
CRYPTOGRAPHY

Doç. Dr. Sıddıka Berna Örs Yalçın

Room Number: 2318

email: siddika.ors@itu.edu.tr

web page: http://web.itu.edu.tr/∼orssi/

References

1. Douglas R. Stinson, Cryptography Theory and Practice, Third Edition,

CRC Press, November 2005.

2. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook

of Applied Cryptography, CRC Press, ISBN: 0-8493-8523-7, October 1996,

816 pages.

Content

1. Classical cryptography: introduction: some simple cryptosystems

2. Cryptanalysis of simple cryptosystems

3. Shannon’s theory: probability theory, entropy, properties of entropy

4. Product cryptosystems

5. Block ciphers: substiturion-permutation network

6. Linear cryptanalysis

7. Differential cryptanalysis

8. The data encryption standard (DES)

9. Advanced encryption standard (AES), modes of operation

10. Hash functions: collision-free hash functions, authentication codes

11. The RSA system and factoring: introduction to public-key cryptography

12. Public-key cryptosystems based on discrete logarithm problem: the ElGamal
cryptosystem

13. Finite field and elliptic curve systems

14. Signature schemes: introduction, the ElGamal signature scheme

15. The digital signature algorithm (DSA), the elliptic curve digital signature
algorithm (ECDSA)

Grading

1st Homework 2-5th week 15 %
1st Midterm 6th week 15 %
2nd Homework 7-10th week 15 %
2nd Midterm 11th week 15 %
3rd Homework 12th week-final exam 15 %
Final 40 %

History of Cryptography

hieroglyphs - around 2000 B.C. ideogram - ancient Chinese

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCBA

Clay tablets from Mesopotamia Atbash cipher - around 500 to 600 BC

1 2 3 4 5
1 A B C D E
2 F G H I J
3 K L M N O
4 P Q R S T
5 U V W X Y/Z

Scytale - Spartan Polybius Square - Greek method

Steganography

• physically concealed beneath wax on wooden tablets

• a tattoo on a slave’s head concealed by regrown hair

Usage of Cryptography

• Past

– Military, Diplomatic Service, Government

– was used as a tool to protect national secrets and strategies

• Now

– Private sector

– is used to protect information in digital form and to provide security

services

CRYPTOGRAPHY

• is the study of mathematical techniques related to aspects of information

security such as

– confidentiality,

– data integrity,

– entity authentication,

– data origin authentication.

• is about the prevention and detection of cheating and other malicious ac-

tivities.

Basic Terminology: Domains

The cryptosystem is a five- tuple P,C,K,E,D

• P: a set called the plaintext space.

• C: a set called the ciphertext space.

• K: a set called the key space.

• For each K ∈ K, there is an encryption rule eK ∈ E and a corresponding

decryption rule dK ∈ D. Each eK : P→ C and dK : C→ P are functions such

that dK(eK(x)) = x for every element x ∈ P.

Shift Cipher

• Let P = C = K = Z26. For 0 ≤ K ≤ 25, define eK(x) = (x+K) mod 26 and

dK(y) = (y −K) mod 26

• Since there are only 26 possible keys, it is easy to try every possible K until

a meaningful plaintext is obtained.

• K = 3 =⇒ is called Ceaser cipher (˜55 BC)

Caesar Cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ
CDEFGHIJKLMNOPQRSTUVWXYZAB

Example 1 :

x = THISC IPHER ISCER TAINL YNOTS ECURE
y = eK(x) = WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH

Cryptanalysis

The practice of changing ciphertext into plaintext without complete knowledge

of the cipher.

First method : Frequency analysis - Arabic author, Qalqashandi

If a cryptosystem is to be of practical use:

1. Each eK and dK should be efficiently computable.

2. An opponent, upon seeing a ciphertext string y should be unable to deter-

mine the key K or the plaintext string x.

Types of Attacks (1/2)

Kerckhof’s principle:the attacker has full knowledge of the encryption algo-

rithm, and only the key of the cryptosystem is unknown.

The aim of the attacker is to read the encrypted messages, which in many

cases is achieved by finding the secret key of the system.

The efficiency of the attack is measured by

• the amount of plaintext- ciphertext pairs required,

• time spent for their analysis

• the success probability of the attack

Usually the starting point of a cryptanalytic attack is the ability, to distinguish

the output of a cipher from the output of a random permutation.

Types of Attacks (2/2)

• Ciphertext- Only

• Known Plaintext

• Chosen Plaintext

• Chosen Ciphertext

• Adaptive Chosen Plaintext or Ciphertext

• Related Key

• Partial Knowledge of the Key

The Goals of Cryptanalytic Attacks (1/2)

• Distinguishing Attacks

• Partial Knowledge of the Plaintext

• Decryption

• Encryption (Forgery)

• Partial Key Recovery

• Total Key Recovery

The Goals of Cryptanalytic Attacks (2/2)

The cipher can be considered broken if:

• its output can be distinguished from a random permutation

• the secret key is found

• it is possible to derive secret elements of a cipher

A cipher is broken, if a person who uses it decides to stop doing so because

he/she does not trust its security anymore.

People expect that a good cipher is a one for which the best attack is an

exhaustive search for the key.

A cipher is considered broken if a weakness in it is found which requires the

changes of the design.

Cryptology

• Exhaustive search: trying all possible keys

• Cryptanalysis: the study of mathematical techniques to break the system

• Cryptology: cryptography + cryptanalysis

• Cryptosystem: a set of cryptographic primitives, symmetric key and public

key

Cryptanalysis of Example 1

WKLVF LSKHU LVFHU WDLQO BQRWV HFXUH

VJKUE KQJGT KUEGT VCKPN APQVU GEWTG
UIJTD JPIFS JTDFS UBJOM ZOPUT FDVSF
THISC IPHER ISCER TAINL YNOTS ECURE

K = 3

Mono- alphabetic Substitution Cipher

• Let P = C = Z26. K consists of all possible permutations of the 26 symbols.

For each permutation π ∈ K, define

eπ(x) = π (x) and dπ(y) = π−1 (y) where π−1 is the inverse permutation to

π.

• If the alphabet is the English alphabet, then the size of the key space is

26! ≈ 4× 1026

• The distribution of letter frequencies is preserved in the ciphertext.

Example

π =
ABCDEFGH I J KL MNOPQRS TU VWX YZ
BDFH J LNPRTVXZ BE G I KMOQS U WAY

m = THISC IPHER ISCER TAINL YNOTS ECURE
c = eπ(m) = OPRMF RGPJK RMFJK OBRBX ABEOM JFQKJ

Cryptanalysis of Mono- alphabetic Substitution Cipher

(1/8)

Ciphertext:

VGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVURVEQBO
YQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBOTZGYQBHKEQHM
BYYQHYUZYHNZOWRZDKWMBPHWBZDYVGHUXZUBNVTQBTYZWBRV
EQBOYQBTBHUWLBYHYYQBVOPBHUVULQBTQZDKWTDMTYVYDYBY
QBGZDOYQKBYYBOZGYQBHKEQHMBYUHPBKXGZOHUWTZYQBZYQBOT

Letter Frequency in the English Language

E T A O I N S R H L D C U M F P G W Y B V K X J Q Z

Letter Frequency in the ciphertext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 13 0 2 1 0 3 7 0 0 3 2 2 1 4 1 9 2 0 4 6 6 4 2 13 7

eπ(E) = B or Y and eπ(T) = B or Y

Cryptanalysis of Mono- alphabetic Substitution Cipher

(2/8)

Digraphs in the ciphertext with B

- - QBQ- - - - - - - - - - - - - - - WBU- - - - - - - - - QBN- - YBV- - -
- - - QBO- - - - - - - - - - - - - - - - - - - QBZ- WBO- - - QBKBYYBO
- - - - QBH- - - - MBY- - - - - - - - - - - - - - - - - MBP- WBZ- - - - -
- - - UBN- - QBT- - WBR- - QBO- QBTBH- - LBY- - - QBV- PBH-
- - - QBT- - - - - - - - - - - - - YBYQBG- - - - - KBYYBO- - - QBH-
- - - MBY- - PBK- - - - - - - - - - QBZ- QBO-

The Digraph Frequencies in the English Language
th he an in er on re ed nd ha at en es of nt ea ti to io le is ou ar as de rt ve

Digraph Frequency in the ciphertext with B
BGBH BK BN BOBPBRBQBTBUBVBYBZKBLBMBPBQB
1 4 1 2 6 1 1 1 3 1 2 6 3 2 1 3 2 15
TBUBWBYB
1 1 4 4

eπ(HE) = QB⇒ eπ(H) = Q eπ(ER) = BO or BY⇒ eπ(R) = O or Y

Cryptanalysis of Mono- alphabetic Substitution Cipher

(3/8)

The Trigraph Frequencies in the English Language
the and tha ent ion tio for nde has nce tis oft men

Trigraphs in the ciphertext such as xQB and Byz
- GQB- - - - - - - - - - - - - - - - - BUY- - - - - - - XQBNO- - BVY- -
- - EQBOY- - - - - - - - - - - - - - - - - YQBZO- - - - - YQB- - - - BO
T- - YQBHK- BPH- BZD- - - -
- - - - BNVTQBTY- - BRV- - - - YQB- BHU- - BYH- YQBVO- BHU
- - LQB- - - - - - - - - - - - - - - BYQBGZ- - - - - - - - BOZ- YQBHK
- - - - BYU- - BKX- - - - - - - - YQB- YQBOT

The Trigraph Frequencies in the ciphertext such as xQB and Byz
BGZ BHK BHU BKX BNO BNV BOT BOY BOZ BPH BRV BTY BUY BVY BYQ BYU BZD GQB EQB LQB TQB XQB YQB
1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6

eπ(THE) = YQB⇒ eπ(T) = Y⇒ eπ(R) = O

eπ(ENT) = BTY or BUY or BVY⇒ eπ(N) = T or U or V

Cryptanalysis of Mono- alphabetic Substitution Cipher

(4/8)

Digraphs in the ciphertext with Y

- - - - - - - - - XYQ- - - - - - - - - - UYV- KYZ- - - - - - - ZYBVYV-

- - - - - OYQHYV- - - - - - - - - - - - LYQ- - - - - - - GYQ- - BYYB-

- - GYQ- - - - - - - BYYQHYUZYH- - - - - - - - - - - - - - - - DYV- -

- - - - - - - - - - TYZ- - - - - - - OYQ- - - - - - - BYHYYQ- - - - - - -

- - - - - - - - - - - - - - TYVYDYBYQ- - - - OYQ- BYYB- - GYQ- - -

- - - - BYU- - - - - - - - - - - - ZYQ- ZYQ- - -

Digraph Frequency in the ciphertext with Y
BYDYHYGYKYOYTYUYVYXYYBYDYHYQYUYVYZZY
4 2 2 1 1 3 2 1 2 1 3 1 1 9 2 4 2 4

eπ(TH) = YQ eπ(ET) = BY eπ(TI or TO) = YV

Cryptanalysis of Mono- alphabetic Substitution Cipher

(5/8)

