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MODEL-BASED DESIGN AND IMPLEMENTATION
OF SCHEDULERS IN ARINC-664 END SYSTEM
AS A SYSTEM ON CHIP

SUMMARY

In the last decades, the amount of exchanged data between avionics systems is
tremendously increased. Traditional communication networks such as MILSTD-1553
and ARINC-429 cannot provide enough bandwidth for avionic systems. Instead,
ARINC-Specification 664 Part 7 (ARINC-664) is proposed for next-generation
aircraft.

ARINC-664 defines an Ethernet-based deterministic network protocol that provides
bounded delay and jitter using redundant communication among the avionics
applications.  Achieving the end-to-end bounded delay objectives requires that
incoming Ethernet frames must be regulated according to the ARINC-664 standard.
In ARINC-664, each rate-constrained flow, i.e., Virtual Link (VL), is regulated by
using End Systems (ESs) and Bandwidth Allocation Gap (BAG). Each regulated VL
must be served at a time, so a scheduling mechanism must be used when more than
one queue is ready to be served. ARINC-664 standard does not specify the details of
the scheduling algorithm. However, some algorithms are proposed in the literature for
ARINC-664 scheduling.

Field Programmable Gate Array (FPGA) is one of the most preferred implementation
choices for ARINC-664 due to its low power consumption, low latency data transfer,
and security advantages. Traditional FPGA development requires building design
and verification with Hardware Description Languages (HDLs). Instead of this
time-consuming FPGA development, using a model-based hardware design enables
faster prototyping and testing environment.

In this thesis, first, a Single Queue model is designed and developed in Simulink to
provide a basic queueing infrastructure for ARINC-664 ES. Then, the ARINC-664 ES
model is developed on top of the Single Queue model. The scheduling algorithms
in ARINC-664 ES are designed and developed using HDL convertible components.
The Smallest BAG (SB), the Smallest Size (SS), the Longest Queue (LQ), and the
First-In-First-Out (FIFO) ARINC-664 ES scheduling algorithms are implemented.
This implementation allows collecting the mean, standard deviation, and maximum
of jitter performances of the scheduling algorithms. In addition, an ARINC-664 ES
Dynamic Scheduler model whose components can be converted to HDLs and C/C++
is built. This model contains all the scheduling algorithms, and the user can switch
among the scheduling algorithms while the model is operating.
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ARINC-664 UC SISTEMINDE CiZELGELEYICILERIN
MODEL TABANLI TASARIMI VE KIRMIK
USTU SISTEM UYGULAMASI

OZET

Birlesik aviyonik mimariler, yeni nesil ucaklarda aviyonik sistemlerin yiiksek
miktardaki bilgi aligverisi gereksinimlerini karsilamakta yetersiz hale gelmistir.
Alternatif olarak, ortak donanim ve yazilim modiilleriyle paylasilan bir bilgi
islem platformu iizerinde farkli kritiklik seviyelerine sahip birden fazla aviyonik
uygulamasin barindiran Entegre Modiiler Aviyonik (Integrated Modular Avionics
- IMA) mimarileri, yapisal boyut, agirlhik ve giic avantajlar1 nedeniyle tercih
edilmektedir.

Ethernet tabanli gerekirci ag ¢oziimleri ¢cogunlukla IMA mimarileri i¢in yiiksek hizli
yerel alan ag1 olarak kullanilir. ARINC 429 ve MIL-STD 1553 gibi haberlesme
standartlar1 gerekirci yapida olmalarina ragmen yeni nesil ag sistemlerinin yiiksek bant
genigligi gereksinimlerini kargilamakta yetersiz kalmaktadir. Son teknoloji Ethernet
tabanl gerekirci ag ¢coziimlerine ARINC Spesifikasyonu 664 Boliim 7 (ARINC-664),
IEEE Zamana Duyarli Ag Olusturma (Time Sensitive Networks - TSN), Zaman
Tetiklemeli Ethernet (Time Triggered Ethernet - TTEthernet) ve Deterministik Ag
Olusturma (DetNet) 6rnek gosterilebilir.

Zaman kritik uygulamalarin en temel Ozellikleri simirli gecikme (bounded delay),
diisiik oranda bilgi kayb1 (low data loss-rate) ve diisiik segirmedir (jitter). ARINC-664
her bir Ethernet paketinin transferi i¢in sinirli bant genigligi kullanarak sinirh
gecikme ve diisiik seirme saglar. ARINC-664 karmasik bir zaman senkronizasyonu
mekanizmasi gerektirmez. Ayni zamanda, cakismaya izin vermemesi, hata kaldirr
yapist ve yedekli haberlesme topolojisi sayesinde diisiik oranda bilgi kayb:r saglar.
Biitiin bu ozellikleri sayesinde ARINC-664 havaciliktaki zaman kritik sistemlerde
siklikla kullanilmaktadir.

ARINC-664 standardi, Airbus tarafindan yeni nesil ucak veri ag1 olarak gelistirilmistir.
ARINC-664’te, her akisin, yani Sanal Baglanti’'min (Virtual Link - VL) hizi
diizenlenmis ve sinirlandirilmistir. Bu sinirlama ve diizenleme Bant Genigligi Tahsis
Aralig1 (Bandwidth Allocation Gap - BAG) konsepti ile U¢ Sistemde (End System
- ES) sizdiran kova (leaky bucket) algoritmasi1 kullanilarak saglanir. ARINC-664,
geleneksel ag sistemlerinin aksine, bir Ethernet cercevesinde Ortam Erisim Kontrolii
(Medium Access Control - MAC) hedef adresinde tasinan Sanal Baglanti Kimligi’ni
(Virtual Link Identification - VL ID) kullanarak paketleri yonlendirir.

ARINC-664 Uc¢ Sistem hem donanim hem de yazilim iizerine uygulanabilir bir
protokoldiir. Alan Programlanabilir Kap1 Dizileri (Field Programmable Gate Array
- FPGA) diisiik giic tiiketimi, diisiik gecikmeli bilgi transferi ve giivenilirligi
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sebebiyle ARINC-664 Ug¢ Sistem gerceklemesi i¢in uygundur. FPGA ile uygulama
geligtirirken en bilinen yaklasim gerceklenecek olan uygulamalarin 6nce simiilasyon
ve modellemelerinin tamamlanip sonuclarin elde edilmesi, daha sonra ise FPGA
implementasyonunun gerceklenmesidir. Bu yaklagimda, simiilasyon ve modeller
sadece dogrulama ve onaylama amaciyla kullanilir. Bu yaklasimin gelistirme siiresi
ve ig giicii gereksinimi agisindan verimli olmadigr agiktir.  Alternatif yaklasim,
simiilasyon modelinden Donanim Tanimlama Dili’ne (HDL) ve yazilim koduna
dogrudan doniistiirmeye izin veren MATLAB Simulink programini kullanarak model
tabanli bir sistem olusturmaktir.

ARINC-664 Ug Sistemi’nin gonderici tarafinda, Sanal Ag kuyruklar1 (VL queues),
trafik sekillendirme (traffic shaping), ¢izelgeleyici (scheduling) ve trafik yedekleyicisi
(redundancy manager) ile alic1 tarafinda tutarlilik sezgi programi (integrity checker)
ve fazlalik denetleyicisi (redundancy checker) fonksiyonlar1 bulunmaktadir. Bu
caligmada Sanal Ag kuyruklari, trafik sekillendirme ve cizelgeleyici fonksiyonlar
MATLAB Simulink iizerinde gerceklenmistir.

Kuyruk teorisi (queueing theory), kuyruktaki elemanlarin bekleme siiresi sayisini
tahmin etmek amaciyla yaygin olarak kullanilmaktadir. Bu calismada, oncelikle,
kuyruk teorisinin temellerini esas alan tek bir kuyruk iireteci modeli MATLAB
Simulink iizerinde gerceklenmistir. Bu iiretecin amaci ARINC-664 U¢ Sistemi’nde
kullanilacak olan Sanal Ag kuyruklarina Ethernet paketlerini yiiklemektir. Model basit
bir servis edici ile yiiklenen Ethernet paketlerinin servis edilmesini saglamaktadir.
Bu modelin dogru calismasi ARINC-664 Uc¢ Sistem modelinin dogru ¢alismasi i¢in
elzemdir. Bu sebeple bu modelden elde edilen sonuglar kuyruk teorisinin teorik
sonuclar ile karsilagtirllmigtir ve kuyruk iireteci modelinin dogru bir sekilde ¢alistigi
gozlemlenmigtir.

Tek bir kuyruk i¢in hazirlanan kuyruk iireteci modeli kopyalanarak birden fazla
kuyruga Ethernet paketlerini bagimsiz olarak yiikleyen bir sistem olusturulmustur.
Birden fazla kuyrugun Ethernet paketlerinin servis edilmesi i¢in bir ¢izelgeleyici
uygulamasinin olusturulmasi gerekir. Bu amacla igerisinde trafik diizenleyicisi ve
cizelgeleyici bulunduran bir trafik servis edici modeli MATLAB Simulink iizerinde
gerceklenmigtir.  Bu model donanim tanimlama dillerine doniistiiriilebilir sekilde
olusturulmustur. Modelde 4 adet cizelgeleyici algoritmasi gerceklenmistir. Bu algo-
ritmalar En Kiiciik Bant Genisligi Tahsis Aralig1 (Smallest BAG), T1k-Giren-Ilk-Cikar
(FIFO), En Kiiciik Paket (Smallest Size) ve En Uzun Kuyruk (Longest Queue) olarak
siralanabilir.

