; Masker, MinimumFinder1, MinimumFinder2, and

MinimumFinderFinal, and two functions; Min4 and Min2. The Min4 function finds

the minimum value among 4 inputs, and Min2 finds the minimum value among 2

inputs. First, the Masker subsystem masks the non-eligible queues in the system

with 8 queues. Then, the MinimumFinder1 subsystem finds the smallest 8 of 32

queues in groups of 4 using Min4 fımction. Later, the MinimumFinder2 finds the

smallest 2 of 8 queues in a group of 4 by using the Min4 function, and finally, the

MinimumFinderFinal finds the minimum value among 2 inputs by using the Min2

function. The rest of the decisions follow the same procedure as the 8 queues Server

module.

Figure 4.6 : Structure of the Scheduler Decider block of SB for 32 queues.

27



Figure 4.7 : Simulink implementation of the Scheduler Decider block of SB for 32
queues.
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4.2.2 Implementation of the analysis module

The Analysis module is crucial for the ARINC-664 ES model because it operates

statistical analysis. The analysis module measures four statistics for each queue: The

mean, standard deviation, and maximum of jitter performances, and the number of

served frames. The jitter is calculated for each frame on a per-flow basis to measure

the first three statistics. Note that the jitter is defined as the delay between the beginning

of the BAG and the date when the first bit of the frame is sent [48]. Calculating jitter

value is easier in the ARINC-664 ES model than the Single Queue model since there

is no need to keep track of two different values.

Storing the time difference for each Ethernet frame is not an applicable method because

storing this information requires excessive memory and slows down the simulation

significantly. Instead, similar to the Single Queue model, run-time mean and standard

deviation calculators are used. Fig. 4.8 shows the running mean and running standard

deviation calculator modules of the Digital Signal Processing System Toolbox [49].

Fig. 4.9 shows the Simulink implementation of the Analysis module for a single queue.

In this implementation, the JitterCounter subsystem calculates the jitter by counting

at each step, RunMeanRunStd subsystem recalculates the mean and standard deviation

based on the new jitter value, RunMax subsystem calculates the maximum value,

RunFrameCounter subsystem calculates the number of served frames, and Logger

subsystem logs the statistics.

Figure 4.8 : Running mean and running standard deviation calculators.
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Figure 4.9 : Simulink implementation of the Analysis module in ARINC-664 ES.
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5. END SYSTEM DYNAMIC SCHEDULER MODEL

In this chapter, the ARINC-664 ES Dynamic Scheduler model is presented.

ARINC-664 ES requires many configuration parameters such as VL ID, BAG,

Lmin, and Lmax. Though today’s applications mostly aim to configure the ES once

according to the offline network planning when the system is on the ground, some

reconfigurability studies which focus on reconfiguring the configuration parameters

during run-time exist [38]. However, changing the scheduler strategy might yield

significant performance improvement. ARINC-664 ES Dynamic Scheduler model,

will be referred as the Dynamic Scheduler model in the rest of the thesis, is developed

to take advantage of all the scheduling algorithms described in the previous chapter.

Fig. 5.1 shows the structure of the Dynamic Scheduler model, which consists of the

Loaders, Memory, Analysis, and Server modules.

Figure 5.1 : Simulink model of the Dynamic Scheduler.
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The Loaders module of the Dynamic Scheduler model has the same structure as in the

Loaders module of the ARINC-664 ES model. However, the Memory, Server, and

Analysis modules of the Dynamic Scheduler model differ from the ARINC-664 ES

model. These differences are: FWFT FIFOs for each queue are implemented in the

Memory module and the Memory module is converted to HDL to simplify Vivado

simulation, four scheduling algorithms are implemented in the SchedulerDecider

block of the Server module, and Simulink blocks are converted to both hardware and

software in the Analysis module.

5.1 Implementation of the Dynamic Server Module

A hardware implementable DynamicServer module is proposed. This module can

apply all the schedulers described in Chapter 4. Fig. 5.2 shows the structure of the

DynamicServer module.

Figure 5.2 : Simulink model of the Dynamic Server module.

In run-time, the user can switch the scheduling algorithm with a Select pin. Necessary

parameters for implementing the SB, LQ, FIFO, and SS scheduling algorithms are

the BAG, number of bytes, HoL frame length, and HoL arrival time of each VL,

respectively. BAG parameters are stored inside of the Shaper block. The number of

bytes information is provided by the FrameFIFO blocks. HoL frame length and HoL

arrival time of VLs must be known in advance to decide which queue to serve next.