Trigraphs in the ciphertext such as Yxy

- - - - - - - - - - YQV- - - - - - - - - - YVH- - - - - - - - - - - YBVYVU

- - - - - - YQHYVT- -

- - - - - - - - - - - - - - YQHYUZYHN- - - - - - - - - - - - - - - - YVG-

- - - - - - - - - - - YZW- - - - - - - - - - - - - - - - - YHY- - - - - - - - -

- - - - - - - - - - - - - - - YVYDY- - - - - - - - YQK- - - - - - - - - - - -

- - - - - YUH- -

The Trigraph Frequencies in the ciphertext such as YQx and Yxy

YBV YDY YHN YHY YQV YQH YQK YUH YUZ YVG YVH YVT YVU YVY YZW
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

eπ(THA) = YQH⇒ eπ(A) = H

eπ(TIO or TIS) = YVG or YVT or YVU⇒ eπ(I) = V

Cryptanalysis of Mono- alphabetic Substitution Cipher

(6/8)

Digraphs in the ciphertext with H
- - - - - HWHU- - - - - - - - - - - - - - - VHK- - THX- - - - - - - - - - -
- - - - - - - - HY- - - - - - - - HU- -
- - - - - - HK- - HM- - - - - - - - - HN- - - - - - - - - - PHW- - - - - GH
U- HU- - - - HY- - - - - - - HU
- HK
- - HM- - UHP- - - - - - HU

Digraph Frequency in the ciphertext with H
GH HK HM HN HP HU HW HX HY PH TH UH WH VH
1 3 2 1 1 5 2 1 2 1 1 1 1 1

eπ(AN) = HU⇒ eπ(N) = U

The Trigraph Frequencies in the ciphertext such as HUx
HUL HUW HUV HUX
1 2 1 2

eπ(AND) = HUW or HUX⇒ eπ(D) = W or X

Cryptanalysis of Mono- alphabetic Substitution Cipher

(7/8)

B → E, Y → T, Q → H, O → R, H → A, V → I, W → D

I- HEHADA- - THI- - - - - - IDE- TIA- T- - A- HE- R- TEITI-

VGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVU

- I- HERTHATI- - - - - - HA- - I- - THE- RDER- - THE- ETTER

RVEQBOYQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBO

- - - THEA- - HA- ETTHAT- - TA- - RD- - - - D- E- ADE- - TI- A

TZGYQBHKEQHMBYYQHYUZYHNZOWRZDKWMBPHWBZDYVGH

- - - - E- I- HE- T- DE- I- HERTHE- EA- D- ETATTHEIR- EA-

UXZUBNVTQBTYZWBRVEQBOYQBTBHUWLBYHYYQBVOPBHU

I- - HE- H- - - D- - - - TIT- TETHE- - - RTH- ETTER- - THEA-

VULQBTQZDKWTDMTYVYDYBYQBGZDOYQKBYYBOZGYQBHK

- HA- ET- A- E- - - - RA- D- - THE- THER-

Cryptanalysis of Mono- alphabetic Substitution Cipher

(8/8)

K → L, Z → O, G → F, D → U, T → S, M → B, E → P, R → C, U → N, X
→ Y, L → G, N → W, R → C, P → M

IFHEHADANYTHINGCONFIDENTIALTOSAYHEWROTEITIN
VGQBQHWHUXYQVULRZUGVWBUYVHKYZTHXQBNOZYBVYVU
CIPHERTHATISBYSOCHANGINGTHEORDEROFTHELETTER
RVEQBOYQHYVTMXTZRQHULVULYQBZOWBOZGYQBKBYYBO
SOFTHEALPHABETTHATNOTAWORDCOULDBEMADEOUTIFA
TZGYQBHKEQHMBYYQHYUZYHNZOWRZDKWMBPHWBZDYVGH
NYONEWISHESTODECIPHERTHESEANDGETATTHEIRMEAN
UXZUBNVTQBTYZWBRVEQBOYQBTBHUWLBYHYYQBVOPBHU
INGHESHOULDSUBSTITUTETHEFOURTHLETTEROFTHEAL
VULQBTQZDKWTDMTYVYDYBYQBGZDOYQKBYYBOZGYQBHK
PHABETNAMELYFORANDSOTHEOTHERS

IF HE HAD ANYTHING CONFIDENTIAL TO SAY HE WROTE IT IN CI-
PHER THAT IS BY SO CHANGING THE ORDER OF THE LETTERS OF
THE ALPHABET THAT NOT A WORD COULD BE MADE OUT IF ANY-
ONE WISHES TO DECIPHER THESE AND GET AT THEIR MEANING
HE SHOULD SUBSTITUTE THE FOURTH LETTER OF THE ALPHABET
NAMELY FOR AND SO THE OTHERS

Affine Cipher (1/2)

Let P = C = Z26 and let

K = {(a, b) ∈ Z26 × Z26 : gcd(a,26) = 1} .

For K = (a, b) ∈ K, define

eK(x) = y ≡ (ax+ b) mod 26 and dK(y) = x ≡ a−1 (y − b) mod 26 .

In order that decryption is possible, for any y ∈ Z26, y ≡ (ax+ b) mod 26 must

have a unique solution for x ⇐⇒ gcd(a,26) = 1

Affine Cipher (2/2)

y ≡ (ax+ b) mod 26 is equivalent to y − b mod 26 ≡ ax mod 26

As y ∈ Z26, y − b mod 26 ∈ Z26.

It suffices to study the congruence y ≡ ax mod 26.

If gcd(a,26) = d > 1, then 0 ≡ ax mod 26 has to distinct solutions in Z26,

namely x = 0 and x = 26
d .

In this case e(x) = ax+ b mod 26 is not an injective function and hence not a

valid encryption function.

Since 26 = 2×13, a = 1,3,4,7,9,11,15,17,19,21,23,25, b can be any element

in Z26. Hence affine cipher has 12× 26 = 312 possible keys.

Multiplicative Inverse

a ∈ Zn, multiplicative inverse of a mod n, denoted a−1 mod n. aa−1 ≡ 1 mod n .

If p is prime, then every non- zero element of Zp has a unique multiplicative

inverse.

Algorithm 1 Multiplicative Inverse
Require: a ∈ Zn, n is a positive integer

Ensure: a−1 mod n

1: Use the extended Euclidean algorithm to find integers x and y such that

ax+ ny = d, where d = gcd(a, n) .

2: If d > 1, then a−1 mod n does not exist. Otherwise return x .

Extended Euclidean (1/2)
Algorithm 2 Extended Euclidean
Require: two non- negative integers a and b with a ≥ b .

Ensure: d = gcd(a, b) and integers x, y satisfying ax+ by = d .

1: If b = 0 then set d← a, x← 1, y ← 0 and return (d, x, y) .

2: Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1 .

3: while b > 0 do

4: q ← ⌊ab⌋, r ← a− qb, x← x2 − qx1, y ← y2 − qy1 .

5: a← b, b← r, x2 ← x1, x1 ← x, y2 ← y1 and y1 ← y .

6: end while

7: Set d← a, x← x2, y ← y2 and return (d, x, y) .

Extended Euclidean (2/2)

Example gcd(81,57) =?

81 = 57 · 1 + 24
57 = 24 · 2 + 9
24 = 9 · 2 + 6
9 = 6 · 1 + 3
6 = 3 · 2

81x+57y = 3

3=9- 6

3=9- (24- 9 · 2) · 1=9 · 3- 24

3=(57- 24 · 2) · 3- 24=57 · 3- 24 · 7

3=57 · 3- (81- 57) · 7=81 · - 7+57 · 10

Cryptanalysis of the Affine Cipher (1/3)

Ciphertext:

KADHLFMLNMFKVERSLDYAREHFSOORLDYAREHKRWKNHDS

XFSFUUDSRLDYAREDSTADLAMRKKREHFERRSLVORONHDS

XKARUVEPNMFTARERFSOFERTAVMRSNPIREHIRKTRRSFS

OFSODHERMFKDQRMZYEDPR

Letter Frequency in the English Language

E T A O I N S R H L D C U M F P G W Y B V K X J Q Z

Letter Frequency in the ciphertext
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
6 0 0 8 8 8 0 5 1 0 6 4 4 3 4 2 0 16 8 2 2 2 0 1 2 0

Cryptanalysis of the Affine Cipher (2/3)

Ee(E) = R→ 17 ≡ a4+ b mod 26

Ee(T) = D→ 3 ≡ a19+ b mod 26 then a = 6, gcd(6,26) = 2 > 1.

Ee(T) = E→ 4 ≡ a19+ b mod 26 then a = 13, gcd(13,26) = 13 > 1.

Ee(T) = F→ 5 ≡ a19+ b mod 26 then a = 20, gcd(20,26) = 2 > 1.

Ee(T) = S→ 18 ≡ a19+ b mod 26 then a = 7, gcd(7,26) = 1 and b = 9.

Decrypted message

PVOWESTEITSPYDQFEORVQDWSFXXQEORVQDWPQNPIWO

FCSFSJJOFQEORVQDOFUVOEVTQPPQDWSDQQFEYXQXIW

OFCPVQJYDMITSUVQDQSFXSDQUVYTQFIMLQDWLQPUQQ

FSFXSFXOWDQTSPOBQTGRDOMQ

Cryptanalysis of the Affine Cipher (3/3)

Ee(T) = K→ 10 ≡ a19+ b mod 26 then a = 3, gcd(7,26) = 1 and b = 5.

Decrypted message

THISCALCULATORENCIPHERSANDDECIPHERSTEXTUSI

NGANAFFINECIPHERINWHICHLETTERSAREENCODEDUS

INGTHEFORMULAWHEREANDAREWHOLENUMBERSBETWEE

NANDANDISRELATIVELYPRIME

THIS CALCULATOR ENCIPHERS AND DECIPHERS TEXT USING AN AFFINE

CIPHER IN WHICH LETTERS ARE ENCODED USING THE FORMULA

WHERE AND ARE WHOLE NUMBERS BETWEEN AND AND IS RELA-

TIVELY PRIME

Alberti Cipher

All of the Western European governments used cryptography

Venice created an elaborate organization in 1452.

Leon Battista Alberti was known as ”The Father of Western Cryptology” in
part because of his development of polyalphabetic substitution.