Gecikme ve se8irme ag sistemlerinin servis kalitesi (Quality of Service - QoS)
tizerinde ¢ok Onemli bir etkiye sahiptir. Cizelgeleyici algoritmalarinin her biri
farkli karakteristiklere sahip oldugu ig¢in, bu algoritmalarin gecikme sonuclar
birbirinden farkli olacaktir. Bu ¢alismada cizelgeleyici algoritmalarinin ARINC-664
Uc¢ Sistemi’ndeki her bir kuyruk igin segirme ortalamasi, standart sapmasi ve
maksimum segirmenin hesaplanmasi amaciyla bir analiz modiilii tasarlanmistir. Biitiin
bu tasarimlar ARINC-664 Ug¢ Sistem modelini olugturmaktadir.

Yukarida bahsedilen ARINC-664 Ug¢ Sistem modeli sekiz kuyruk i¢in tasarlanmig ve
analiz sonuglart iki farkli konfigurasyon senaryosu i¢in raporlanmigtir. Bu sonuclar
incelendiginde, her bir cizelgeleyici algoritmasinin avantajlart ve dezavantajlari
oldugu goriiliir. Bu sebeple, kullanicinin sistem calisirken ¢izelgeleyici algoritmalari
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arasinda gecis yapabilmesini saglamak amaciyla bir dinamik ¢izelgeleyici modiilii
tasarlanmistir. ~ Bu modiil biitiin c¢izelgeleyici algoritmalarini icermektedir ve
kullanilan algoritma analiz modiiliinden ¢ikan sonuclara gore degistirilebilir. Bu
modiil de donanim tanimlama dillerine doniistiiriilebilir olarak tasarlanmigtir. Daha
sonra, dinamik c¢izelgeleyici modiiliiniin kendi kararlarin1 vererek algoritmalar
arasinda gecis yapabilmesini saglamak amaciyla ARINC-664 Uc¢ Sistemi modeli icin
tasarlanan analiz modiili MATLAB Simulink ile C kodunda doniistiiriilebilir hale
getirilmigtir. Dinamik sistem modelindeki donanima tanimlama diline doniistiiriilen
kodlar Programlanabilir Lojik (Programmable Logic - PL)’e, C koduna doniistiiriilen
kodlar ise Islemci Alt Sistem (Processor Subsystem - PS)’e gomiilerek Gelismis
Genisletilebilir Arayiiz (Advanced Extensible Interface - AXI) ve Iki Kanalli Rastgele
Erisilebilir Bellek (Dual Port Block Random Access Memory - BRAM) ile birbirlerine
baglanmustir.

Tezin sonuglar ¢esitli senaryolar i¢in cizelgeleyici algoritmasinin performanslarini
ve FPGA implementasyonu sonucunda olusan kaynak kullanimlarimi i¢ermektedir.
Bu sonuclar her cizelgeleyici uygulamasinin avantajlar1 ve dezavantajlari oldugunu
gostermektedir. Ayni1 zamanda ARINC-664 Ug Sistem’in MATLAB Simulink ile
hizli prototipleme ve test etmeye uygun oldugunu ve akilli bir cizelgeleyiciye
sahip ARINC-664 Uc Sistemi’nin tasarlanabilecegini basit bir senaryo kullanarak
gostermistir.
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1. INTRODUCTION

Federated avionics architectures have become insufficient to meet the tremendous
computing requirements of next-generation aircraft. Instead, Integrated Modular
Avionics (IMA) architectures [1] hosting multiple avionics applications of different
criticalities on a shared computing platform with common hardware and software

modules are preferred due to their inherent size, weight, and power (SWaP) advantages
[2].

Ethernet-based deterministic network solutions are primarily used as a high-speed
local area network for IMA systems. State-of-the-art Ethernet-based deterministic
network solutions include ARINC Specification 664 Part 7 (ARINC-664) [3], IEEE
Time-Sensitive Networking (TSN) [4], Time-Triggered Ethernet (TTEthernet) [5], and
IETF Deterministic Networking (DetNet) [6]. The essential necessities of time-critical
applications are bounded latency, low data loss rates, and low packet delay variation
(jitter). ARINC-664 provides bounded latency and jitter by using a limited band rate
for Ethernet frames. It does not require a complex time synchronization mechanism.
Also, it offers low data loss rates with its congestion-free, fault-tolerant, and redundant
communication topology. These features make ARINC-664 an excellent candidate for

time-critical avionic applications.

ARINC-664 standard is developed by Airbus as the next-generation aircraft data
network. In the ARINC-664, each rate-constrained flow, i.e., Virtual Link (VL),
is regulated by using the leaky bucket algorithm at End System (ES) with the
concept of Bandwidth Allocation Gap (BAG). Contrary to traditional network systems,
ARINC-664 routes packets using Virtual Link Identifier (VL ID), which is carried in

the Medium Access Control (MAC) destination address in an Ethernet frame.

ARINC-664 ES can be implemented in either hardware or software, where Field
Programmable Gate Array (FPGA) is a superior implementation choice due to its
low power consumption, low latency data transfer, and security [7]. However, an

FPGA-based design takes a significant effort, especially when several alternative

1



algorithms need to be compared and contrasted. The most common approach is to
perform the modeling and simulation studies before the FPGA implementation. In
this approach, the simulation models are solely used for validation and verification
purposes, and FPGA implementation needs to be done from scratch without reusing
the simulation model code. An alternative approach is to build a model-based system
using MATLAB Simulink, which allows direct conversion from the simulation model

to the Hardware Description Language (HDL) and software code.

1.1 Motivation

This study’s primary purposes are enabling fast hardware and embedded prototyping
with model-based system design and measuring ARINC-664 ES delay statistics for

various scheduling algorithms.

Delay is a critical Quality of Service (QoS) parameter in network systems, and
choosing the scheduling algorithm in a network system has a significant impact on this
parameter. Therefore, this study examines and compares the delay performance of four
ARINC-664 ES scheduling algorithms. An ARINC-664 ES model and a simulation
environment must be built to achieve this. Using a discrete event simulator is a good

choice for building such a system.

MATLAB Simulink, for such purpose, provides fast prototyping and easy
implementation with extensive Simulink libraries. Also, designers can easily manage
the verification, validation, and requirement tracking of hardware and software models
using Simulink libraries. Another essential property of MATLAB Simulink is that the
built models can be converted to HDL and C codes by using MATLAB HDL Coder and
MATLAB Embedded Coder. Due to these advantages, MATLAB Simulink is selected
for implementing the ARINC-664 ES model.

In this thesis, first, MATLAB Simulink models for general purpose D/D/1 and
M/D/1 queues are built and their latency performances are calculated and theoretically
verified. These models are extended to build an HDL convertible ARINC-664 ES
model with various scheduling algorithms such as the Smallest BAG (SB), Longest
Queue (LQ), Smallest Size (SS), and First-In-First-Out (FIFO). Finally, an advanced



ARINC-664 ES model, which provides an infrastructure for dynamically switching

among different scheduling algorithms in run-time, is presented.

1.2 Contribution

The first contribution of this thesis is to build a model-based simulation design of
ARINC-664 ES traffic regulator and generate the necessary HDL and C codes for a
System on Chip (SoC) implementation from this simulation design rather than using
traditional methods, i.e., building the entire design from scratch. To the best of our
knowledge, there is no other model-based SoC implementation of ARINC-664 ES

traffic regulator in the literature.

The second contribution is to measure the mean, standard deviation and maximum of
jitter of various scheduling algorithms for ARINC-664 ES and compare the results.
In this regard, the SB, SS, LQ, and FIFO algorithms are implemented, and their

performances are compared.

The third and last contribution is to build a dynamic scheduler for ARINC-664 ES. In
the dynamic scheduler, the user can switch among the scheduling algorithms during
run time based on the outcomes of the statistical performance. Dynamic scheduler
consists of simulation modules that include network traffic generators, Programmable
Logic (PL) implementation, including traffic shaper and scheduling algorithms, and

Processing Subsystem (PS) implementation, which provides statistic calculators.

1.3 Organization of Thesis

This thesis is organized into seven chapters, including the Introduction chapter.
Chapter 2 gives detailed information about ARINC-664, queueing theory, scheduling,
and tools used in this thesis. Chapter 3 reviews the literature by examining similar
works in this field. Chapter 4 presents the Simulink-based Single Queue model
and ARINC-664 ES model with various scheduling algorithms. Chapter 5 presents
the details of the ARINC-664 ES Dynamic Scheduler model. Chapter 6 presents
the theoretical simulation and implementation results for each scheduling algorithm.

Finally, Chapter 7 concludes the thesis.






2. BACKGROUND

In this chapter, first, the concepts of ARINC-664 are explained. Second, queueing
theory and its basic concepts are presented. Third, the general and ARINC-664
ES-specific scheduling algorithms are overviewed. Finally, the related tools are

explained.

2.1 ARINC-664

Recently, the necessity for reliable and predictable network services in many industries
has emerged. Deterministic networks provide solutions to these necessities with
bounded latency on a per-deterministic-flow basis and guaranteed low delay variation
(jitter) on each flow. Deterministic networks are mainly used in real-time applications,

video streaming, avionics, and automation technologies.

The amount of data that needs to be transferred in avionics systems increases day
by day. Due to their low bandwidth, traditional deterministic network protocols
such as MIL-STD-1553 and ARINC-429 cannot manage this increase. Some
of the State-of-the-art deterministic network protocols are TTEthernet, TSN, and
ARINC-664.

ARINC-664, also known as Avionics Full-Duplex Switched Ethernet (AFDX), is a
safety-critical avionics network communication protocol that guarantees a bounded
end-to-end delay and jitter, provides redundancy and QoS. There are three main

elements in the ARINC-664 network: VL, ES, and Switch.

ARINC-664 is a fault-tolerant deterministic network protocol. It provides redundant
communication on both the network and node levels. An example network topology
with redundant communication of ARINC-664 is shown in Fig. 2.1. End System 1
and End System 2 communicate through Switch A and Switch B in this topology. An
End System sends the same frame to Switch A and Switch B to ensure that if one of

the Switches fails, the other can still complete the transfer.
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Figure 2.1 : ARINC-664 network topology with redundant communication.