The HoL arrival time information is 64-bits, and the HoL frame length information
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is 16-bits. Instead of storing each value in a separate FWFT FIFO, i.e. spending

two FWFT FIFOs for each queue, the concatenation of these two information, which

is 80-bits, can be stored in one FWFT FIFO (FWFT FIFO block of the Memory

module), and then split into two pieces in the DynamicServer module.

5.2 Implementation of the Analysis Module

The Analysis module is crucial for the Dynamic Scheduler model because it operates

statistical analysis and decides which scheduler algorithm to run. Similar to the

ARINC-664 ES model, the Analysis module of the Dynamic Scheduler model

measures four statistics for each queue: The mean, standard deviation, and maximum

of jitter performances, and the number of served frames. The jitter is calculated for

each frame on a per-flow basis to measure the first three statistics.

Calculating the jitter is implemented by using the JitterCalculator subsystem whose

Simulink implementation is shown in Fig. 5.3.

Figure 5.3 : Simulink implementation of the Jitter Calculator subsystem.

In this subsystem, the JitterCounter subsystem is responsible for calculating the jitter

value by counting at each step from the moment the queue becomes eligible to the

moment it is decided that the queue will be served. Operation of the JitterCalculator

subsystem is suitable to PL; hence, this subsystem is converted to HDL with MATLAB

HDL Coder. The mean, standard deviation and maximum of jitter performances,

and the number of served frames are implemented by using the StatisticCalculator

subsystem whose Simulink implementation is shown in Fig. 5.4.
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Figure 5.4 : Simulink implementation of the Statistic Calculator subsystem.

In this subsystem, the RunMeanRunStd subsystem recalculates the mean and standard

deviation values based on the new jitter input, RunMax subsystem calculates the

maximum jitter and the RunFrameCounter subsystem counter increases when a frame

is served. Operations of the StatisticCalculator subsystem are suitable to PS; hence,

this subsystem is converted to C with MATLAB Embedded Coder.

5.3 System on Chip Implementation

The JitterCalculator subsystem of the Analysis module is located on the PL and the

StatisticCalculator subsystem of the Analysis module is located on the PS to build an

SoC. In this study, PL is implemented by using the logic fabric of the FPGA, and the

PS is implemented on the Microblaze, which is a soft-core processor built by using the

logic fabric of the FPGA. Then, a block design is built by using Xilinx Vivado. Fig.

5.5 shows the block design. In this design, a True Dual Port Block Random Access

Memory, will be referred as BRAM in the rest of the thesis, used as a communication

interface between the PL and PS [50]. One channel of BRAM is called Channel A,

and the other channel is called Channel B. Channel A communicates with Microblaze

through Advanced Extensible Interface (AXI) interface, and Channel B communicates

with PL through hand-written BRAMWrapperr HDL, which is responsible for the

W/R operations of the PL logic. For each queue, PL has two outputs: QueueJitter
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and QueueEnable. The QueueJitter is the calculated jitter value of each frame, and

QueueEnable is the indication that the jitter calculation for a frame is completed. Fig.

5.6 shows the BRAM interaction of PL outputs. Each QueueJitter and QueueEnable

parameters are located in separate memory addresses. When the QueueJitter is

calculated, on the PL side, it is written to the BRAM QueueJitter address of the related

queue, and the BRAM QueueEnable address of the related queue is set to 1, i.e.,

true. When this happens, the related queue is called an active queue. On the PS side,

Microblaze starts to read the address of QueueEnable for each queue through the AXI

interface, beginning with the first queue. Then, if the QueueEnable of the related queue

is true, the QueueJitter value of the queue is read, and QueueEnable of the BRAM

address is set to false by the Microblaze. This operation is followed for each queue, and

then the OneStep function is called to calculate new jitter statistics for active queues.

Microblaze calculates the jitter statistics for each queue and decides which scheduling

algorithm must be applied. So, each time the OneStep function is completed, the

current scheduling algorithm parameter (Scheduler Select - schSelect) is written to the

related address (0x200). On the PL side, BRAMWrapperr HDL periodically reads

the scheduling address (0x200) and assigns the output to the scheduling algorithm

input of the PL. In this approach, PS reads the information of PL with polling. As an

alternative, an interrupt mechanism could be used. Fig. 5.7 shows an example flow of

the Microblaze for a single queue.
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Figure 5.5 : Vivado implementation of Dynamic Scheduler SoC.
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Figure 5.6 : BRAM addresses.

Figure 5.7 : Example flow of the Microblaze for a single queue.
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6. RESULTS

In this section, first, the performance results of the ARINC-664 ES scheduling

algorithms using the Simulink models are presented. The mean, standard deviation,

and maximum of jitter performances are reported for 8 queues scenarios corresponding

to 8 VLs.