Formula

The larger one is called Stabilis [stationary or fixed], the smaller one is called
Mobilis [movable]

Polyalphabetic substitution is any technique which allows different ciphertext
symbols to represent the same plaintext symbol.

Vigenère Cipher

m ≥ 0 and m ∈ Z.
Let P = C = K = (Z26)

m. For a key K = (k1, k2, . . . , km)), we define

eK = (x1, x2, . . . , xm) = (x1 + k1, x2 + k2, . . . , xm + km)

dK = (y1, y2, . . . , ym) = (y1 − k1, y2 − k2, . . . , ym − km)

Example: m = 6. The keyword is CIPHER. K = (2,8,15,7,4,17).

message: namedafterblaisedevigenere

13 0 12 4 3 0 5 19 4 17 1 11 0 8 18 4 3 4 21 8 6 4 13 4 17 4
2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7 4 17 2 8 15 7 4 17 2 8

15 8 1 11 7 17 7 1 19 24 5 2 2 16 7 11 7 21 23 16 21 11 17 21 19 12

ciphertext: piblhrhbtyfccqhlhvxqvlrvtm

The number of possible keywords of length m is 26m.

An alphabetic character can be mapped to one of m possible alphabetic char-

acters.

Cryptanalysis of Vigenère Cipher

The first step is to determine the keyword length, m.

• Kasiski test : 1854 - Charles Babbage and 1863 - Friedrich Kasiski

• the index of coincidence

Kasiski Test

Two identical segments of plaintext will be encrypted to the same ciphertext

whenever their occurrence in the plaintext is ∆ positions apart, where ∆ ≡
0 mod m.

• Search the ciphertext for pairs of identical segments of length at least three.

• Record the distance between the starting positions of the two segments.

• If we obtain several such distances, say ∆1,∆2, . . . we would conjecture

that m divides all of the ∆i’s, m | gcd (∆1,∆2, . . . ,)

The reason this test works is that if a repeated string occurs in the plaintext,

and the distance between them is a multiple of the keyword length, m, the

keyword letters will line up in the same way with both occurrences of the

string.

Example for Kasiski Test (1/2)

ciphertext:

knwllrficfxykvvjsehqslrkkiaasjcgwlaiqbtpxzpkxwlvtbwhxzujnzstjicnmeibwlsifmgvj

kjmalxkgzhvjkjmpstycjtaxycbcvxrywgkgfwtsiidcltvykknpucfpmlpwygaivhveqeoiiv

ptzirplvlxrvbwlmiompumeiptzlfwtszysubxaykgbwljfwziopvvbtyswvpthpgjiqlxecut

scwqzpuhjqbwlskjmgz

Example for Kasiski Test (2/2)

ciphertext occurs at spacing factors
string (index)
MEI 64 172 108 2 3 4 6 9 12 18 27 36 54 108
BWL 67 163 96 2 3 4 6 8 12 16 24 32 48 96
BWL 67 193 126 2 3 6 7 9 14 18 21 42 63 126
BWLS 67 235 168 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
WLS 68 236 168 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
VJKJM 75 87 12 2 3 4 6 12
JKJM 76 88 12 2 3 4 6 12
KJM 77 89 12 2 3 4 6 12
KJM 77 239 162 2 3 6 9 18 27 54 81 162
KJM 89 239 150 2 3 5 6 10 15 25 30 50 75 150
FWTS 113 179 66 2 3 6 11 22 33 66
WTS 114 180 66 2 3 6 11 22 33 66
VPT 150 210 60 2 3 4 5 6 10 12 15 20 30 60
PTZ 151 175 24 2 3 4 6 8 12 24
BWL 163 193 30 2 3 5 6 10 15 30
BWL 163 235 72 2 3 4 6 8 9 12 18 24 36 72
BWL 193 235 42 2 3 6 7 14 21 42

Keyword length m = 6.

Index of Coincidence (1/3)

1920 - Friedman

Definition: Suppose x = x1x2 . . . xn is a string of n alphabetic characters. The

index of coincidence of x, denoted by Ic(x), is defined to be the probability

that two random elements of x are identical.

Suppose the frequencies of A, B, C, ..., Z in x are f0, f1, . . . , f25. We can choose

two elements of x in

(
n
2

)
= n(n − 1) ways. For each i, 0 ≤ i ≤ 25 there are(

fi
2

)
= fi (fi − 1) ways of choosing both elements to be i.

Ic(x) =

∑25
i=0

(
fi
2

)
(

n
2

) =

∑25
i=0 fi (fi − 1)

n(n− 1)
=

∑25
i=0 f

2
i −

∑25
i=0 fi

n(n− 1)
=

∑25
i=0 f

2
i − n

n(n− 1)

n→∞⇒ Ic(x)→
∑25

i=0 f
2
i

n2
, pi =

fi
n then Ic(x)→

∑25
i=0 p

2
i

Index of Coincidence (2/3)

letter probability letter probability letter probability
A 0.0856 B 0.0139 C 0.0279
D 0.0378 E 0.1304 F 0.0289
G 0.0199 H 0.0528 I 0.0627
J 0.0013 K 0.0042 L 0.0339
M 0.0249 N 0.0707 O 0.0797
P 0.0199 Q 0.0012 R 0.0677
S 0.0607 T 0.1045 U 0.0249
V 0.0092 W 0.0149 X 0.0017
Y 0.0199 Z 0.0008

n→∞⇒ Ic(x) ≈
∑25

i=0 p
2
i = 0.065

The same reasoning applies if x is a ciphertext string obtained using any monoal-

phabetic cipher.

Index of Coincidence (3/3)

y = y1y2 . . . yn constructed by Vigenère Cipher.

m substrings of y, ȳ1, ȳ2, ..., ȳm by writing out the ciphertext in columns in a

rectangular array of dimensions m× (n/m).

Example: n = 15 and m = 3

y1 y4 y7 y10 y13
y2 y5 y8 y11 y14
y3 y6 y9 y12 y15

⇒
ȳ1 = y1y4y7y10y13
ȳ2 = y2y5y8y11y14
ȳ3 = y3y6y9y12y15

If Ic (ȳi) ≈ 0.065 then m is the keyword length.

If m is not the keyword length then ȳi s are random

∑25
i=0 fi = n, in random text f0 = f1 = · · · = f25, 26fi = n, fi =

n
26,

Ic(x) =
26f2i
n2

= 1
26 = 0.038. The two values 0.065 and 0.038 are sufficiently far

apart that we will often be able to determine the correct keyword length.

Permutation Cipher

Alter the plaintext characters positions by rearranging them using a permuta-

tion.

Let m be a positive integer. Let P = C = (Z26)
m and let K consist of all

permutations of 1, . . . ,m. For a key π, we define

eπ (x1, . . . , xm) =
(
xπ(1), . . . , xπ(m)

)
and

dπ (y1, . . . , ym) =
(
yπ−1(1), . . . , yπ−1(m)

)
where π−1 is the inverse permutation to π.

Example for Permutation Cipher

m = 6

Encryption: π =

(
1 2 3 4 5 6
4 3 1 6 2 5

)

plaintext: he walked up and down the passage two or three times

plaintext is divided into groups of 6:

hewalk edupan ddownt hepass agetwo orthre etimes

ciphertext: WLEHKAUADENPONDDTWPSEHSAEWGAOTTRROEHIETESM

Decryption: π−1 =

(
1 2 3 4 5 6
3 5 2 1 6 4

)

Remarks for Permutation Cipher

The Permutation Cipher is not monoalphabetic.

In the example the first e is encrypted as L, the second e is encrypted as U and

the third e is encrypted as S.

This encryption does not change the frequency of alphabetic characters but

the positions of the letters.

The different number of keys are m!.

Product Cryptosystems 1/2

introduced by Shannon in 1949

For simplicity; C = P : endomorphic cryptosystem

Suppose S1 = (P,P,K1, ε1,D1) and S2 = (P,P,K2, ε2,D2) are two endomorphic

cryptosystems.

Product cryptosystem of S1 and S2=S1 × S2 = (P,P,K1 ×K2, ε,D) .

A key of the product cryptosystem: K = (K1,K2), where K1 ∈ K1 and K2 ∈ K2 .

e(K1,K2) (x) = eK2

(
eK1 (x)

)
and d(K1,K2) (y) = dK1

(
dK2 (y)

)
.

Product Cryptosystems 2/2

d(K1,K2)

(
e(K1,K2) (x)

)
= d(K1,K2)

(
eK2

(
eK1 (x)

))
= dK1

(
dK2

(
eK2

(
eK1 (x)

)))
= dK1

(
eK1 (x)

)
= x

.

Cryptosystems have the probability distributions associated with their keyspaces.

Pr [(K1,K2)] = Pr [K1]×Pr [K2] .

Choose K1 and K2 independently, using the probability distributions defined on

K1 and K2 .

Note that the product of a substitution cipher with another substitution cipher

is another substitution cipher, so for practical purposes, we want to alternate.

Multiplicative Cipher 1/2

Let P = C = Z26 and let K = {a ∈ Z26 : gcd (a,26) = 1} .

For a ∈ K, define ea (x) = ax mod 26 and da (y) = a−1y mod 26

(x, y ∈ Z26) .

Suppose M is the Multiplicative Cipher and S is the Shift Cipher, then M ×
S=S × M=Affine Cipher.

Proof:

S: eK (x) = (x+K) mod 26, K ∈ Z26 .

M: eK (x) = (ax) mod 26, a ∈ Z26 and gcd (a,26) = 1 .

M × S: e(a,K) (x) = (ax+K) mod 26 .

Multiplicative Cipher 2/2

The probability of a key in Affine Cipher is 1
312 = 1

12 ×
1
26 .

S × M: e(K,a) (x) = a (x+K) mod 26 = (ax+ aK) mod 26 .

The key is (a, aK) in M × S. aK = K1 ⇒ K = a−1K1.

M × S=S × M → M and S are commute. But not all pairs of cryptosystems

commute.

The product operation is always associative.

Product Cipher

S× S× · · · × S︸ ︷︷ ︸
n times

= Sn

If S2 = S, then S is idempotent cryptosystem.

If a cryptosystem is not idempotent, then there is a potential increase in security

by iterating it several times.

Taking the product of substitution- type ciphers with permutation- type ciphers

is a commonly used technique.

Introduction to Block Cipher 1/2

Iterated cipher : The cipher requires the specification of a round function and a

key schedule and the encryption of a plaintext will proceed through Nr similar

rounds.

K: a random binary key.

Nr round keys (subkeys): K1, · · · ,KNr .

Key schedule: the list of round keys −→ constructed from K using a fixed,

public algorithm.