2.1.1 Virtual link

In ARINC-664, frames are exchanged through unidirectional connection from one
source to one or more destinations using logical communication channels called VLs.
Each frame has a 16-bit unique VL ID that can be used to transfer incoming traffic
flow to its logically separated VL queue. VL ID information is stored in the destination
address of the MAC. The maximum number of VLs that each ES can use is 128. A
general structure of ARINC-664 frames is shown in Fig. 2.2.

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes 20 Bytes 8 Bytes 17-1471 Bytes 1 Byte 4 Bytes 12 Bytes
B Fslft;:e Destination Source Type P ubP AFDX Sequence ::r:;]: Interframe
. Address Address IPv4 Structure Structure Payload Number Gap
Delimeter Sequence
AFDX Frame

Figure 2.2 : ARINC-664 frame structure.

Each VL's minimum and maximum frame size is determined by the L, and L,
parameters, respectively. L, limits the smallest and L, limits the largest Ethernet
frame size that can be transmitted over the corresponding VL. In ARINC-664, each
VL has a BAG parameter. BAG parameter specifies the frequency of transmission and
smooths the burst frame traffic by using the leaky bucket algorithm for each queue.
AG parameters are set as the multiple of two from 1 millisecond (ms) to 128 ms (1, 2,
4, ... 128 ms). Fig. 2.3 demonstrates how the traffic shaping regulates the unregulated

incoming traffic using the BAG parameter for a single queue, i.e., VL.
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Figure 2.3 : Working principle of traffic shaping for a single queue.

2.1.2 End system

ARINC-664 ES is one of the main components of the ARINC-664 network protocol.
ESs exchange data between each other through Switches. ESs aim to guarantee secure
and reliable data exchanges to the partition software. Each ES incorporates traffic
shaping and scheduling mechanisms to ensure that the bandwidth utilization of each
traffic flow conforms with its contracted limit and that each frame is delivered to the
transmission medium in a timely fashion, respectively. ARINC-664 ES consists of
two parts, the receiver and transmitter. The main elements of the transmitter are the
VL FIFOs, Traffic Regulator, and Redundancy Manager, while the main elements of
the receiver are the Integrity Checker and Redundancy Checker. In the transmitter,
incoming Ethernet frames from the upper layer are stored in distinct VL FIFOs
(queues) based on their VL IDs. Traffic Regulator regulates incoming Ethernet frames
for each queue. Redundancy Manager duplicates Ethernet frames to provide reliable
communication. It also tags the order of each Ethernet frame with a sequence number.
This number can be between 0 and 255. In the receiver, the Integrity Checker module
checks the sequence number of each Ethernet frame to ensure that the incoming frames
are properly ordered, and the Redundancy Checker module allows the first arriving

frame among duplicated frames and drops the other one. Then, the frames are sent to



the upper layer. The structure of the ARINC-664 ES transmitter is shown in Fig. 2.4
and the structure of the ARINC-664 ES receiver is shown in Fig. 2.5.

BAG 1

_— VLFIFO 1 _— > MACA

= From Upper I—, VLFIFO 2 BAG2Z, Scf;\jﬂt;(ler —— Redundancy Manager

..oLayer__
— MACB
BAG N
VLFIFON —
Figure 2.4 : Structure of the ARINC-664 ES transmitter.
MACA
To Upper Redundancy Check Integrity Check
I 3 _Laye.r_ . .r_ edunaancy ecker ntegrity ecker

MAC B

Figure 2.5 : Structure of the ARINC-664 ES receiver.

The ideal behavior of Fig. 2.3 cannot be achieved since ARINC-664 ES has multiple
VLs served over only one output link (i.e., server). Considering that there are multiple
VL queues and more than one queue can have frames ready to be served, a scheduler
mechanism must be used to decide which queue to be served next. The scheduling
algorithm results in the jitter, and the objective is to utilize a scheduling algorithm that

can yield a minimum jitter. Fig. 2.6 demonstrates the concept of jitter in ARINC-664

ES.
BAG BAG BAG
5
1 B
<+“—> >
Jitter =0 Jitter > 0

Figure 2.6 : The demonstration of jitter as a result of the scheduling conflict.



2.1.3 Switch

ARINC-664 Switch is one of the main components of the ARINC-664 network
protocol. Each Switch is responsible for forwarding the incoming VL frames to their
destination ports while enforcing timing, filtering, and policy requirements, limiting
fault propagation, and ensuring time determinism. The filtering function is responsible
for dropping the invalid frames that are corrupted or whose size is not in the L, -
Ly range of the corresponding VL. The policing function is responsible for applying
the frame-based or byte-based token bucket algorithm to guarantee that any of the
frames that violate the allocated bandwidth will be dropped. The forwarding function
is responsible for directing the incoming frames to the corresponding destination ports

according to the configuration table.

2.2 Queueing Theory

Network applications require complex queues with various algorithms. However,
simplifying the application is beneficial when the aim is to analyze a complex queue
[8]. The queueing theory aims to analyze queue systems. A commonly used notation
for queue systems is called Kendall notation [9]. In this notation, arrival process,
service distribution, number of servers, and the buffer size can be notated as follows:
[arrival process]/[service distribution]/[number of servers]/[buffer size]-[queue disci-
pline]

The arrival process defines how an independent source loads the queue, and service
distribution defines the policy for serving queues. The most common notations
for arrival process and service distribution are M, D, and G. M defines the
Markovian-Poisson or exponential process, D defines the deterministic process, and
G defines the general process. The number of servers defines how many servers exist
to serve the queue s. Buffer size defines the number of buffer spaces available in
the queues. If no value is specified, the buffers are assumed unlimited. Scheduling
policy defines the deciding mechanism of which queue to serve next. Queue discipline
defines the serving order, e.g. FIFO, LIFO, and Processor Sharing. Fig. 2.7 represents
a queueing system. In the figure, enqueuing means filling the queue and dequeuing

emptying the queue. An important queueing system parameter is utilization, denoted
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Figure 2.7 : Queueing system.

as U. Utilization can be defined as the number of busy servers divided by the total
servers for a simulation time. In the case of a single server, it can be defined as the
amount of time the server is busy divided by the entire simulation time. From the user’s
perspective, higher utilization means better performance. Let y denote the service rate,

and A denote the arrival rate. If

m>A (2.1)

the queue is stable. However, if

m<i (2.2)

the queue will overflow eventually; hence, it is not stable. Utilization can be defined

as

U=pu/r (2.3)

Another important queueing system parameter is Little’s Formula. It is used for
predicting the average number of items in a stationary queueing system. The definition

of this formula is

L=A-W 24)

where L defines the number of items in a queue, and W defines the average waiting

time an item spends in the queueing system.

Example simulation tables for two Kendall notations are set below. Table 2.1 shows
an example queueing scenario for a D/D/1 queue. This notation means the arrival
rate and the service rate of the queueing system are deterministic. Table 2.2 shows an
example queueing scenario for an M/D/1 queue. This notation means that the arrival
rate of the queueing system is exponential, and the service rate of the queueing system
is deterministic. In each notation, the buffer is unlimited, and there is only a single
server; hence there is no scheduling policy. These tables will be used to verify the

queueing systems in the next chapters.
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Table 2.1 : Simulation table for a D/D/1 queue [8].

Arrival Service Queue Size Service Service Delay
Time Duration on Arrival Starts Ends
1 4 0 1 5 4
5 4 0 5 9 4
9 4 0 9 13 4
13 4 0 13 17 4
17 4 0 17 21 4
21 4 0 21 25 4
Table 2.2 : Simulation table for an M/D/1 queue [8].
Arrival Service Queue Size Service Service Delay
Time Duration on Arrival Starts Ends
1 4 0 1 5 4
3 4 1 5 9 6
4 4 2 9 13 9
12 4 1 13 17 5
17 4 0 17 21 4
18 4 1 21 25 7

2.3 Scheduling

Scheduling is a crucial concept to improve the Quality of Service (QoS) in many
applications. Generally, a scheduling policy aims to reduce and bound jitter. It also
can aim at fairness (e.g., Jain’s index [10]) or maximizing the throughput. Some
traditional scheduling algorithms are the FIFO Scheduling, Earliest Deadline First
(EDF) Scheduling, Shortest-Job-Next Scheduling, and Round Robin (RR) scheduling.

Generalized Processor Sharing (GPS) [11] behavior is an ideal approach to provide
fair scheduling in network systems. Even though GPS has an ideal behavior, it is not
implementable since multiple queues are ready to be served, but only one server serves
them. Instead, GPS-like approaches have been proposed by researchers in recent years.
Some implementable fair queueing based scheduling algorithms are Weighted Fair
Queueing (WFQ) [12], Weighted Round Robin (WRR) [13], and Worst-Case Weighted
Fair Queueing+ (WF2Q+) [14], [15]. WRR is an extension of the well-known RR

scheduling algorithm, which rounds each queue from top to bottom or bottom to top.
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It differs from RR with the ability to assign different frame weights to different queues.
An alternative approach to WRR is Deficit Round Robin (DRR) algorithm. Contrary

to WRR, DRR assigns byte-based weight, i.e., quantum value, to each queue.

A relatively new defined scheduling algorithm concept is virtual clock-based
scheduling. In literature, there are many virtual clock-based scheduling [16]. Among
them, WF2Q+, an extension of the Worst-Case Weighted Fair Queueing (WF2Q), is

the most popular scheduling algorithm.