The simulation time is set to 500 ms for all experiments. In the ARINC-664, the BAG

values are expressed as powers of 2 from 1 ms to 128 ms (1, 2, 4, ... 128). However,

the BAG values are reduced to the range of 50 - 400 µs at 50 µs intervals to decrease

simulation time in this study. Then, the hardware implementation results for each

scheduling algorithm are represented. In the rest of the thesis, queues from 1 to 8 will

be referred as Q1 to Q8.

6.1 Simulation Results

Two configuration scenarios, including Packet Arrival Rate, BAG, and Lmax

parameters, are created and listed in Table 1 and Table 2, respectively. In both

scenarios, packet traffic is generated in accordance with the carrying capacity of the

queues, and the packet inter-arrival times are generated according to the exponential

distribution (i.e., Markov-M) for all VLs. In the first scenario, Lmax values are set in

different lengths from 100 bytes to 1400 bytes. In the second scenario, Lmax values are

set as in 160-byte length intervals from 160 bytes to 1280 bytes.

6.1.1 Scenario 1

Table 6.1 shows the configuration parameters of this scenario. Note that each queue is

uniquely dedicated to the incoming packets of the corresponding VL.

The Analysis module calculates the mean, standard deviation, and maximum of jitter

performances and the number of served frames. Fig. 6.1, Fig. 6.2, and Fig. 6.3 shows

the statistics for the mean, standard deviation, and maximum of jitter, respectively.
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Table 6.1 : Configuration parameters for scenario 1.

Queue
Packet Arrival

Rate (Mbit)
Queue
Mode

Length
(Byte)

BAG
(us)

Theoretical
Maximum Service

Rate (Mbit)
Q1 220 M 1400 50 224
Q2 92 M 1200 100 96
Q3 50 M 1000 150 53.33
Q4 30 M 800 200 32
Q5 16 M 600 250 19.2
Q6 8 M 400 300 10.66
Q7 3 M 200 350 4.57
Q8 1 M 100 400 2

Figure 6.1 : Mean jitter results for scenario 1.

Figure 6.2 : Standard deviation of jitter results for scenario 1.
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In scenario 1, the Q1 queue has the highest arrival rate; hence, frames will arrive at the

Memory module of Q1 more often than any other queue. This means that Q1 will be

the only queue that is not empty most of the simulation time; hence, the Q1 jitter is

close to zero most of the simulation time, and the jitter of the Q1 is the lowest for all

the scheduling algorithms. However, some differences can be seen among scheduling

algorithms. For instance, the mean jitter for Q1 is the highest for the SS algorithm.

It is an expected outcome because Q1 has the highest HoL frame length. From Q1 to

Q8, the mean value increases in different ratios. For instance, the mean jitter of the Q8

with the SS algorithm is the lowest because its HoL frame length is the smallest.

Generally, the standard deviation of jitter increases from Q1 to Q8 as expected.

However, the Q8 value of the SS algorithm shows a different pattern because the jitter

is zero or close to zero due to HoL size.

Figure 6.3 : Maximum jitter results for scenario 1.

The maximum jitter results demonstrate that the SB algorithm and SS algorithm values

are opposite, the FIFO algorithm shows a random pattern, and the LQ algorithm

generally increases from Q1 to Q8, as expected.

6.1.2 Scenario 2

Table 6.2 shows the configuration parameters of this scenario. Note that each queue is

uniquely dedicated to the incoming packets of the corresponding VL.
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Table 6.2 : Configuration parameters for scenario 2.

Queue
Packet Arrival

Rate (Mbit)
Queue
Mode

Length
(Byte)

BAG
(us)

Theoretical
Maximum Service

Rate (Mbit)
Q1 25 M 160 50 25.6
Q2 25 M 320 100 25.6
Q3 25 M 480 150 25.6
Q4 25 M 640 200 25.6
Q5 25 M 800 250 25.6
Q6 25 M 960 300 25.6
Q7 25 M 1120 350 25.6
Q8 25 M 1280 400 25.6

The Analysis module calculates the mean, standard deviation, and maximum of jitter

and the number of served frames. Fig. 6.4, Fig. 6.5 and Fig. 6.6 shows the statistics

for mean, standard deviation and maximum of jitter of scenario 2, respectively.

Figure 6.4 : Mean jitter results for scenario 2.