ωr = g
(
ωr−1,Kr

)
ωr: next state, ωr−1: current state, Kr: round key, g: round function

ω0: plaintext, x, ωNr: ciphertext, y

Introduction to Block Cipher 2/2

In order for decryption to be possible, the function g must be injective (one-

to- one) if its second argument is fixed.

g−1 (g (ω, a) , a) = ω for all ω and a.

ωr−1 = g−1 (ωr,Kr)

Feistel Cipher

• named after the German-born

physicist and cryptographer Horst

Feistel who did pioneering research

while working for IBM (USA)

• advantage: encryption and decryp-

tion operations are very similar,

even identical in some cases

• requires only a reversal of the key

schedule

• the size of the code or circuitry re-

quired to implement such a cipher

is nearly halved.

Feistel Cipher - Construction details

Let F be the round function and let K0,K1, . . . ,Kn be the sub-keys for the

rounds respectively.

Encryption:

1. Split the plaintext block into two

equal pieces, (L0, R0)

2. For i = 0,1, . . . , n, compute

Li+1 = Ri, Ri+1 = Li ⊕ F (Ri,Ki).

3. The ciphertext is
(
Rn+1, Ln+1

)
.

Decryption:

1. Split the ciphertext block into two

equal pieces
(
Rn+1, Ln+1

)
2. For i = n, n− 1, . . . ,0, compute

Ri = Li+1, Li = Ri+1⊕F
(
Li+1,Ki

)
.

3. The plaintext is (L0, R0).

One advantage of the Feistel model compared to a substitution-permutation

network is that the round function does not have to be invertible.

Note the reversal of the subkey order for decryption; this is the only difference

between encryption and decryption.

Data Encryption Standard

• Selected by the NBS as an official FIPS

for the US in 1976.

• Was initially controversial because of

classified design elements, a relatively

short key length, and suspicions about

a NSA backdoor.

• Insecure due to the 56-bit key size be-

ing too small

• In January, 1999, distributed.net and

the Electronic Frontier Foundation

collaborated to publicly break a DES

key in 22 hours and 15 minutes.

• The algorithm is believed to be practi-

cally secure in the form of Triple DES,

although there are theoretical attacks.

Triple Data Encryption Standard

uses a “key bundle” which comprises three DES keys, K1, K2 and K3, each of
56 bits.

The encryption algorithm is: ciphertext = EK3

(
DK2

(
EK1 (plaintext)

))
Decryption is the reverse: plaintext = DK1

(
EK2

(
DK3 (ciphertext)

))
Keying options

1. Keying option 1: All three keys are independent.

strongest, with 3 56 = 168 independent key bits.

2. Keying option 2: K1 and K2 are independent, and K3 = K1.

provides less security, with 2 56 = 112 key bits.

3. Keying option 3: All three keys are identical, i.e. K1 = K2 = K3.

equivalent to DES, with only 56 key bits

Substitution- Permutation Networks (SPNs)

ℓ and m are positive integers

x = (x1x2 · · ·xℓm)2 and y = (y1y2 · · · yℓm)2

ℓm:block length

S- box: πS : {0,1}ℓ −→ {0,1}ℓ is substitution. It is used to replace ℓ bits with

a different set of ℓ bits.

πP : {1, . . . , ℓm} −→ {1, . . . , ℓm} is a permutation. It is used to permute ℓm bits.

x = (x1x2 · · ·xℓm) = x(1)∥ · · · ∥x(m) for 1 ≤ i ≤ m

x(i) =
(
x(i−1)ℓ+1, . . . , xiℓ

)
.

The very first and last operations are XORs with subkeys: whitenning.

ℓ = m = Nr = 4.

z 0 1 2 3 4 5 6 7 8 9 A B C D E F
πS (z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
πP (z) 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

Key schedule: K = (k1, . . . , k32) ∈ {0,1}32 .

For 1 6 r 6 5, Kr =
(
k4r−3, . . . , k4r+12

)
.

Substitution- Permutation Networks (SPNs)

• The design is simple and very efficient, in both hardware and software.

– In software, S- box −→ look- up table. Memory= ℓ2ℓ .

– In hardware, needs smaller implementation.

In Example: Memory for S- box= ℓ2ℓ = 4× 24 = 26 .

If the S- box would be 16 bits to 16 bits, then Memory= ℓ2ℓ = 16×216 = 220 .

A practical secure SPN would have

• a larger key size

• a larger block length

• larger S- Box

• more rounds

=⇒ Advanced Encryption Standard
(AES)

Many variations of SPNs are possible

use more than one S- box Data Encryption Standard (DES)
include an invertible linear Advanced Encryption Standard (AES)
transformation in each round

Linear Cryptanalysis

Take advantage of high probability occurrences of linear expressions involving

• plaintext bits

• ciphertext bits

• subkey bits

a known plaintext attack: that is, it is premised on the attacker having infor-

mation on a set of plaintexts and the corresponding ciphertexts.

Linear Cryptanalysis

The basic idea is to approximate the operation of a portion of the cipher with an

expression that is linear where the linearity refers to a mod-2 bit wise operation.

Pr
[
Xi1 ⊕Xi2 ⊕ · · · ⊕Xiu ⊕ Yj1 ⊕ Yj2 ⊕ · · · ⊕ Yjv = 0

]
= pL (1)

The approach in linear cryptanalysis is to determine expressions of the form

above which have a high or low probability of occurrence.

If a cipher displays a tendency for equation (1) to hold with high probability or

not hold with high probability, this is evidence of the cipher’s poor randomiza-

tion abilities.

It is deviation or bias from the probability of 1/2 is exploited.

linear probability bias: the amount by which the probability of a linear expression

holding deviates from 1/2.

Steps of the Linear Cryptanalysis 1/2

1. Suppose that it is possible to find a probabilistic linear relationship between

a subset of plaintext bits and a subset of state bits immediately preceding

the substitutions performed in the last round.

2. Assume that an attacker has a large number of plaintext- ciphertext pairs,

all of which are encrypted using the same unknown key K .

3. Decrypt all the ciphertexts, using all possible candidate keys for the last

round of the cipher.

4. For each candidate key, we compute the values of the relevant state bits

involved in the linear relationship given by Eq. 1.

5. Determine if the above mentioned linear relationship holds.

Steps of the Linear Cryptanalysis 2/2

6. Whenever it does, we increment a counter corresponding to the particular

candidate key.

7. The candidate key that has a frequency count that is furthest from 1/2

times the number of pairs contains the correct values for these key bits.

Meaning of the pL

• Equation (1) implicitly has subkey bits involved. If the sum of the involved

subkey bits is “0”, the bias of (1) will have the same sign as the bias of the

expression involving the subkey sum and if the sum of the involved subkey

bits is “1”, the bias of (1) will have the opposite sign as the bias of the

expression involving the subkey sum

• pL = 1 implies that linear expression (1) is a perfect representation of the

cipher behavior and the cipher has a catastrophic weakness.

• pL = 0, then (1) represents an affine relationship.

How do we construct expressions which are

highly linear and hence can be exploited?

This is done by considering the properties of the cipher’s only nonlinear com-

ponent: S- box.

It is possible to concatenate linear approximations of the S- boxes together

so that intermediate bits can be canceled out and we are left with a linear

expression which has a large bias and involves only plaintext and the last round

input bits.

The Pilling- up Lemma

X1, X2, . . . : independent random variables and Xi = 0 or 1 .

Pr [Xi = 0] = pi and Pr [Xi = 1] = 1− pi .

i ̸= j → The independence of Xi and Xj implies that

Pr
[
Xi = 0, Xj = 0

]
= pipj

Pr
[
Xi = 0, Xj = 1

]
= pi

(
1− pj

)

Pr
[
Xi = 1, Xj = 0

]
= (1− pi) pj

Pr
[
Xi = 1, Xj = 1

]
= (1− pi)

(
1− pj

)
.

The Pilling- up Lemma

Xi ⊕Xj = 0⇒ Xi = Xj: linear expression

Pr
[
Xi ⊕Xj = 0

]
= pipj + (1− pi)

(
1− pj

)
Xi ⊕Xj = 1⇒ Xi ̸= Xj: affine expression

Pr
[
Xi ⊕Xj = 1

]
= pi

(
1− pj

)
+ (1− pi) pj

The bias of Xi: ϵi = pi − 1
2 .

Observe the following facts:

−1
2 ≤ ϵi ≤ 1

2

Pr [Xi = 0] = 1
2 + ϵi

Pr [Xi = 1] = 1
2 − ϵi

The Pilling- up Lemma

For i1 < i2 < · · · < ik, let ϵi1,i2,...,ik denote the bias of the random variable
Xi1 ⊕ · · · ⊕Xik .

Pr
[
Xi1 ⊕Xi2 = 0

]
= 1

2 + ϵi1,i2 =
(
1
2 + ϵ1

) (
1
2 + ϵ2

)
+
(
1
2 − ϵ1

) (
1
2 − ϵ2

)
= 1

2 +
2ϵi1ϵi2 .

LEMMA 3.1 (Pilling- up lemma) Let ϵi1,i2,...,ik denote the bias of the random
variable Xi1 ⊕ · · · ⊕Xik . Then

ϵi1,i2,...,ik = 2k−1
k∑

j=1

ϵij

.

CORROLLARY 3.2 Let ϵi1,i2,...,ik denote the bias of the random variable
Xi1 ⊕ · · · ⊕Xik . Suppose that ϵij = 0 for some j. Then ϵi1,i2,...,ik = 0 .

In developing the linear approximation of a cipher, the Xi values will actually
represent linear approximations of the S- boxes.

Concatenation of Linear Expressions

Consider four independent random binary variables, X1, X2, X3 and X4 . Let

Pr [X1 ⊕X2 = 0] = 1/2+ ϵ1,2 and Pr [X2 ⊕X3 = 0] = 1/2+ ϵ2,3.

Pr [X1 ⊕X3 = 0] = Pr [(X1 ⊕X2)⊕ (X2 ⊕X3) = 0].

We are combining linear expressions to form a new linear expression.

Pr [X1 ⊕X3 = 0] = 1/2+ 2ϵ1,2ϵ2,3.

ϵ1,3 = 2ϵ1,2ϵ2,3.

The expression X1 ⊕X2 = 0 and X2 ⊕X3 = 0 are analogous to linear approxi-

mation of S- boxes and X1 ⊕X3 = 0 is analogous to a cipher approximation.