Fair queueing algorithms are considered to be useful in next-generation mixed-critical
ARINC-664 Switch technologies. [17] suggests that complex scheduling algorithms
can be considered in mixed-critical applications and [18] proposes a hierarchical
scheduling structure including Strict Priority (SP) and WF2Q+. Fair queueing
scheduling algorithms are beneficial for improving the QoS of network systems.
However, these algorithms are not suitable to the ARINC-664 ES because the BAG
parameter regulates the incoming Ethernet traffic; in other words, the BAG parameter
assigns weights for each queue. ARINC-664 standard does not specify any scheduling
algorithm. However, there are some studies for possible scheduling algorithms in

ARINC-664 ES. These algorithms are the RR, SB, FIFO, SS, and LQ.

The RR is a common scheduling algorithm. It chooses a VL to serve among all the VLs
in some rational order, usually from top to bottom and then starting again at the top.
The Smallest BAG scheduling algorithm serves the VL with the smallest BAG value
among all VLs. In the ARINC-664 standard, there are eight possible BAG parameters
for each queue. So, some of the VLs can have the same priority in the case of multiple
VLs. The FIFO algorithm serves the VL whose Head Of Line (HoL) arrival time is
the smallest among all the queues. Under unregulated Ethernet traffic, this algorithm
does not specify any priority or pattern among queues. The SS algorithm serves the
VL whose HoL frame is among all VLs. The LQ algorithm serves the VL with the

highest number of bytes among all VLs.
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2.4 Related Tools

MATLAB [19] is a numeric computing and programming platform for engineers and
scientists. It performs complex mathematical computations and provides extensive
libraries with a model-based design environment. Also, MATLAB offers many
products for converting hardware or software systems, such as Embedded Coder,

C/C++ Converter, Xilinx Model Composer, and HDL Coder.

Simulink [20] is a MATLAB-based graphical programming environment for
simulating, modeling, and analyzing systems. It is used in many fields, such as digital
signal processing and control theory. It offers many libraries and tools for several
development environments; some can operate with other third-party tools. Simulink
provides state machine templates, large libraries, functions, and requirement tracker

tools to evaluate performance, create design tests, and build prototypes.

Building a Register Transfer Level (RTL) design with traditional methods consumes a
lot of time, and a verification environment must be created from the earliest stages to
ensure that system works properly. MATLAB HDL Coder [21] is an alternative RTL
development method to avoid the drawbacks of traditional RTL design developments
with HDLs [22], [23]. It generates synthesizable Very High Speed Integrated Circuit
Hardware Description Language (VHDL) or Verilog HDL files using Simulink blocks
and MATLAB functions. MATLAB HDL Coder can generate HDL codes with or
without clock enable, synchronous and asynchronous reset. A designer can select the
target device and operation frequency. It also proposes more complex options such as

pipelining.

MATLAB Embedded Coder [24] generates readable C/C++ codes for embedded
processors of various device vendors such as ARM, Intel, and STMicroelectronics.
The user can aim to be efficient, whether in memory or speed usage. Generated C codes
contain necessary header files, Simulink function files, and a main file. The main file is
called "ert_main.c". Ertis the abbreviation of "Embedded Real-Time". This main
function has three subfunctions: Initialize, OneStep, and Terminate. The Initialize
function assigns the initial value of all the parameters of the C code. The OneStep

function executes, and the Terminate function terminates the Simulink model. Fig.
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2.8 shows the working principle of MATLAB HDL Coder and MATLAB Embedded

Coder.
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Figure 2.8 : Working principle of MATLAB HDL Coder and Embedded Coder.

Vivado Design Suite [25] is a software program produced by Xilinx for simulation,
synthesis, and implementation of HDL based designs on FPGA. On top of that, Vivado
offers a C-based High Level Synthesis (HLS) platform and an SoC development
environment. The first version of Vivado, the sequel to ISE, was released on April
2012. Vivado can be used in both Graphical User Interface (GUI) and batch mode

with Tool command language (Tcl). It supports 7 Series or newer FPGAs.

Xilinx Software Development Kit (SDK) [26] is an Eclipse-based Integrated Design
Environment (IDE) for programming Xilinx’s embedded processors such as Zynq
devices and Microblaze softcore. Xilinx SDK works integrated with Xilinx Vivado. It
provides Board Support Package (BSP) libraries that can control custom RTL designs
and Xilinx Intellectual Property (IP) cores. Also, it brings together homogenous and

heterogeneous multi-processor designs.
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3. LITERATURE REVIEW

Many works are related to MATLAB HDL Coder and Embedded Coder, ARINC-664
simulation and hardware implementation, and performance evaluation of ARINC-664

scheduling algorithms in the literature. In this chapter, these works are reviewed.

3.1 MATLAB HDL Coder and Embedded Coder Applications

In literature, Simulink, Embedded Coder, and HDL Coder are widely used in many
applications such as image and video processing [27], controlling of power systems

[28] and machine learning [29].

A Wireless Communication SoC with both hand-written HDL code and MATLAB
HDL Coder is built in [30]. Then, the utilization results are compared, and the code
readability and development time is examined. This work shows that MATLAB HDL
Coder spends fewer resources, its code is readable if the designer respects the concepts

of the tool, and less time in development was spent than hand-written code.

Digital filter systems are built using three methods including hand-written RTL
code, Vivado High Level Synthesis (HLS), and MATLAB HDL Coder, and their
performances are compared in several aspects such as area optimization, latency,
throughput optimization, and timing optimization in [31]. This work claims that HLS
in FPGA development decreases the amount of time spent on product development
cycles. It also claims that the area, throughput, latency, and timing objectives could
be met easier with Vivado HLS compared to MATLAB HDL Coder. In addition,
it is mentioned that the MATLAB Simulink environment provides many graphical
libraries and block diagrams, especially in the field of control, signal processing, image

processing, etc.

MATLAB codes are converted to C by using MATLAB Embedded Coder in [32].

Then, the pros and cons of Embedded Coder are stated. Generally, the pros are that the
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structure of the code is good, and variables and comments are placed correctly. The

cons are that some names are strange, and the code readability is not very good.

3.2 Model-Based ARINC-664 Design

In [33], a model-based ARINC-664 simulation environment is built to measure
the performance of the network system under various traffic situations by using
OMNET++, a discrete event simulator. This work presents the worst-case end-to-end
delay results of the ARINC-664 network. However, this work only builds the model

for simulation purposes.

Modeling and simulation of the ARINC-664 network system is built by using OPNET
in [34]. It builds the ES and Switch components of the ARINC-664 and simulates
and compares the end-to-end delay, delay jitter, and packet loss rate results of the
ARINC-664 network with traditional Ethernet. The results show that the ARINC-664
provides better performance. However, this work only builds the model for simulation

purposes.

3.3 FPGA Implementation of Scheduler Algorithms and ARINC-664

The FPGA is claimed to be a good choice for implementing scheduling algorithms
in [35] due to its high speed and reconfigurability. Then, it sorts some scheduling
approaches according to some parameters such as simulation delay, resource
utilization, and arbitration completion speed. In conclusion, this work represents a
positive attitude about the FPGA development of scheduling algorithms in network

switches. However, it states that more research is necessary in this field.

An FPGA-based dynamic scheduling system is presented in [36]. The presented
system is capable of switching among Deficit Weighted Round Robin (DWRR) and
WEF2Q+ scheduling algorithms by using partial reconfiguration. This research claims
that switching time in partial reconfiguration, which is a critical parameter for these
systems to work efficiently, is negligible for both algorithms. Also, FPGA resources

for both algorithms are presented.

Moving the software components of ARINC-664 to FPGA to mitigate the possible

Single Event Upset (SEU) situations is aimed in [37]. This work concludes that
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the FPGA is a good candidate for ARINC-664 implementation. It also declares that
sampling queues are easier to implement in FPGA, and FPGA can provide robustness

against SEU problems.

ARINC-664 ES is implemented on FPGA in [38]. It provides the architecture details
and resource utilization on both transmitter and receiver. Also, it provides the details
of Direct Memory Access (DMA) technology and Peripheral Component Interface
Express (PCle), which are used for full-duplex data transferring between software
and hardware. Then, it represents a reconfigurable system that can switch the BAG

parameter of each VL via PCle in run-time.

The possible ARINC-664 implementation solutions are discussed in [7];
processor-centric and hardware-centric. The entire design, except the physical
interfaces, is located in Processing Subsystem (PS) in the processor-centric solution.
The ARINC-664 protocol is implemented in the hardware below the Internet Protocol
Layer (IP Layer), while the IP layer and above was implemented in the embedded
processor in the hardware-centric solution. Also, it provides some suggestions for
DO-254 and ARINC-664 approaches and briefly explains the concepts of ARINC-664

and similar network protocols.

3.4 ARINC-664 Scheduling Performance Analysis

ARINC-664 jitter and delay performance are evaluated in both ES and network domain

under different scheduling and shaping algorithms and topologies [39], [40], [41].

In [42], the jitter-EDD(Earliest-Due-Date)’s scheduling algorithm is used in both
source and destination hosts to provide a more reliable network system for aircraft.
A simulation scenario with SimEvents, a MATLAB application for building discrete
event simulators [43] is used, which includes 9 Switches and 13 ESs. This work shows

that the end-to-end delay is much smaller with the jitter-EDD mechanism.

The performance of ARINC-664 ES scheduling algorithms (RR, SB, LQ, SS, and
FIFO) on the ARINC-664 network are examined in [44]. Simulations are run on
OMNET++. The maximum jitter, mean jitter, and the percentage of frames whose
jitter is more than 500 microseconds (us) are presented in this research. The results

show that the LQ and FIFO algorithm has the best performance in terms of low jitter.
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Therefore, this research suggests the FIFO and LQ as the best scheduling algorithms
in ARINC-664 ES.

A new shaping methodology for the FIFO scheduling algorithm, which provides
uniform delay, is offered in [45]. This work claims that delay jitter significantly
decreases, but the delay slightly increases on the low priority. This work has proved
that this method will drastically reduce delay jitter with a slight increase of delay on

the low priority queues.