The traffic of scenario 2 is lighter than scenario 1. So, serving the frames with zero

jitter occurs more often in scenario 2, and therefore the mean jitter values of scenario 2

are generally lower. In scenario 2, the BAG values and the HoL lengths have the same

priority order; hence the SS and SB algorithms provide the same results.
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Figure 6.5 : Standard deviation of jitter results for scenario 2.

The standard deviation of jitter results demonstrates a similar pattern to the mean jitter

results.

Figure 6.6 : Maximum jitter results for scenario 2.

In maximum jitter results, the FIFO shows a random pattern, the LQ algorithm

generally increases from Q8 to Q1, and the SS and SB algorithms show the same

pattern; both generally increase from Q1 to Q8, as expected.

The Pareto front figures of the scenario 1 and scenario 2 are shown in Fig. 6.7 and

Fig. 6.8, respectively. In both figures, each dot represents a triplet, which includes the

mean, standard deviation, and maximum of jitter. There are four algorithms and eight
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queues for each scenario; so 32 dots are used. The dots whose parameters have the

best parameters in their queue are marked with different colours. The best dot of each

queue can be tracked by using the legends of the figures. Also, two or more points are

connected with a line to build a Pareto line if some of their parameters have the best

values but they are not superior to each other. Please note that some dots overlap in 6.8

because the SB and SS algorithms show the exact same pattern in Scenario 2.

Figure 6.7 : The Pareto front figures of each queue in scenario 1.

Figure 6.8 : The Pareto front figure of each queue in scenario 2.
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6.2 Implementation Results

The Simulink model is converted to VHDL with MATLAB HDL Coder. During

this conversion, minimize clock enable option is turned on due to simplicity. Then,

generated VHDL files are implemented on Kintex-7 XC7K325T FPGA by using

Xilinx Vivado. The clock frequency is set as 125 MHz.

Look Up Table (LUT), Flip-Flop (FF), and BRAM utilizations are reported for the ES

implementation supporting 8 queues for all the scheduling algorithms and 32 queues

for the SB algorithm. Table 6.3 shows the utilization for the Server module of four

scheduling algorithms and the DynamicServer module for 8 queues. In this table, the

differences occur due to different data widths of parameters for each module.

The FIFO algorithm spends the most resource among the four algorithms because

arrival time information is 64 bits. The SS algorithm spends fewer resources than

LQ because while queue size information is 32 bits, HoL length information is 16 bits.

The SB algorithm spends the least resource because in contrary to other algorithms, SB

does not need an external parameter for deciding which queue to serve next. Instead,

it uses the BAG values. The DynamicServer module with a dynamic scheduling

algorithm spends the most resources because it combines the other four algorithms.

Table 6.3 : Utilization report of the Server module under different scheduling
scenarios for 8 queues.

Scheduling Algorithm LUT FF BRAM
Smallest BAG 607 391 8

FIFO 1392 1051 16
Smallest Size 672 523 16

Longest Queue 940 699 8
Dynamic Scheduling 2336 1689 16

In addition to these results, the SB algorithm with 32 queues is implemented on the

same FPGA. It spends 4217 LUTs, 3284 FFs, and 32 BRAMs, which is approximately

6 times more LUTs, 7 times more FFs, and 3 times more BRAMs than the SB

scheduling algorithm with 8 queues.
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Comparison of the LUT and FF utilization for each algorithm is shown in Fig. 6.9 and

Fig. 6.10, respectively.

Figure 6.9 : Comparison of the LUT utilization.

Figure 6.10 : Comparison of the FF utilization.

A comparison table is built to compare scheduling algorithms from both a hardware

implementation and simulation perspective. For simulation, the mean value of 8

queues (Q1 to Q8) is calculated for the mean, standard deviation, and maximum of

jitter of each scheduling algorithm. Then, 3 equal intervals are created between the

minimum and maximum values of each parameter for each scenario, and these intervals

are labeled as "low," "medium, and "high" in increasing order. The comparison table

is shown in Fig. 6.11.
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Figure 6.11 : Comparison of the scheduling algorithms from both implementation and
simulation perspective.

This table shows that the implementation results are scenario independent, whereas the

simulation results are scenario dependent. In scenario 1, the SB shows the worst, and

the SS shows the best simulation performance. In scenario 2, the mean and standard

deviation jitter values for each algorithm are so close to each other that the interval

is not divided into three groups. Instead, all the values are classified as medium. At

maximum jitter values, the SB and SS perform better than the FIFO and LQ scheduling

algorithms.

Converted VHDL codes of the Dynamic Scheduling model are simulated in Vivado

to ensure that the Simulink model is operating correctly. The ARINC-664 ES model

includes the Loaders, Memory, Analysis, and Server modules. As mentioned in the

previous chapter, the Mmemory module is converted to HDL to simplify simulation.