Linear Approximations of S- boxes

S- box πS : {0,1}m → {0,1}n

input m- tuble X = (x1, . . . , xm) and output n- tuble Y = (y1, . . . , yn)

These n random variables are not independent

• if (y1, . . . , yn) ̸= πS (x1, . . . , xm) then

Pr[X1 = x1, . . . , Xm = xm, Y1 = y1, . . . , Yn = yn] = 0

• if (y1, . . . , yn) = πS (x1, . . . , xm) then

Pr[X1 = x1, . . . , Xm = xm] = 2−m and

Pr[Y1 = y1, . . . , Yn = yn|X1 = x1, . . . , Xm = xm,] = 1

Hence Pr[X1 = x1, . . . , Xm = xm, Y1 = y1, . . . , Yn = yn] = 2−m

Bias of Linear Expression X2⊕X3⊕ Y1⊕ Y3⊕ Y4 = 0

For exactly 12 out the 16 cases the expression above hold true.

The probability bias is 12/16- 1/2=1/4.

For equation X1 ⊕X4 = Y2 the probability bias is 0.

For equation X3 ⊕X4 = Y1 ⊕ Y4 the probability bias is 2/16- 1/2=- 3/8.

Linear Approximation Table

Properties of the Table

• Each element in the table represents the number of matches between the

linear equation represented in hexadecimal as “Input Sum” and the sum of

the output bits represented in hexadecimal as “Output Sum” minus 8.

Example: Input Sum=A and Output Sum=6 then expression that is con-

sidered is X1 ⊕X3 ⊕ Y2 ⊕ Y3 = 0

• Hence, dividing an element value by 16 gives the probability bias for the

particular linear combination of input and output bits.

• The linear combination involving no output bits (column 0) will always

equal the linear combination of no input bits (row 0) resulting in a bias of

+1/2 and a table value of +8 in the top left corner.

• The sum of any row or any column must be either +8 or - 8.

Constructing Linear Approximations for the

Complete Cipher

Once the linear approximation information has been compiled for the S- boxes in

an SPN, we have the data to proceed with determining linear approximations

of the overall cipher of the form of equation (1). This can be achieved by

concatenating appropriate linear approximations of S- boxes.

By constructing a linear approximation involving plaintext bits and data bits

from the output of the second last round of S- boxes, it is possible to attack

the cipher by recovering a subset of the subkey bits that follow the last round.

We would like to use as less as possible S-

Boxes. The S-Boxes that are used are called

active S-Boxes.

The permutation layer distributes all the out-

puts of one S-Box to different S-Boxes at the

next round. Hence, the best choice is to use

just one output bit of an S-Box.

We consider S12 for the first round.

Only Y1, Y2, Y3 or Y4 should be involved in

the expression that is used for S12.

The choices are as follows:

1 2 4 8

9 0 -2 0 -4
A +4 -2 -4 +2
B +4 0 +4 0
C -2 +4 -2 +2
D +2 +2 -2 -4
F -2 -4 -2 0

S12: X1⊕X3⊕X4 = Y2 with probability 12/16

and bias +1/4

The choices for S22 are as follows:

5 D

4 -4 -4

S22: X2 = Y2 ⊕ Y4 with probability 4/16 and

bias - 1/4

The choices for S32 and S34 are as follows:

5 D

4 -4 -4

S32: X2 = Y2 ⊕ Y4 with probability 4/16 and

bias - 1/4

S34: X2 = Y2 ⊕ Y4 with probability 4/16 and

bias - 1/4

Ui (Vi) represent the 16- bit block of bits at

the input (output) of the round i S- boxes.

Ui,j (Vi,j) represent the j- th bit of block Ui

(Vi).

Ki represents the subkey block of bits XORed

at the input to round i.

1st round, S12: X1 ⊕X3 ⊕X4 = Y2

V1,6 = U1,5 ⊕ U1,7 ⊕ U1,8
= P5 ⊕K1,5 ⊕ P7 ⊕K1,7 ⊕ P8 ⊕K1,8

(2)

with bias 1/4.

2nd round, S22: X2 = Y2 ⊕ Y4

V2,6 ⊕ V2,8 = U2,6
= V1,6 ⊕K2,6

(3)

with bias -1/4.

3rd round, S32: X2 = Y2 ⊕ Y4, S34: X2 =

Y2 ⊕ Y4

V3,6 ⊕ V3,8 = U3,6
(U4,6 ⊕K4,6)⊕ (U4,14 ⊕K4,14) = V2,6 ⊕K3,6

(4)

with bias -1/4

V3,14 ⊕ V3,16 = U3,14
(U4,8 ⊕K4,8)⊕ (U4,16 ⊕K4,16) = V2,8 ⊕K3,14

(5)

with bias -1/4.

Now we combine Eq. 2, 3, 4 and 5.

U4,6 ⊕ U4,14 ⊕K3,6 ⊕K4,6 ⊕K4,14 = V2,6

U4,8 ⊕ U4,16 ⊕K3,14 ⊕K4,8 ⊕K4,16 = V2,8

V2,6 ⊕ V2,8 = V1,6 ⊕K2,6

U4,6⊕U4,14⊕K3,6⊕K4,6⊕K4,14⊕U4,8⊕U4,16⊕K3,14⊕K4,8⊕K4,16 = V1,6⊕K2,6

U4,6⊕U4,14⊕U4,8⊕U4,16⊕K3,6⊕K4,6⊕K4,14⊕K3,14⊕K4,8⊕K4,16⊕K2,6 = V1,6

V1,6 = P5 ⊕K1,5 ⊕ P7 ⊕K1,7 ⊕ P8 ⊕K1,8

P5 ⊕ P7 ⊕ P8 ⊕ U4,6 ⊕ U4,14 ⊕ U4,8 ⊕ U4,16 ⊕ K1,5 ⊕ K1,7 ⊕ K1,8 ⊕ K3,6 ⊕ K4,6 ⊕
K4,14 ⊕K3,14 ⊕K4,8 ⊕K4,16 ⊕K2,6 = 0

By application of the Piling- Up Lemma, the above expression holds with bias

2314(−
1
4)

3 = − 1
25

.

P5 ⊕ P7 ⊕ P8 ⊕ U4,6 ⊕ U4,14 ⊕ U4,8 ⊕ U4,16 ⊕
∑

K = 0

where
∑

K = K1,5⊕K1,7⊕K1,8⊕K2,6⊕K3,6⊕K3,14⊕K4,6⊕K4,8⊕K4,14⊕K4,16

and
∑

K is fixed at either 0 or 1 depending on the key of the cipher. Now since∑
K is fixed, we note that

U4,6 ⊕ U4,8 ⊕ U4,14 ⊕ U4,16 ⊕ P5 ⊕ P7 ⊕ P8 = 0 (6)

must hold with a probability of either 15/32 or (1- 15/32) = 17/32, depending

on whether
∑

K = 0 or 1, respectively. In other words, we now have a linear

approximation of the first three rounds of the cipher with a bias of magnitude

-1/32. We must now discuss how such a bias can be used to determine some

of the key bits.

Extracting Key Bits

Once an R−1 round linear approximation is discovered for a cipher of R rounds

with a suitably large enough linear probability bias, it is conceivable to attack

the cipher by recovering bits of the last subkey.

In the case of our example cipher, it is possible to extract bits from subkey K5

given a 3 round linear approximation.

We shall refer to the bits to be recovered from the last subkey as the target

partial subkey. Specifically, the target partial subkey bits are the bits from

the last subkey associated with the S- boxes in the last round influenced by the

data bits involved in the linear approximation.

The process followed involves partially decrypting the last round of the cipher.

Specifically, for all possible values of the target partial subkey, the corresponding

ciphertext bits are exclusive- ORed with the bits of the target partial subkey

and the result is run backwards through the corresponding S- boxes.

This is done for all known plaintext/ciphertext samples and a count is kept for

each value of the target partial subkey. The count for a particular target partial

subkey value is incremented when the linear expression holds true for the bits

into the last rounds S- boxes (determined by the partial decryption) and the

known plaintext bits.

The target partial subkey value which has the count which differs the greatest

from half the number of plaintext/ciphertext samples is assumed to represent

the correct values of the target partial subkey bits.

This works because it is assumed that the correct partial subkey value will result

in the linear approximation holding with a probability significantly different from

1/2. (Whether it is above or below 1/2 depends on whether a linear or affine

expression is the best approximation and this depends on the unknown values

of the subkey bits implicitly involved in the linear expression.)

An incorrect subkey is assumed to result in a relatively random guess at the bits

entering the S- boxes of the last round and as a result, the linear expression

will hold with a probability close to 1/2.

Lets now put this into the context of our example. The linear expression of

(6) affects the inputs to S- boxes S42 and S44 in the last round.

For each plaintext/ciphertext sample, we would try all 256 values for the target

partial subkey [K5,5 . . .K5,8,K5,13 . . .K5,16].

For each partial subkey value, we would increment the count whenever equation

(6) holds true, where we determine the value of [U4,5 . . . U4,8, U4,13 . . . U4,16] by

running the data backwards through the target partial subkey and S- boxes S24

and S44.

The count which deviates the largest from half of the number of plaintext/ciphertext

samples is assumed to the correct value.

Whether the deviation is positive or negative will depend on the values of the

subkey bits involved in
∑

K. When
∑

K = 0, the linear approximation of (6)

will serve as the estimate (with probability ¡ 1/2) and when
∑

K = 1, (6) will

hold with a probability ¿ 1/2.

Although the correct target partial subkey has clearly the highest bias, other
large bias values occur indicating that the examination of incorrect target par-
tial subkeys is not precisely equivalent to comparing random data to a linear
expression (where the bias could be expected to be very close to zero).

Inconsistencies in the experimental biases can occur for several reasons including

the S- box properties influencing the partial decryption for different partial

subkey values, the imprecision of the independence assumption required for use

in the Piling- Up Lemma, and the influence of linear hulls (to be discussed in

the next section).

Complexity of Attack

We refer to the S- boxes involved in the linear approximation as active S- boxes.

In Figure 3, the four S- boxes in rounds 1 to 3 influenced by the highlighted

lines are active. The probability that a linear expression holds true is related to

the linear probability bias in the active S- boxes and the number of active S-

boxes.

In general, the larger the magnitude of the bias in the S- boxes, the larger the

magnitude of the bias of the overall expression.

Also, the fewer active S- boxes, the larger the magnitude of the overall linear

expression bias.

Let ϵ represent the bias from 1/2 of the probability that the linear expression

for the complete cipher holds. The number of known plaintexts required in the

attack is proportional to ϵ−2 and, letting NL represent the number of known

plaintexts required, it is reasonable to approximate NL by NL ≈ 1/ϵ−2.

In practice, it is generally reasonable to expect some small multiple of ϵ−2

known plaintexts are required.

The complexity of the cryptanalysis could be characterized in both time and

space (or memory) domains, we refer to the data required to mount the attack

when considering the complexity of the cryptanalysis.