In [46], BAG-based and rate-based scheduling algorithms are compared using the
Network Calculus and Response Time Analysis. An example configuration scenario is
set based on 4 VLs, and the results for the mean, standard deviation, and distributions
of jitter are presented. This research claims that BAG-based scheduling is the optimal

scheduling policy for ARINC-664 ES.

The SS algorithm, i.e., Smallest Frame Earliest (SFE) algorithm, is examined and
compared with Largest Frame Earliest (LFE) and random priority assignment in [47].
It theoretically proves that the SFE provides the minimum average jitter using a 4 VL.

scenario.
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4. END SYSTEM SCHEDULER MODELS

Since time-to-market is an important objective, developers need powerful tools for the
rapid prototyping of highly complex systems. Model-based system design is presented
as a solution for rapid prototyping of the ARINC-664 ES.

In this chapter, first, the Single Queue model built using MATLAB Simulink is
described. Then, the structure of the ARINC-664 ES model is described.

4.1 Single Queue Model

As described in Chapter 2, simplifying a queue-based system allows queuing theory
to be used to analyze that system. To fulfill this purpose, in this section, a Simulink
model of a Single Queue system that is responsible for generating, storing, and serving
Ethernet frames with varying lengths and data rates is presented. Fig. 4.1 demonstrates

the architecture of this model consisting of the Loader, Memory, Server, and Analysis

modules.
Frame
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Figure 4.1 : Simulink model of the Singe Queue.
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The Loader, Memory, and Analysis modules are used solely for simulation purposes,
whereas the Server module is used for the FPGA implementation. The primary
purpose of this model is to verify the Loader module in prior because the ARINC-664
ES model is more complex and hard to verify. Considering that the Loader module will
be used for feeding the queues to evaluate the performance of the hardware convertible
scheduling algorithms, it is clear that the proper functioning of this module is of great
importance. In the Loader module, the MessageGeneratorTrigger block determines
the message generation time according to the traffic model. This block can generate
frames in the deterministic or exponential arriving processes. The MessageGenerator
block creates ARINC-664 frames, which contain VL ID information in its MAC
destination and the length information at the beginning of the frame. The Message
Loader loads Ethernet frames to the memory emulating FIFO by sending 1 byte at
each step. The SchedulerServer block in the Server module is responsible for serving
Ethernet frames using the link capacity information. This block, first, reads the length
information at the beginning of the frame and then reads 1 byte at each step until
the entire frame is read. The service rate of the SchedulerServer block is 1 Gbit/s.
The moments that events occurred are stored in the Analysis module to calculate

performance measures at the end of the simulation.

Experiments are performed for D/D/1 and M/D/1 queuing models, and the simulation
model results are compared with theoretical calculations of the queuing theory by
using Table 2.1 and Table 2.2. In the Analysis module of the Single Queue model,
the aim is to calculate the mean jitter values of each queue. The jitter value must
be calculated for each frame of each queue to achieve this. Storing each arrival and
departure time of frames for jitter measurement is not applicable because it would
require excessive memory usage and downgrade the simulation speed. Instead, service
time can be subtracted from the arrival time for each frame, and the mean value of these
subtractions can be considered as the mean jitter. Even though this method works for
D/D/1 queues, two or more frames can arrive before any of them is served in case of
an M/D/1 queue. So, the subtraction operation in run-time is also not implementable

for M/D/1 queues.

An alternative approach to performing both D/D/1 and M/D/1 measurements is

to calculate the average jitter of arrival time and average jitter of service time
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independently at run-time. These two values are subtracted from each other at the end
of the simulation to find the minimum jitter. The formula for mean jitter calculation is
shown below:

E[U] = E[Y] - E[X] 4.1)

where U denotes the jitter, Y denotes the service time, X denotes the arrival time, and

E denotes the expected value, i.e., mean.

Single Queue model for D/D/1 and M/D/1 is simulated, and its statistics are compared
with the theoretical statistics based on Table 2.1 and Table 2.2. Table 4.1 and Table 4.2
show the example scenario, and compare theoretical results with simulation results for

D/D/1 and M/D/1 queues, respectively.

Table 4.1 : D/D/1 simulation table

Arrival Length Service Theoretical | Simulation | Number of
Rate (Byte) Rate Mean Mean Frames
990 Mbit/s 100 1 Gbit/s 0 32 1237500

In case of an arrival rate of 990 Megabit per second (Mbit/s) and service rate of 1
Gigabit per second (Gbit/s) in D/D/1, the queue must be empty 1 percent of the time
and loaded with only one message 99 percent of the time. So, the mean jitter must be
0 in theory. In the simulation, the mean jitter value is 32 nanoseconds (ns) because it
takes 4 cycles, each cycle is 8 ns, for the scheduler to trigger once the queue starts to

fill. These 4 cycles can be described as overhead, independent of the frame length.

Table 4.2 : M/D/1 simulation table

Arrival Length Service | Theoretical | Simulation | Number of
Rate (Byte) Rate Mean Mean Frames
990 Mbit/s 100 1 Gbit/s 33.4950 91.96 1237500

In case of an arrival rate of 990 Mbit/s and a service rate of 1 Gbit/s in M/D/1, the queue
can be filled with more than one frame at some of the simulation time. In theory, the
mean jitter value is 33.4950 ns. In practice, the mean jitter value is 91.96 ns. 32 ns is
the overhead, independent of the frame length. The rest of the time (59.96 ns) is the

mean jitter value of the simulated M/D/1 model.
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4.2 ARINC-664 End System Model

ARINC-664 ES model is built in Simulink to implement and analyze the scheduling
algorithms. It is an extension of the Single Queue model, which we described in the
previous section. Fig. 4.2 demonstrates the logical structure of the ARINC-664 ES
model consists of the Loaders, Memory, Analysis, and Server modules. In the figure,

N represents the number of VLs. The Loaders, Memory, and Analysis modules are

PR Memory Analysis
Loader 1 —> FIFO 1 Analysis 1
Loader N -> FIFON Analysis N
1
2 Server
@ Scheduler
L Decider 1
A Scheduler | Frame
—> Shaper Server >
A 4
» Eligible Queues
Simulation Modules Implementation Modules

Figure 4.2 : Simulink model of the ARINC-664 ES

used for simulation, whereas the Server module is used for the FPGA implementation.
In the ARINC-664 ES model, each queue must be filled independently. To achieve this,
the Loaders module, which includes multiple Loader blocks, is added to the simulation
model. Each Loader block can have a deterministic or exponential arriving process.
Note that each Loader block of the ARINC-664 ES model is a copy of the Loader
module of the Single Queue model. Therefore, the Loader block of the ARINC-664 ES
model is already verified. The Memory module contains independent FIFOs for each
VLs. The Server module includes the Shaper, SchedulerDecider, EligibleQueues,
and Scheduler blocks. The Shaper block implements the leaky bucket algorithm. Its
primary purpose is to regulate the incoming Ethernet frame traffic as described in Fig.

2.3. The EligibleQueues block keeps track of the eligibility of each VL based on the
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leaky bucket and the scheduling algorithm. A queue becomes eligible if it is ready
for being served and remains eligible until it is decided that it will be served. The
SchedulerDecider block determines which VL must be served among eligible queues
according to the scheduling algorithm. The SchedulerServer block serves the Ethernet
frame from one of the queues according to the outcome of the SchedulerDecider block.
Its operation speed is 1 Gbit/s. In the SchedulerServer block, as in the Single Queue
model, the length information is read from the first two bytes of each frame. Then,
the SchedulerServer block reads the entire frame based on the length information by
serving 1 byte at each step. The SchedulerDecider block determines which VL must

be served among eligible queues according to the scheduling algorithm

4.2.1 Implementation of the server module

The Server module is hardware convertible; thus, its design should pay attention to
the clock and hardware limits. The proposed ARINC-664 ES model operates at 1
Gbit/s and processes 8 bits at each transaction. Therefore, the operation frequency
of the Server module must be at least 125 MHz. The SchedulerDecider block is the
most challenging part of the Server module in converting the model to HDL. The
SB, FIFO, SS, and LQ scheduling algorithms are implemented in this thesis. The
SchedulerDecider block implementation for each scheduling algorithm is presented
below. For the sake of simplicity, all scheduling algorithms are implemented for 8
queues; however, they can be extended to 128 queues which is the maximum number

of VLs defined by the ARINC-664 ES standard.

The SB scheduling algorithm serves the queue with the smallest BAG value among
all eligible queues. Fig. 4.3 shows the structure of the SchedulerDecider block,
and Fig. 4.4 shows the Simulink implementation of the SchedulerDecider block of
8 queues for SB. In Fig. 4.3, the mechanism of the SB scheduling algorithm consists
of three subsystems; the Masker, MinimumFinderl, and MinimumFinderFinal, and
two functions; Min4 and Min2. The Min4 function finds the minimum value among
4 inputs, and Min?2 finds the minimum value among 2 inputs. The Masker subsystem
aims to eliminate the queues that are not ready to be served due to the Shaper block.
In the case of the SB algorithm, the Masker subsystem sets its output to the maximum

32-bits integer value if the corresponding queue is not eligible. Later, masked BAG
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values are compared in the MinimumFinder1 and MinimumFinderFinal subsystems.
The operation frequency of the SchedulerDecider block is 125 MHz, so finding the
minimum BAG value in one step is not an applicable method. Instead, the smallest
BAG value among every 4 queues is found parallelly in the MinimumFinderl by
using the Min4 function, and the two outputs of the MinimumFinder]l are compared
with each other in the MinimumFinderFinal by using the Min2 function. Then, the
output of the MinimumFinderFinal is sent to the output of the SchedulerDecider
block. If this value is the maximum 32-bit integer value, it means that none of the
queues is eligible at the moment, and none of the queues should be served. So,
the SchedulerDecider block of the SB scheduling algorithm is triggered again and
operates the same functions until the output value becomes valid. When the output

value becomes valid, the selected queue is served.