There are only 4 inputs of the Memory module for each queue: two for FWFT FIFO

blocks (length and lengthpush) and two for FrameFIFO blocks (data and datapush).

In the Simulink model, these 4 inputs of each queue are logged in text files. Then,

text files are read with a hand-written Verilog simulation code. Inputs are captured

for 1250000 clock cycles (10 us). The scheduler algorithm is switched every 2.5 us.

Fig. 6.12 shows an example scenario for the LQ algorithm. In this figure, cyan-colored

signals show how many bytes are stored in each queue, red-colored signals show which

of them are eligible, pink-colored signals show the masked output for each queue, and

gray-colored signals show the scheduling mechanism. It can be seen that queues 2, 3,

5, 7, and 8 are eligible; however, others are not eligible. Therefore, the masked value of

queue 4 is set to 0 because queue 4 is not eligible. The SchedulerDecider is triggered,

and queue 2 is selected because it has the highest byte and is also eligible.
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In the last part of the results, a simple scenario for the Dynamic Server model is created.

For this scenario, first, data inputs of the first configuration are logged. Then, the

scheduler algorithm is switched according to the following scenario: Initial scheduler

algorithm is SB. If the maximum jitter value of Q5 exceeds 2000, the scheduler

algorithm switches to the SS. In Fig. 6.3, it can be seen that the maximum jitter value of

Q5 decreases significantly with the SS algorithm. Hence, this scenario aims to prevent

excessive jitter of Q5. By using the flow of the Fig. 5.7, the scheduler algorithm

switches when the conditions above are met. Fig. 6.13 shows the simulation of this

scenario.

Below, each step of Fig. 6.13 is explained.

(a) When the jitter value of Q5 is calculated by PL, the associated QueueEnable

address (0xD0) is set to 1, and the calculated value is written to the related

QueueJitter address (0x50).

(b) Meanwhile, the Microblaze was periodically reading the related QueueEnable

address (0xD0). When it reads 1, it starts to read the related QueueJitter address

(0x50) to use the jitter value.

(c) The Onestep function is operated by the Microblaze. After some time, the function

is completed, and the new scheduling algorithm is decided. The calculated jitter

value was above 2000 (3194). So, 3, representing SS, is the new Scheduler Select

value. The Microblaze assigns the new Scheduler Select (schSelect) value to the

related address (0x200).

(d) The BRAMWrapper HDL reads the 0x200 and then sets the schSelect value to the

Select pin of the DynamicServer module.
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Figure 6.12 : Simulation of the LQ scheduling algorithm.
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Figure 6.13 : Simulation of the Dynamic Server model.
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7. CONCLUSION AND FUTURE WORK

In this study, the traffic regulator of the ARINC-664 ES is built and simulated using

MATLAB Simulink. Then the simulation model is converted to HDL for hardware

prototyping, and a dynamic scheduler system for ARINC-664 ES is built in the final

step.

This work showed that MATLAB HDL Coder and MATLAB Embedded Coder are

suitable tools for ARINC-664 ES. Generally, MATLAB HDL Coder showed excellent

performance; it built readable VHDL codes and converted all the blocks to HDL

correctly. MATLAB Embedded Coder also performed well; the blocks were converted

to C correctly. However, variable names and the function context of the generated C

codes could be more user-friendly.

From the simulation perspective, it is shown that scheduling algorithms of ARINC-664

ES have different characteristics; hence, each has its advantages and disadvantages.

As seen in the results, performances of the scheduling algorithms depend on the

configuration scenario. Thus, much more simulation scenarios must be run to reach

more precise results.

From the implementation perspective, it is shown that the Smallest BAG algorithm

spends the least and the FIFO algorithm spends the most FPGA resource. Also, the

FIFO and the Smallest Size algorithm require more memory usage. These scheduling

algorithms can cause a memory problem with the 128 VL ARINC-664 ES scenario in

small FPGAs.

ARINC-664 ES Dynamic Server module is built on SoC. The entire SoC except

the BRAM Wrapper code is designed in MATLAB Simulink, and yet, no problem

occurred in building such a system. It shows that complex SoC systems can be built

using MATLAB HDL Coder on PL and MATLAB Embedded Coder on PS.

An intelligent function for determining the most suitable algorithm to use will be

developed in future work. The model will continuously switch using this algorithm
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as the input traffic type changes. Also, incoming Ethernet traffic (the Loaders

module) will be transferred to the hardware design in future work. Finally, ZYNQ

implementation will be performed to meet the speed necessities of an intelligent

function.
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