We assume that if we are able to acquire NL plaintexts, we are able to process

them. Since the bias is derived using the Piling- Up Lemma where each term

in the product refers to an S- box approximation, it is easy to see that the bias

is dependent on the biases of the S- box linear approximations and the number

of active S- boxes involved.

General approaches to providing security against linear cryptanalysis have fo-

cused on optimizing the S- boxes (i.e., minimizing the largest bias) and finding

structures to maximize the number of active S- boxes.

The design principles of Rijndael are an excellent example of such an approach.

It must be cautioned, however, the concept of a “proof” of security to lin-

ear cryptanalysis is usually premised on the nonexistence of highly likely linear

approximations. However, the computation of the probability of such linear
approximations is based on the assumption that each S- box approximation is
independent (so that the Piling- Up Lemma can be used) and on the assump-
tion that one linear approximation scenario (i.e., a particular set of active S-
boxes) is sufficient to determine the best linear expression between plaintext
bits and data bits at the input to the last round.

The reality is that the Sbox approximations are not independent and this can
have significant impact on the computation of the probability.

Also, linear approximation scenarios involving the same plaintext and last round
input bits but different sets of active S- boxes can combine to give a linear
probability higher than that predicted by one set of active S- boxes. This
concept is referred to as a linear hull.(Odev)

Most notably for example, a number of linear approximation scenarios may
have very small biases and on their own seem to imply that a cipher might
be immune to a linear attack. However, when these scenarios are combined,
the resulting linear expression of plaintext and last round input bits might have
a very high bias. Nevertheless, the approach outlined in this paper, tends to
work well for many ciphers because the independence assumption is a reasonable
approximation and when one linear approximation scenario of a particular set
of active S- boxes has a high bias, it tends to dominate the linear hull.

Differential Cryptanalysis

Differential cryptanalysis exploits the high probability of certain occurrences of

plaintext differences and differences into the last round of the cipher.

A system with input X = [X1X2 . . . Xn] and output Y = [Y1Y2 . . . Yn]. Let two

inputs to the system be X ′ and X ′′ with the corresponding outputs Y ′ and Y ′′,
respectively.

The input difference is given by ∆X = X ′ ⊕X ′′ where ⊕ represents a bit-wise

exclusive-OR of the n-bit vectors and, hence,

∆X = [∆X1∆X2 . . .∆Xn] where ∆Xi = X ′i ⊕X ′′i .

Similarly, ∆Y = Y ′ ⊕ Y ′′ is the output difference and

∆Y = [∆Y1∆Y2 . . .∆Yn]

Differential

In an ideally randomizing cipher, the probability that a particular output differ-

ence ∆Y occurs given a particular input difference ∆X is 1
2
n

where n is the

number of bits of X.

Differential cryptanalysis seeks to exploit a scenario where a particular ∆Y

occurs given a particular input difference ∆X with a very high probability pD
(i.e., much greater than 1

2
n
). The pair (∆X,∆Y) is referred to as a differential.

Differential cryptanalysis is a chosen plaintext attack.

The attacker will select pairs of inputs, X ′ and X ′′, to satisfy a particular

∆X, knowing that for that ∆X value, a particular ∆Y value occurs with high

probability.

Investigate the construction of a differential (∆X,∆Y).

Differential Characteristic

Examine high likely differential characteristics where a differential characteristic

is a sequence of input and output differences to the rounds so that the output

difference from one round corresponds to the input difference for the next

round.

Using the highly likely differential characteristic gives us the opportunity to

exploit information coming into the last round of the cipher to derive bits from

the last layer of subkeys.

Example 1 for Differentials

X,Y ∈ 0,1, . . . ,4

Y = f(X) = 3X, ∆X = X ′ − X ′′, Y ′ = f(X ′), Y ′′ = f(X ′′), f(∆X) = 5(X ′ −
X ′′) = Y ′ − Y ′′ = ∆Y

∆Y
X ′ Y ′ ∆X = 0 ∆X = 1 ∆X = 2 ∆X = 3 ∆X = 4
0 0 0 3 1 4 2
1 3 0 3 1 4 2
2 1 0 3 1 4 2
3 4 0 3 1 4 2
4 2 0 3 1 4 2

∆Y
0 1 2 3 4

0 5 0 0 0 0
1 0 0 0 5 0

∆X 2 0 5 0 0 0
3 0 0 0 0 5
4 0 5 0 0 0

Pr(∆Y = 1|∆X = 2) = 1,

Pr(∆Y = 2|∆X = 2) = 0

Example 2 for Differentials

X,Y ∈ 0,1, . . . ,4

Y = f(X) = 3X + 2, ∆X = X ′ − X ′′, X ′ = 4 → Y ′ = f(X ′) = 4, X ′′ = 3 →
Y ′′ = f(X ′′) = 1, f(∆X) = 3(X ′ −X ′′) + 2 = 0 ̸= Y ′ − Y ′′

∆Y
X ′ Y ′ ∆X = 0 ∆X = 1 ∆X = 2 ∆X = 3 ∆X = 4
0 2 0 3 0 4 1
1 1 0 4 2 4 3
2 3 0 2 1 4 1
3 2 0 4 1 0 3
4 4 0 2 1 3 2

∆Y
0 1 2 3 4

0 5 0 0 0 0
1 0 0 2 1 2

∆X 2 1 3 1 0 0
3 1 0 0 1 3
4 0 2 1 2 0

Pr(∆Y = 1|∆X = 2) = 3
5,

Pr(∆Y = 2|∆X = 2) = 1
5

Differential of S-Box

Examine the properties of individual S-boxes and use these properties to de-

termine the complete differential characteristic.

Consider the input and output differences of the S-boxes in order to determine

a high probability difference pair.

Combining S-box difference pairs from round to round so that the nonzero

output difference bits from one round correspond to the non-zero input differ-

ence bits of the next round, enables us to find a high probability differential

consisting of the plaintext difference and the difference of the input to the last

round.

z 0 1 2 3 4 5 6 7 8 9 A B C D E F
πS (z) E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Pr(∆Y |∆X) can be derived by considering input pairs (X ′, X ′′) such that X ′⊕
X ′′ = ∆X.

S-box difference distribution table

S11 : Pr(∆Y = 4|∆X = F) = 6
16

S22 : Pr(∆Y = 6|∆X = 8) = 2
16

S32 : Pr(∆Y = 6|∆X = 4) = 6
16

S33 : Pr(∆Y = 6|∆X = 4) = 6
16

∆P = [1111000000000000]

∆U1 = [1111000000000000]

∆V1 = [0100000000000000]

∆U2 = [0000100000000000]

∆V2 = [0000011000000000]

∆U3 = [0000010001000000]

∆V3 = [0000011001100000]

∆U4 = [0000011001100000]

Pr(∆P = [1111000000000000]|∆U4 =

[0000011001100000]) = (6
16)

3 × 2
16 =

27
4096

Data Encryption Standard - DES

Triple DES

Algorithm Triple DES uses a “key bundle” which comprises three DES keys,

K1, K2 and K3, each of 56 bits. The encryption algorithm is:

ciphertext = EK3

(
DK2

(
EK1 (plaintext)

))
DES encrypt with K1, DES decrypt with K2, then DES encrypt with K3.

Decryption is the reverse:

plaintext = DK1

(
EK2

(
DK3 (ciphertext)

))
Decrypt with K3, encrypt with K2, then decrypt with K1.

Each triple encryption encrypts one block of 64 bits of data.

In each case the middle operation is the reverse of the first and last. This

improves the strength of the algorithm when using keying option 2, and provides

backward compatibility with DES with keying option 3.

1. Keying option 1: All three keys are independent.

2. Keying option 2: K1 and K2 are independent, and K3 = K1.

3. Keying option 3: All three keys are identical, i.e. K1 = K2 = K3.

Modes of operation

For messages exceeding block length, n, the message is partitioned into n-bit

blocks.

EK: the encryption function

E−1: the decryption function

x = x1, . . . , xt: A plaintext message

1. Identical plaintext blocks result in identical ciphertext.

2. Chaining dependencies: Reordering ciphertext blocks results in correspond-
ingly re-ordered plaintext blocks.

3. Error propagation: one or more bit errors in a single ciphertext block affect
decipherment of that block only.

1. Identical plaintexts: identical ciphertext blocks result when the same plaintext is enciphered
under the same key and IV.

2. Chaining dependencies: ciphertext cj depends on xj and all preceding plaintext blocks.

3. Error propagation: a single bit error in ciphertext block cj affects decipherment of blocks cj
and cj+1.

4. Error recovery: the CBC mode is self-synchronizing or ciphertext autokey.

Cipher feedback (CFB) Mode

1. Identical plaintexts: changing the IV results in the same plaintext input

being enciphered to a different output.

2. Chaining dependencies: ciphertext block cj to depend on both xj and

preceding plaintext blocks.

3. Error propagation: one or more bit errors in any single r-bit ciphertext block

cj affects the decipherment of that and the next ⌈nr ⌉ ciphertext blocks.

4. Error recovery: the CFB mode is self-synchronizing, but requires ⌈nr ⌉ cipher-
text blocks to recover.

5. Throughput: for r < n, throughput is decreased by a factor of n
r .

Output feedback (OFB) Mode

1. Identical plaintexts: changing the IV results in the same plaintext being
enciphered to a different output.

2. Chaining dependencies: the keystream is plaintext-independent.

3. Error propagation: one or more bit errors in any ciphertext character cj
affects the decipherment of only that character, in the precise bit position(s)

cj is in error, causing the corresponding recovered plaintext bit(s) to be com-

plemented.

4. Error recovery: the OFB mode recovers from ciphertext bit errors, but

cannot selfsynchronize after loss of ciphertext bits, which destroys alignment

of the decrypting keystream.

5. Throughput: for r < n, throughput is decreased as per the CFB mode. How-

ever, in all cases, since the keystream is independent of plaintext or ciphertext,

it may be pre-computed (given the key and IV).

Data Integrity and Source Authentication

• Encryption does not protect data from modification by another party.

• Need a way to ensure that data arrives at destination in its original form as

sent by the sender and it is coming from an authenticated source.

Hash Functions

Definition - hash function

�

they can be reduced to 2 classes
based on linear transformations of
variables. The properties of these
12 schemes with respect to weak-
nesses of the underlying block cipher
are studied. The same approach
can be extended to study keyed hash
functions (MACs) based on block ci-
phers and hash functions based on
modular arithmetic. My brother is in
the audience. Finally a new attack is
presented on a scheme suggested by
R. Merkle. This slide is now shown
at the 2001 ESAT Course in a pre-
sentation on the state of hash func-
tions and MAC algorithms.