7 Min4 7
8 8 2 1 1
Masker 7 Min2
BAG 1 L Index

Min4 /l MinimumFinderFinal

D O%

\ MinimumFinder1 /

Figure 4.3 : Structure of the Scheduler Decider block of SB for 8 queues.

The FIFO scheduling algorithm serves the queue whose Head of Line (HoL) arrival
time is the smallest among all eligible queues. Implementation of this algorithm
follows a similar procedure as the SB algorithm. However, the HoL arrival time
of each queue must be known in advance in the FIFO algorithm. A second
First-Word-Fall-Through (FWFT) FIFO for each VL is placed in the Memory module,
and the arrival time of each frame is stored inside of these FIFOs to achieve this.
A 64-bit free-running time counter is used inside of the Memory module to obtain
arrival time. Each time a frame transmission starts from the Loaders module to the
Memory module, the value of the free-running counter is written to the FIFO. The FIFO
scheduling algorithm mechanism is almost the same as the SB scheduling algorithm.
The only difference is that the input parameters of the Masker, MinimumFinder1, and

MinimumFinderFinal subsystems are 64-bits.
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The SS algorithm serves the queue whose HoL frame is the smallest among all eligible
queues. Implementation of this algorithm follows a similar procedure as the FIFO
algorithm. However, the SS scheduling algorithm needs each queue’s HoL. frame
length information in advance rather than the arrival time. A second FWFT FIFO for
each VL is placed to the Memory module, and the frame length of each queue is stored
inside of these FIFOs to achieve this. The mechanism of the SS scheduling algorithm
is almost the same as the SB and FIFO scheduling algorithms. The only difference
is that the parameters of the Masker, MinimumFinderl, and MinimumFinderFinal

subsystems are 16 bits.

The LQ algorithm serves the queue with the highest number of bytes among all
eligible queues. Implementation of this algorithm follows a similar procedure as
the SB algorithm. However, contrary to the SB, the LQ scheduling algorithm
finds the maximum value among all queues. Fig. 4.5 shows the mechanism
of the LQ scheduling algorithm which consists of three subsystems; the Masker,
MaximumFinderl and MaximumFinderFinal, and two functions; Max4 and Max?2.
The Max4 function finds the maximum value among 4 inputs, and Max?2 finds the
maximum value among 2 inputs. The Masker subsystem sets its output value to 0 if the
corresponding queue is not eligible. The fullest queue among every 4 queues is found
parallelly in the MaximumFinderl subsystem by using the Max4 function and the 2
output values of the MaximumFinderl are compared in the MaximumFinderFinal by
using the Max2 function. Then, the output of the MaximumFinderFinal is sent to
the output of the SchedulerDecider block. If this value is 0, it means that none of
the queues are eligible at the moment, and none of the queues should be served. So,
the SchedulerDecider block of the LQ scheduling algorithm is triggered again and
operates the same functions until the output value becomes valid. When the output

value becomes valid, the selected queue is served.

N
=

7 Max4 7
8 8 2 1 1
Masker 7 Max2
Queue 1 L Index

4
Length v Max4 ~ MaximumFinderFinal

\_ MaximumFinder1 /

Figure 4.5 : Structure of the Scheduler Decider block of LQ for 8 queues.
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As an addition, the Server module of the SB algorithm for 32 queues is designed.
Fig. 4.6 shows the structure of the SchedulerDecider block, and Fig. 4.7
shows the Simulink implementation of the SchedulerDecider block of SB algorithm
for 32 queues. In Fig. 4.6, the mechanism of the SB scheduling algorithm
consists of four subsystems; Masker, MinimumFinderl, MinimumFinder2, and
MinimumFinderFinal, and two functions; Min4 and Min2. The Min4 function finds
the minimum value among 4 inputs, and Min2 finds the minimum value among 2
inputs. First, the Masker subsystem masks the non-eligible queues in the system
with 8 queues. Then, the MinimumFinderl subsystem finds the smallest 8 of 32
queues in groups of 4 using Min4 fimction. Later, the MinimumFinder2 finds the
smallest 2 of 8 queues in a group of 4 by using the Min4 function, and finally, the
MinimumFinderFinal finds the minimum value among 2 inputs by using the Min2
function. The rest of the decisions follow the same procedure as the 8 queues Server

module.

h N
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Figure 4.6 : Structure of the Scheduler Decider block of SB for 32 queues.
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4.2.2 Implementation of the analysis module

The Analysis module is crucial for the ARINC-664 ES model because it operates
statistical analysis. The analysis module measures four statistics for each queue: The
mean, standard deviation, and maximum of jitter performances, and the number of
served frames. The jitter is calculated for each frame on a per-flow basis to measure
the first three statistics. Note that the jitter is defined as the delay between the beginning
of the BAG and the date when the first bit of the frame is sent [48]. Calculating jitter
value is easier in the ARINC-664 ES model than the Single Queue model since there

is no need to keep track of two different values.

Storing the time difference for each Ethernet frame is not an applicable method because
storing this information requires excessive memory and slows down the simulation
significantly. Instead, similar to the Single Queue model, run-time mean and standard
deviation calculators are used. Fig. 4.8 shows the running mean and running standard
deviation calculator modules of the Digital Signal Processing System Toolbox [49].
Fig. 4.9 shows the Simulink implementation of the Analysis module for a single queue.
In this implementation, the JitterCounter subsystem calculates the jitter by counting
at each step, RunMeanRunStd subsystem recalculates the mean and standard deviation
based on the new jitter value, RunMax subsystem calculates the maximum value,
RunFrameCounter subsystem calculates the number of served frames, and Logger

subsystem logs the statistics.

Y 1 b y I ¢

Running Mean Running Standard Deviation

Figure 4.8 : Running mean and running standard deviation calculators.
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S. END SYSTEM DYNAMIC SCHEDULER MODEL

In this chapter, the ARINC-664 ES Dynamic Scheduler model is presented.

ARINC-664 ES requires many configuration parameters such as VL ID, BAG,
Lyin, and L,,,. Though today’s applications mostly aim to configure the ES once
according to the offline network planning when the system is on the ground, some
reconfigurability studies which focus on reconfiguring the configuration parameters
during run-time exist [38]. However, changing the scheduler strategy might yield
significant performance improvement. ARINC-664 ES Dynamic Scheduler model,
will be referred as the Dynamic Scheduler model in the rest of the thesis, is developed
to take advantage of all the scheduling algorithms described in the previous chapter.

Fig. 5.1 shows the structure of the Dynamic Scheduler model, which consists of the

Loaders, Memory, Analysis, and Server modules.

Loaders Memory \Analysis
Loader 1 -» | FWFTFIFO 1 Frame FIFO 1 Analysis 1
Loader N =» | FWFT FIFO N Frame FIFO N Analysis N

) .
= Dynamic Server
© Scheduler
uw Decider I
4 Scheduler | Frame
= Shaper Server "

Simulation Modules

\ 4

\ 4

Eligible Queues

Hardware Implementation Modules

D Software Implementation Modules

Figure 5.1 : Simulink model of the Dynamic Scheduler.
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The Loaders module of the Dynamic Scheduler model has the same structure as in the
Loaders module of the ARINC-664 ES model. However, the Memory, Server, and
Analysis modules of the Dynamic Scheduler model differ from the ARINC-664 ES
model. These differences are: FWFT FIFOs for each queue are implemented in the
Memory module and the Memory module is converted to HDL to simplify Vivado
simulation, four scheduling algorithms are implemented in the SchedulerDecider
block of the Server module, and Simulink blocks are converted to both hardware and

software in the Analysis module.

5.1 Implementation of the Dynamic Server Module

A hardware implementable DynamicServer module is proposed. This module can
apply all the schedulers described in Chapter 4. Fig. 5.2 shows the structure of the

DynamicServer module.

Select

Dynamic Server
\ 4

Dynamic Scheduler Decider

Arrival Time .
> FIFO Scheduler | Frame

HOL Length < smallest Size Server

Queue Length

> Longest Queue

Frame

A

v

Eligible
Queues

Shaper

Figure 5.2 : Simulink model of the Dynamic Server module.

In run-time, the user can switch the scheduling algorithm with a Select pin. Necessary
parameters for implementing the SB, LQ, FIFO, and SS scheduling algorithms are
the BAG, number of bytes, HoL. frame length, and HoL arrival time of each VL,
respectively. BAG parameters are stored inside of the Shaper block. The number of
bytes information is provided by the FrameFIF O blocks. HoL frame length and HoL.
arrival time of VLs must be known in advance to decide which queue to serve next.

The HoL arrival time information is 64-bits, and the HoL frame length information
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is 16-bits. Instead of storing each value in a separate FWFT FIFO, i.e. spending
two FWFT FIFOs for each queue, the concatenation of these two information, which
is 80-bits, can be stored in one FWFT FIFO (FWFTFIFO block of the Memory

module), and then split into two pieces in the DynamicServer module.

5.2 Implementation of the Analysis Module

The Analysis module is crucial for the Dynamic Scheduler model because it operates
statistical analysis and decides which scheduler algorithm to run. Similar to the
ARINC-664 ES model, the Analysis module of the Dynamic Scheduler model
measures four statistics for each queue: The mean, standard deviation, and maximum
of jitter performances, and the number of served frames. The jitter is calculated for

each frame on a per-flow basis to measure the first three statistics.