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

h �15046092168

A cryptographic hash function is a deterministic procedure that takes an arbi-

trary block of data and returns a fixed-size bit string, the hash value, such that

an accidental or intentional change to the data will change the hash value.

The data to be encoded is often called the message and the hash value is

sometimes called the message digest or simply digest.

Properties of Ideal Cryptographic Hash Functions

It is

1. easy to compute the hash value for any given message,

2. infeasible to find a message that has a given hash,

3. infeasible to modify a message without hash being changed,

4. infeasible to find two different messages with the same hash.

Even if the data is stored in an insecure place, its integrity can be checked

from time to time by recomputing the digest and verifying that the digest has

not changed.

Definition of Hash Family

A hash family is a four tuple X,Y,K,H, where teh following conditions are
satisfied:

1. X is a set of possible messages

2. Y is a finite set of possible message digests

3. K is a finite set of possible keys

4. For each K ∈ K, there is a hash function hK ∈ H. Each hK : X→ Y.

A pair (x, y) ∈ X× Y is said to be valid under the key K if hK(x) = y.

Let FX,Y denote the set of all functions from X to Y. Suppose that |X| = N
and |Y| = M . Then |FX,Y | = MN . Any hash family F ⊆ FX,Y is termed an
(N,M)-hash family.

MDC (Modification Dedection Code): An unkeyed hash function is a function
hK : X→ Y, where |K| = 1.

Security of Cryptographic Hash Functions

A cryptographic hash function must be able to withstand all known types of
cryptanalytic attacks. As a minimum, it must have the following properties:

1. Preimage resistance: Given a hash y it should be difficult to find any mes-
sage x such that y = h(x). This concept is related to that of one-way
function.

2. Second preimage resistance: Given an input x1 it should be difficult to find
another input x2 where x1 ̸= x2 such that h (x1) = h (x2). This property
is sometimes referred to as weak collision resistance.

3. Collision resistance: It should be difficult to find two different messages
x1 and x2 such that h (x1) = h (x2). Such a pair is called a cryptographic
hash collision. This property is sometimes referred to as strong collision
resistance. It requires a hash value at least twice as long as that required
for preimage-resistance, otherwise collisions may be found by a birthday
attack.

Uses of hash functions

• Message authentication

• Software integrity

• One-time Passwords

• Digital signature

• Timestamping

• Certificate revocation management

Constructing Hash Function From Compression

Functions

A compression function takes a fixed-length input string and output a shorter
string f : {0,1}m+t → {0,1}m.

The Merkle-Damgard Construction of Hash

Functions

• Goal: construct a hash function h : {0,1}⋆ → {0,1}m from a compression
function f : {0,1}m+t+1 → {0,1}m

• Given message x of arbitrary length• Given message x of arbitrary length

x1

t bits t bits

x: xk

y1=x1 yk=xk||0
d yk+1= d

x2

y2=x2

f0m+1

z1

f

|| 1

z2

z1=f(0
m+1||y1) z2=f(z1|| 1 ||y2)

|| 1

x3
…

f

y3=x3

z3

z3=f(z2|| 1 ||y3)

t bits

f

zk+1

|| 1

zk+1=f(zk|| 1 ||yk+1)

Example:

• Compression function: f : {0,1}128+512+1 → {0,1}128

• Message x has 1000 bits:

– y1 is first 512 bits of x

– y2 is last 488 bits of x||024

– y3 is 0480|| 32-bit binary representation of 24

• Iteration results

– z1 = f
(
0129||y1

)
z1 has 128 bits

– z2 = f (z1||1||y2)

– z3 = f (z2||1||y3) z3 is the message digest h(x)

Example:

• Suppose that message x′ has 488 bits and h (x) = h
(
x′
)
(there is a collision

for h):

– y′1 is x′||024

– y′2 is 0480|| 32-bit binary representation of 24

– z′1 = f
(
0129||y′1

)
z′1 has 128 bits

– z′2 = f
(
z′1||1||y

′
2

)
z′2 is h(x′)

• Then f
(
z′1||1||y

′
2

)
= f (z2||1||y3) and y3 = y′2

– if z′1 ̸= z2 then a collision is found for f

– if z′1 = z2 then f
(
0129||y′1

)
= f (z1||1||y2), there is also a collision for f

Security of the Merkle- Damgard Construction

If f : {0,1}m+t+1 → {0,1}m is collision resistant, then the Merkle-Damgard

construction h : {0,1}⋆ → {0,1}m is collision resistant.

SHA1 (Secure Hash Algorithm)

• SHA was designed by NIST and is the US federal standard for hash func-

tions, specified in FIPS-180 (1993).

• SHA-1, revised version of SHA, specified in FIPS-180-1 (1995) use with

Secure Hash Algorithm).

• It produces 160-bit hash values.

• NIST have issued a revision FIPS 180-2 that adds 3 additional hash al-

gorithms: SHA-256, SHA-384, SHA-512, designed for compatibility with

increased security provided by AES.

SHA3 Contest

NIST announced a public competition on Nov. 2, 2007 to develop a new
cryptographic hash algorithm. The winning algorithm will be named “SHA-
3”, and will augment the hash algorithms currently specified in the Federal
Information Processing Standard (FIPS) 180-3, Secure Hash Standard.

NIST received 64 entries by October 31, 2008; and selected 51 candidate
algorithms to advance to the first round on December 10, 2008, and 14 to
advance to the second round on July 24, 2009.

Based on the public feedback and internal reviews of the second-round candi-
dates, NIST selected 5 SHA-3 finalists - BLAKE, Grøstl, JH, Keccak, and Skein
to advance to the third (and final) round of the competition on December 9,
2010, which ended the second round of the competition.

A one-year public comment period is planned for the finalists. NIST also plans
to host a final SHA-3 Candidate Conference in the spring of 2012 to discuss
the public feedback on these candidates, and select the SHA-3 winner later in
2012.

Further details of the competition are available at http://ehash.iaik.tugraz.

at/wiki/The_SHA-3_Zoo.

Message Authentication Codes

MAC (Message Authentication Code): Hash function with secret key

• hard to produce a forgery

• can only be generated and verified by someone who secret MAC-key

• do not use the same key for MAC and for encryption

MAC = hash function with secret key

.. �

.. � = ?150719632364

Where dips the rocky

highland of Sleuth Wood

in the lake, There lies

a leafy island where

flapping herons wake

the drowsy water-rats;

there we’ve hid our

faery vats, full of berries

and of reddest stolen

cherries. Come away, o

human child! To the

�

�
��

�
�

��

�

K

MAC

150719632364

Where dips the rocky

highland of Sleuth Wood

in the lake, There lies

a leafy island where

flapping herons wake

the drowsy water-rats;

there we’ve hid our

faery vats, full of berries

and of reddest stolen

cherries. Come away, o

human child! To the

�

�
��

�
�

��

�

K

MAC

150719632364

MAC based on block cipher: retail MAC

E�
�

K1
�

x1
H1

E�
�

K1
�

+

�

x2
H2

...

E�
�

K1
�

+

�

xt

Ht

Ht−1

D�
�

K2
�

E�
�

K1
�

MACK(x)

Symmetric Key Cryptography

P C P

secure channel
K

E D

Alice Eve Bob

Secret Key ↔ Public Key

• key agreement

How can 2 people who have never met share a key which is only known to

these 2 people

• digital signature

How can one be sure that a message comes from the sender who claims to

have produced that message?

Public Key Cryptosystem

W. Diffie, M. Hellman, “New directions in cryptography”, IEEE Transactions
on Information Theory, Nov 1976, Volume: 22, Issue:6, page(s): 644 - 654.

1. for every K ∈ K eK is the inverse of dK,

2. for every K ∈ K, x ∈ P and y ∈ C eK (x) = y and dK (y) = x are easy to
compute.

3. for almost every K ∈ K, each easily computed algorithm equivalent to dK
is computationally infeasible to derive from eK,

4. for every K ∈ K, it is feasible to compute inverse pairs eK and dK from K.

Because of the third property, a user’s enciphering function eK can be made
public without compromising the security of his secret deciphering function dK.
The cryptographic system is therefore split into two parts, a family of encipher-
ing transformations and a family of deciphering transformations in such a way
that, given a member of one family, it is infeasible to find the corresponding
member of the other.

Problem 1: Key-Agreement (1/3)

Diffie-Hellman Key Agreement Protocol

(f(X,Z): commutative one way function)

Alice Bob
YA = f(XA, Z)

YA
−→

YB = f(XB, Z)
YB
←−

KAB = f(XA, YB) = f(XA, f(XB, Z)) KBA = f(XB, f(XA, Z))

Key-Agreement (2/3)

Modular Exponentiation

• given α and a prime p with α ∈ [1, p− 1]

• w = αx mod p can be computed efficiently (square and multiply)

Inverse operation (discrete logarithm)

• given α, p and w, find x such that

αx mod p ≡ w

Key-Agreement (3/3)

• p = 37: the integers from 0 to 36 form a field with + and × mod 37

• α = 2 is a generator of the non-zero elements: powers of 2 generate all
non-zero elements: 20 = 1, 21 = 2, 23 = 8, 24 = 16, 25 = 32, 26 = 27,
27 = 17, ..., 236 = 1

• XA = 10⇒ YA = 210 mod 37 = 25

• XB = 13⇒ YB = 213 mod 37 = 15

• KAB = (YB)XA = 1510 mod 37 = 158+2 mod 37 = 7× 3 mod 37 = 21

• KBA = (YA)
XB = 2513 mod 37 = 258+4+1 mod 37 = 34×16×25 mod 37 =

21

• KAB = KBA = 21

Problem 2: Public-key cryptography (1/3)

(trapdoor one-way functions)

PA

PA
PA

P C P
E D

AS

,()AS
authentic channel

EveBob Alice

Public-key cryptography (2/3)

RSA public-key algorithm

trapdoor one-way function:

• given x: “easy” to compute f(x)

• given f(x): “hard” to compute x

• given f(x) and the trapdoor information: finding x is “easy”

given two large primes p and q and a public key (e, n)

n = p× q (factoring n is hard)

f(x) = xe mod n is a trapdoor one-way function

trapdoor information (p, q) allows to find a private key (d, n) such that

(xe)d = (xe)1/e = x mod n

Public-key cryptography (3/3)

RSA public-key algorithm (2): detail

key generation:

choose two primes p and q

n = p× q , ϕ(n) = (p− 1)(q − 1)

choose e prime w.r.t. ϕ(n)

compute d = e−1 mod ϕ(n)

public key = (e, n)

private key = (d, n) or (p, q)

encrytion: c = me mod n

decrytion: m = cd mod n

Modular Exponantiation
Algorithm 3 Square and Multiply - left to right
Require: N =

(
nk−1, . . . , n1, n0

)
2, E =

(
ek−1, . . . , e1, e0

)
2, M =(

mk−1, . . . ,m1,m0
)
2

Ensure: C = ME mod N

1: C = 1

2: for i from k − 1 downto 0 do

3: C = C2 mod N

4: if Ei = 1 then

5: C = CM mod N

6: end if

7: end for

Attacks on the RSA Cryptosystem

Although 35 years of research have led to a number of fascinating attacks,

none of them is devastating. They mostly illustrate the dangers of improper

use of RSA. Indeed, securely implementing RSA is a nontrivial task.