Calculating the jitter is implemented by using the JitterCalculator subsystem whose

Simulink implementation is shown in Fig. 5.3.

procAllow countEnable countEnable

procAllow

CountedValue —P —
queueditter
4,—’ countReset
shaperEligibl countReset

shaperEligible "
JitterCounter

-

queue\ndex runMeanOp »( 2 )
queuelndex queueEnable
\ Moore J

State

Figure 5.3 : Simulink implementation of the Jitter Calculator subsystem.

In this subsystem, the JitterCounter subsystem is responsible for calculating the jitter
value by counting at each step from the moment the queue becomes eligible to the
moment it is decided that the queue will be served. Operation of the JitterCalculator
subsystem is suitable to PL; hence, this subsystem is converted to HDL with MATLAB
HDL Coder. The mean, standard deviation and maximum of jitter performances,
and the number of served frames are implemented by using the StatisticCalculator

subsystem whose Simulink implementation is shown in Fig. 5.4.
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queue.Jitter
alOut
[ Val2
L 3
o t——»(3)
runMax
1
2 ) O| packelcomler—@
queueEnable runPacket
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Figure 5.4 : Simulink implementation of the Statistic Calculator subsystem.

In this subsystem, the RunMeanRunStd subsystem recalculates the mean and standard
deviation values based on the new jitter input, RunMax subsystem calculates the
maximum jitter and the RunFrameCounter subsystem counter increases when a frame
is served. Operations of the StatisticCalculator subsystem are suitable to PS; hence,

this subsystem is converted to C with MATLAB Embedded Coder.

5.3 System on Chip Implementation

The JitterCalculator subsystem of the Analysis module is located on the PL and the
StatisticCalculator subsystem of the Analysis module is located on the PS to build an
SoC. In this study, PL is implemented by using the logic fabric of the FPGA, and the
PS is implemented on the Microblaze, which is a soft-core processor built by using the
logic fabric of the FPGA. Then, a block design is built by using Xilinx Vivado. Fig.
5.5 shows the block design. In this design, a True Dual Port Block Random Access
Memory, will be referred as BRAM in the rest of the thesis, used as a communication
interface between the PL and PS [50]. One channel of BRAM is called Channel A,
and the other channel is called Channel B. Channel A communicates with Microblaze
through Advanced Extensible Interface (AXI) interface, and Channel B communicates
with PL through hand-written BRAMW rapperr HDL, which is responsible for the

W/R operations of the PL logic. For each queue, PL has two outputs: Queuelitter
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and QueueEnable. The Queuelitter is the calculated jitter value of each frame, and
QueueEnable is the indication that the jitter calculation for a frame is completed. Fig.
5.6 shows the BRAM interaction of PL outputs. Each Queuel/itter and QueueEnable
parameters are located in separate memory addresses. When the Queuelitter is
calculated, on the PL side, it is written to the BRAM Queuelitter address of the related
queue, and the BRAM QueueEnable address of the related queue is set to 1, i.e.,
true. When this happens, the related queue is called an active queue. On the PS side,
Microblaze starts to read the address of QueueEnable for each queue through the AXI
interface, beginning with the first queue. Then, if the QueueEnable of the related queue
is true, the Queuelitter value of the queue is read, and QueueEnable of the BRAM
address is set to false by the Microblaze. This operation is followed for each queue, and
then the OneStep function is called to calculate new jitter statistics for active queues.
Microblaze calculates the jitter statistics for each queue and decides which scheduling
algorithm must be applied. So, each time the OneStep function is completed, the
current scheduling algorithm parameter (Scheduler Select - schSelect) is written to the
related address (0x200). On the PL side, BRAMW rapperr HDL periodically reads
the scheduling address (0x200) and assigns the output to the scheduling algorithm
input of the PL. In this approach, PS reads the information of PL with polling. As an
alternative, an interrupt mechanism could be used. Fig. 5.7 shows an example flow of

the Microblaze for a single queue.
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BRAM Address Field

0x10 Queue litter 1 0x90 Queue Enable 1
0x20 Queue litter 2 OxAO Queue Enable 2
0x30 Queue Jitter 3 0xB0O Queue Enable 3
0x40 Queue Jitter 4 0xCo Queue Enable 4
0x50 Queue Jitter 5 0xDO Queue Enable 5
0x60 Queue Jitter 6 OxEO Queue Enable 6
0x70 Queue Jitter 7 0xFO Queue Enable 7
0x80 Queue Jitter 8 0x100 Queue Enable 8
0x200 Scheduler Select

Figure 5.6 : BRAM addresses.

/*uint32_ T jitterValueAddr[8] = {@x 18, Ox 208, 9x 30, 0x 40,

ax 50, @x 60, Ox 780, 0x 80%};

uint32_T jitterEnableAddr[8] = {@x 99, 0x AB, 0x BO, 0x a,
ox DA, Ox E@, Ox FO, 0x00000100)}; */

readEnable = XBram_ReadReg(XPAR_AXI_BRAM_CTRL_@_S_AXI_BASEADDR, jitterEnableAddr[4]);
if (readEnable == 0xP@0ALEOL1) {
XBram_WriteReg(XPAR_AXI_BRAM CTRL_®_S_AXI_BASEADDR, jitterEnableAddr[4], ©xP2000000);
read]itter = XBram_ReadReg(XPAR_AXT BRAM CTRL_@ S_AXT_BASEADDR, jitterValueAddr[4]);
rtU.queuelitterl = readlitter;
rtU.runMeanOp = true;
rt_OneStep();
rtU.runMeanOp = false;

XBram WriteReg(XPAR_AXT BRAM CTRL @ S AXI BASEADDR, 0x00000200, ((uint32 T) (0x000000FF & rtY.schSelect)));

Figure 5.7 : Example flow of the Microblaze for a single queue.
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6. RESULTS

In this section, first, the performance results of the ARINC-664 ES scheduling
algorithms using the Simulink models are presented. The mean, standard deviation,

and maximum of jitter performances are reported for 8§ queues scenarios corresponding

to 8 VLs.

The simulation time is set to 500 ms for all experiments. In the ARINC-664, the BAG
values are expressed as powers of 2 from 1 ms to 128 ms (1, 2, 4, ... 128). However,
the BAG values are reduced to the range of 50 - 400 us at 50 ps intervals to decrease
simulation time in this study. Then, the hardware implementation results for each
scheduling algorithm are represented. In the rest of the thesis, queues from 1 to 8 will

be referred as Q1 to Q8.

6.1 Simulation Results

Two configuration scenarios, including Packet Arrival Rate, BAG, and L,y
parameters, are created and listed in Table 1 and Table 2, respectively. In both
scenarios, packet traffic is generated in accordance with the carrying capacity of the
queues, and the packet inter-arrival times are generated according to the exponential
distribution (i.e., Markov-M) for all VLs. In the first scenario, L, values are set in
different lengths from 100 bytes to 1400 bytes. In the second scenario, L, values are

set as in 160-byte length intervals from 160 bytes to 1280 bytes.

6.1.1 Scenario 1
Table 6.1 shows the configuration parameters of this scenario. Note that each queue is

uniquely dedicated to the incoming packets of the corresponding VL.

The Analysis module calculates the mean, standard deviation, and maximum of jitter
performances and the number of served frames. Fig. 6.1, Fig. 6.2, and Fig. 6.3 shows

the statistics for the mean, standard deviation, and maximum of jitter, respectively.
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Table 6.1 : Configuration parameters for scenario 1.

Packet Arrival | Queue | Length | BAG Theoretlcal .
Queue Rate (Mbit) Mode | (Byte) (us) Maximum Service
Y Rate (Mbit)
Q1 220 M 1400 50 224
Q2 92 M 1200 100 96
Q3 50 M 1000 150 53.33
Q4 30 M 800 200 32
Q5 16 M 600 250 19.2
Q6 8 M 400 300 10.66
Q7 3 M 200 350 4.57
Q8 1 M 100 400 2
700
ESB mFIFO mSS mLQ
600
500
3
S 400
O
E 300
O
200
e ||
0
Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8
Queues
Figure 6.1 : Mean jitter results for scenario 1.
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Figure 6.2 : Standard deviation of jitter results for scenario 1.
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In scenario 1, the Q1 queue has the highest arrival rate; hence, frames will arrive at the

Memory module of Q1 more often than any other queue. This means that Q1 will be
the only queue that is not empty most of the simulation time; hence, the Q1 jitter is
close to zero most of the simulation time, and the jitter of the Q1 is the lowest for all
the scheduling algorithms. However, some differences can be seen among scheduling
algorithms. For instance, the mean jitter for Q1 is the highest for the SS algorithm.
It is an expected outcome because Q1 has the highest HoL frame length. From Q1 to
Q8, the mean value increases in different ratios. For instance, the mean jitter of the Q8

with the SS algorithm is the lowest because its HoL frame length is the smallest.

Generally, the standard deviation of jitter increases from QI to Q8 as expected.
However, the Q8 value of the SS algorithm shows a different pattern because the jitter

is zero or close to zero due to HoL size.
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Figure 6.3 : Maximum jitter results for scenario 1.

The maximum jitter results demonstrate that the SB algorithm and SS algorithm values
are opposite, the FIFO algorithm shows a random pattern, and the LQ algorithm

generally increases from Q1 to Q8, as expected.

6.1.2 Scenario 2

Table 6.2 shows the configuration parameters of this scenario. Note that each queue is

uniquely dedicated to the incoming packets of the corresponding VL.
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Table 6.2 : Configuration parameters for scenario 2.

Packet Arrival | Queue | Length | BAG Theoretlcal .
Queue Rate (Mbit) Mode | (Byte) (us) Maximum Service
y Rate (Mbit)
Q1 25 M 160 50 25.6
Q2 25 M 320 100 25.6
Q3 25 M 480 150 25.6
Q4 25 M 640 200 25.6
Q5 25 M 800 250 25.6
Q6 25 M 960 300 25.6
Q7 25 M 1120 350 25.6
Q8 25 M 1280 400 25.6

The Analysis module calculates the mean, standard deviation, and maximum of jitter
and the number of served frames. Fig. 6.4, Fig. 6.5 and Fig. 6.6 shows the statistics

for mean, standard deviation and maximum of jitter of scenario 2, respectively.
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Figure 6.4 : Mean jitter results for scenario 2.

The traffic of scenario 2 is lighter than scenario 1. So, serving the frames with zero
jitter occurs more often in scenario 2, and therefore the mean jitter values of scenario 2
are generally lower. In scenario 2, the BAG values and the HoL lengths have the same

priority order; hence the SS and SB algorithms provide the same results.
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Figure 6.5 : Standard deviation of jitter results for scenario 2.

The standard deviation of jitter results demonstrates a similar pattern to the mean jitter

results.
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Figure 6.6 : Maximum jitter results for scenario 2.

In maximum jitter results, the FIFO shows a random pattern, the LQ algorithm
generally increases from Q8 to QI, and the SS and SB algorithms show the same

pattern; both generally increase from Q1 to Q8, as expected.

The Pareto front figures of the scenario 1 and scenario 2 are shown in Fig. 6.7 and
Fig. 6.8, respectively. In both figures, each dot represents a triplet, which includes the

mean, standard deviation, and maximum of jitter. There are four algorithms and eight

43



queues for each scenario; so 32 dots are used. The dots whose parameters have the
best parameters in their queue are marked with different colours. The best dot of each
queue can be tracked by using the legends of the figures. Also, two or more points are
connected with a line to build a Pareto line if some of their parameters have the best
values but they are not superior to each other. Please note that some dots overlap in 6.8
because the SB and SS algorithms show the exact same pattern in Scenario 2.
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Figure 6.7 : The Pareto front figures of each queue in scenario 1.
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Figure 6.8 : The Pareto front figure of each queue in scenario 2.
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6.2 Implementation Results

The Simulink model is converted to VHDL with MATLAB HDL Coder. During
this conversion, minimize clock enable option is turned on due to simplicity. Then,
generated VHDL files are implemented on Kintex-7 XC7K325T FPGA by using
Xilinx Vivado. The clock frequency is set as 125 MHz.

Look Up Table (LUT), Flip-Flop (FF), and BRAM utilizations are reported for the ES
implementation supporting 8 queues for all the scheduling algorithms and 32 queues
for the SB algorithm. Table 6.3 shows the utilization for the Server module of four
scheduling algorithms and the DynamicServer module for 8 queues. In this table, the

differences occur due to different data widths of parameters for each module.

The FIFO algorithm spends the most resource among the four algorithms because
arrival time information is 64 bits. The SS algorithm spends fewer resources than
LQ because while queue size information is 32 bits, HoL length information is 16 bits.
The SB algorithm spends the least resource because in contrary to other algorithms, SB
does not need an external parameter for deciding which queue to serve next. Instead,
it uses the BAG values. The DynamicServer module with a dynamic scheduling

algorithm spends the most resources because it combines the other four algorithms.

Table 6.3 : Utilization report of the Server module under different scheduling
scenarios for 8 queues.

Scheduling Algorithm LUT FF BRAM
Smallest BAG 607 391 8
FIFO 1392 1051 16
Smallest Size 672 523 16
Longest Queue 940 699 8
Dynamic Scheduling 2336 1689 16

In addition to these results, the SB algorithm with 32 queues is implemented on the
same FPGA. It spends 4217 LUTs, 3284 FFs, and 32 BRAMSs, which is approximately
6 times more LUTs, 7 times more FFs, and 3 times more BRAMs than the SB

scheduling algorithm with 8 queues.
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Comparison of the LUT and FF utilization for each algorithm is shown in Fig. 6.9 and

Fig. 6.10, respectively.
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Figure 6.9 : Comparison of the LUT utilization.
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Figure 6.10 : Comparison of the FF utilization.

A comparison table is built to compare scheduling algorithms from both a hardware
implementation and simulation perspective. For simulation, the mean value of 8
queues (Q1 to Q8) is calculated for the mean, standard deviation, and maximum of
jitter of each scheduling algorithm. Then, 3 equal intervals are created between the
minimum and maximum values of each parameter for each scenario, and these intervals
are labeled as "low," "medium, and "high" in increasing order. The comparison table

is shown in Fig. 6.11.

46



Algorithm SB FIFO SS LQ

Resource

o Low High Medium Medium
Utilization
Simulation | Scenario | Scenario | Scenario | Scenario | Scenario | Scenario | Scenario | Scenario
Jitter 1 2 1 2 1 2 1 2
Mean High Medium | Medium | Medium Low Medium High Medium
Std High Medium | Medium | Medium Low Medium High Medium
Max High Low High High Low Low High High

Figure 6.11 : Comparison of the scheduling algorithms from both implementation and
simulation perspective.

This table shows that the implementation results are scenario independent, whereas the
simulation results are scenario dependent. In scenario 1, the SB shows the worst, and
the SS shows the best simulation performance. In scenario 2, the mean and standard
deviation jitter values for each algorithm are so close to each other that the interval
is not divided into three groups. Instead, all the values are classified as medium. At
maximum jitter values, the SB and SS perform better than the FIFO and LQ scheduling

algorithms.

Converted VHDL codes of the Dynamic Scheduling model are simulated in Vivado
to ensure that the Simulink model is operating correctly. The ARINC-664 ES model
includes the Loaders, Memory, Analysis, and Server modules. As mentioned in the
previous chapter, the Mmemory module is converted to HDL to simplify simulation.
There are only 4 inputs of the Memory module for each queue: two for FWFTFIFO
blocks (length and lengthpush) and two for FrameF IF O blocks (data and datapush).
In the Simulink model, these 4 inputs of each queue are logged in text files. Then,
text files are read with a hand-written Verilog simulation code. Inputs are captured
for 1250000 clock cycles (10 us). The scheduler algorithm is switched every 2.5 us.
Fig. 6.12 shows an example scenario for the LQ algorithm. In this figure, cyan-colored
signals show how many bytes are stored in each queue, red-colored signals show which
of them are eligible, pink-colored signals show the masked output for each queue, and
gray-colored signals show the scheduling mechanism. It can be seen that queues 2, 3,
5,7, and 8 are eligible; however, others are not eligible. Therefore, the masked value of
queue 4 is set to 0 because queue 4 is not eligible. The SchedulerDecider is triggered,

and queue 2 is selected because it has the highest byte and is also eligible.
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In the last part of the results, a simple scenario for the Dynamic Server model is created.
For this scenario, first, data inputs of the first configuration are logged. Then, the
scheduler algorithm is switched according to the following scenario: Initial scheduler
algorithm is SB. If the maximum jitter value of Q5 exceeds 2000, the scheduler
algorithm switches to the SS. In Fig. 6.3, it can be seen that the maximum jitter value of
QS5 decreases significantly with the SS algorithm. Hence, this scenario aims to prevent
excessive jitter of Q5. By using the flow of the Fig. 5.7, the scheduler algorithm
switches when the conditions above are met. Fig. 6.13 shows the simulation of this

scenario.

Below, each step of Fig. 6.13 is explained.

(a) When the jitter value of Q5 is calculated by PL, the associated QueueEnable
address (0xDO) is set to 1, and the calculated value is written to the related

Queuelitter address (0x50).

(b) Meanwhile, the Microblaze was periodically reading the related QueueEnable
address (0xDO0). When it reads 1, it starts to read the related Queuelitter address

(0x50) to use the jitter value.

(c) The Onestep function is operated by the Microblaze. After some time, the function
is completed, and the new scheduling algorithm is decided. The calculated jitter
value was above 2000 (3194). So, 3, representing SS, is the new Scheduler Select
value. The Microblaze assigns the new Scheduler Select (schSelect) value to the

related address (0x200).

(d) The BRAMW rapper HDL reads the 0x200 and then sets the schSelect value to the

Select pin of the DynamicServer module.
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7. CONCLUSION AND FUTURE WORK

In this study, the traffic regulator of the ARINC-664 ES is built and simulated using
MATLAB Simulink. Then the simulation model is converted to HDL for hardware
prototyping, and a dynamic scheduler system for ARINC-664 ES is built in the final

step.

This work showed that MATLAB HDL Coder and MATLAB Embedded Coder are
suitable tools for ARINC-664 ES. Generally, MATLAB HDL Coder showed excellent
performance; it built readable VHDL codes and converted all the blocks to HDL
correctly. MATLAB Embedded Coder also performed well; the blocks were converted
to C correctly. However, variable names and the function context of the generated C

codes could be more user-friendly.

From the simulation perspective, it is shown that scheduling algorithms of ARINC-664
ES have different characteristics; hence, each has its advantages and disadvantages.
As seen in the results, performances of the scheduling algorithms depend on the
configuration scenario. Thus, much more simulation scenarios must be run to reach

more precise results.

From the implementation perspective, it is shown that the Smallest BAG algorithm
spends the least and the FIFO algorithm spends the most FPGA resource. Also, the
FIFO and the Smallest Size algorithm require more memory usage. These scheduling
algorithms can cause a memory problem with the 128 VL ARINC-664 ES scenario in
small FPGAs.

ARINC-664 ES Dynamic Server module is built on SoC. The entire SoC except
the BRAM Wrapper code is designed in MATLAB Simulink, and yet, no problem

occurred in building such a system. It shows that complex SoC systems can be built

using MATLAB HDL Coder on PL and MATLAB Embedded Coder on PS.

An intelligent function for determining the most suitable algorithm to use will be

developed in future work. The model will continuously switch using this algorithm
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as the input traffic type changes. Also, incoming Ethernet traffic (the Loaders
module) will be transferred to the hardware design in future work. Finally, ZYNQ
implementation will be performed to meet the speed necessities of an intelligent

function.
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