Factoring Large Integers

We refer to factoring the modulus as a brute-force attack on RSA.

Factoring algorithms running time
Pollard’s Rho algorithm O

(√
p
)

Pollard’s p− 1 algorithm O
(
p′
)
where p′ is the largest

prime factor of p− 1
Pollard’ s p+1 algorithm O

(
p′
)
where p′ is the largest

prime factor of p+1

Elliptic Curve method (ECM) O

(
e(1+o(1))(2 ln p ln ln p)1/2

)
Quadratic Sieve (Q.S.) O

(
e(1+o(1))(lnN ln lnN)1/2

)
Number Filed Sieve (NFS) O

(
e(1.92+o(1))(lnN)1/3(ln lnN)2/3

)

Our objective is to survey attacks on RSA that decrypt messages without

directly factoring the RSA modulus N .

Is breaking RSA as hard as factoring?

Chinese Remainder Theorem

The following problem was posed by Sunzi (4th century AD) in the book Sunzi

Suanjing:

when a number is

repeatedly divided by 3, the remainder is 2;
by 5 the remainder is 3;
and by 7 the remainder is 2.

What will be the number?

Oystein Ore mentions another puzzle with a dramatic element from Brahma-

Sphuta-Siddhanta (Brahma’s Correct System) by Brahmagupta (born 598 AD):

An old woman goes to market and a horse steps on her basket and crashes the

eggs.

The rider offers to pay for the damages and asks her how many eggs she had

brought.

She does not remember the exact number, but when she had taken them out

two at a time, there was one egg left. The same happened when she picked

them out three, four, five, and six at a time, but when she took them seven

at a time they came out even. What is the smallest number of eggs she could

have had?

Involves a situation like the following: we are asked to find an integer x which

gives a remainder of 4 when divided by 5, a remainder of 7 when divided by 8,

and a remainder of 3 when divided by 9.

In other words, we want x to satisfy the following congruences.

x ≡ 4 mod 5, x ≡ 7 mod 8, x ≡ 3 mod 9

There can be any number of moduluses, but no two of them should have any

factor in common. Otherwise the existence of a solution cannot be guaranteed.

The method for solving this set of three simultaneous congruences is to reduce

it to three separate problems whose answers may be added together to get a

solution to the original problem.

To understand this, think about why

144 + 135 + 120 will be a solution to the simultaneous congruences.

144 gives a reminder of 4 when divided by 5. On the other hand, 135 and 120

are multiples of 5, so adding them doesn’t change this reminder.

144+ 135+ 120 ≡ 144 mod 5 ≡ 4 mod 5

135 gives a reminder of 7 when divided by 8. On the other hand, 144 and 120

are multiples of 8, so adding them on doesn’t change this reminder.

144+ 135+ 120 ≡ 135 mod 8 ≡ 7 mod 8

120 gives a reminder of 3 when divided by 9. But 144 and 135 are multiples

of 9, so adding them in doesn’t affect this remainder.

144+ 135+ 120 ≡ 120 mod 9 ≡ 3 mod 9

Therefore 399, which is the sum of 144, 135, and 120, satisfies all three of the

congruences.

Having now seen why 399 is a valid solution, we can also partly see the process

by which it was created. We found it as the sum of three numbers.

The first number, 144, gives the right remainder when divided by 5 and is also

a multiple of 8 and of 9.

The second number, 135, is a multiple of 5 and of 9 and gives the correct

remainder when divided by 8.

The third number, 120, is congruent to 3 module 9 and is a multiple of both

5 and 8.

So where did we get these three numbers?

To start with, taking the last two of the three moduli 5, 8, and 9, compute

8× 9 = 72. We look for a multiple of 72 which satisfies the first congruence.

72× 2 = 144, and 144 ≡ 4 mod 5.

5×9 = 45. We look for a multiple of 45 which satisfies the second congruence.

We find (by trial and error) that

1× 45 = 45 ≡ 5 mod 8, 2× 45 = 90 ≡ 2 mod 8, 3× 45 = 135 ≡ 7 mod 8

5× 8 = 40. We look for a multiple of 40 which is congruent to 3 module 9.

40 ≡ 4 mod 9, 80 ≡ 8 mod 8, 120 ≡ 3 mod 9

Now the required answer is the sum 144 + 135 + 120, namely 399.

Consider another example. Look for a number x satisfying the following con-

gruences.

x ≡ 1 mod 2, x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 1 mod 7

3×5×7 = 105. We look for a multiple of 105 which is congruent to 1 modulo

2. We can choose 105 itself, since it is odd.

2 × 5 × 7 = 70. We look for a multiple of 70 which is congruent to 2 modulo

3. 70 ≡ 1 mod 3⇒ 2× 70 ≡ 2× 1 ≡ 2 mod 3. We can choose 140.

2 × 3 × 7 = 42. We look for a multiple of 42 which is congruent to 3 modulo

5. 42 ≡ 2 mod 5. 4× 42 ≡ 4× 2 = 8 ≡ 3 mod 5. We use 168.

2 × 3 × 5 = 30. We want a multiple of 30 which is congruent to 1 modulo 7.

30 ≡ 2 mod 7. 4× 30 ≡ 4× 2 = 8 ≡ 1 mod 7. We use 120.

Adding the four numbers we’ve found together, we get a solution of 105 +

140 + 168 + 120 = 533

One solution to a system of congruences

x ≡ a1 mod m1

x ≡ a2 mod m2

. . .

x ≡ an mod mn

with the mi mutually prime to each other can be found by adding together n

numbers. The i th of these numbers should be congruent to ai modulo mi and

it should be a multiple of all the other moduli mk.

If a and m are relatively prime, then the congruence az ≡ b mod m is always

solvable for z, no matter what b is.

To see why this has to be true, consider, for instance, the first 5 multiples of
42 and reduce modulo 5.

42 ≡ 2 mod 5

0× 42 ≡ 0 mod 5

1 ≡ 2 mod 5

2× 42 ≡ 4 mod 5

3× 42 ≡ 1 mod 5

4× 42 ≡ 3 mod 5

Notice that one the right hand side, every number from 0 to 4 occurs, showing
that a congruence 42z ≡ b mod 5 can always be solved, no matter what b is.

This is not a coincidence, but is a consequence of the fact that 42 has no
factor in common with 5. If any of the five numbers from 0 to 4 had been
missing on the right-hand side of the five congruences listed, then at least one
right-hand side would have to be repeated. But, given the fact that 42 has no
factors in common with 5, this would not be possible.

Broadcast Attack

Think that Alice wants to send the same message, x to Bob, Bill and Bart,

who have all the same public key, e, but different modulus, n1, n2, n3. Can Eve

find x without knowing the private keys?

Yes, she can by using CRT!

xe ≡ a1 mod n1

xe ≡ a2 mod n2

xe ≡ a3 mod n3

Common Modulus

To avoid generating a different modulus N = pq for each user, one may wish

to fix N once and for all. The same N is used by all users. A trusted central

authority could provide user i with a unique pair (ei, di) from which user i forms

a public key < N, ei > and a secret key < N, di >.

Fact 1: Let ⟨N, e⟩ be an RSA public key. Given the private key d, one can

efficiently factor the modulus N = pq. Conversely, given the factorization of

N , one can efficiently recover d.

By Fact 1 Bob can use his own exponents eb, db to factor the modulus N .

Once N is factored Bob can recover Alices private key da from her public key

ea. This observation, due to Simmons, shows that an RSA modulus should

never be used by more than one entity.

Exposing the private key d and factoring N are equivalent. Hence there is no

point in hiding the factorization of N from any party who knows d.

Blinding

Let < N, d > be Bobs private key and < N, e > his corresponding public key.

Suppose Marvin wants Bobs signature on a message M ∈ Z∗N . Being no fool,

Bob refuses to sign M .

Marvin can try the following: he picks a random r ∈ Z∗N and sets M ′ = reM mod

N . He then asks Bob to sign the random message M ′. Bob may be willing

to provide his signature S′ on the innocent-looking M ′. Marvin now simply

computes S = S′/r mod N and obtains Bobs signature S on the original M .

Indeed,

S = S′
r = M ′d

r = redMd

r = rMd

r = Md

This technique, called blinding, enables Marvin to obtain a valid signature on

a message of his choice by asking Bob to sign a random “blinded” message.

Bob has no information as to what message he is actually signing.

Elliptic Curve Group over R

Definition: set of the solutions of Weierstrass equation

E : y2+ a1xy+ a3y = x3+ a2x
2+ a4x+ a6 over a field and the point at infinity

O.

−20 −15 −10 −5 0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

100

150

200

P1

P2

P3

x

y

−20 −15 −10 −5 0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

100

150

200

P1

P3

Adding two points Doubling a point

Elliptic Curve Point Addition and Doubling over GF (p) p > 3

E : y2 = x3 + ax+ b

P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) = P1 + P2

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

λ =

 (y2 − y1) (x2 − x1)
−1 if P1 ̸= P2(

3x21 + a
)
(2y1)

−1 if P1 = P2

projective coordinates are used to get rid of modular multiplicative inversion

Elliptic Curve Point Multiplication

[k]P = P + P + · · ·+ P︸ ︷︷ ︸
k

Require: EC point P = (x, y), integer k, 0 < k < M ,

k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1 and M

Ensure: Q = [k]P = (x′, y′)
Q← P

for i from l − 2 downto 0 do

Q← 2Q

if ki = 1 then

Q← Q+ P

end if

end for

point multiplication

point doubling point addition

Modular inversion Modular multiplication Modular addition

Elliptic Curve Point Addition and Doubling

Require: P1 = (x, y,1, a), P2 = (X2, Y2, Z2, aZ4
2)

Ensure: P1 + P2 = P3 = (X3, Y3, Z3, aZ4
3)

1. T1 ← Z2
2

2. T2 ← xT1

3. T1 ← T1Z2 T3 ← X2 − T2

4. T1 ← yT1

5. T4 ← T 2
3 T5 ← Y2 − T1

6. T2 ← T2T4

7. T4 ← T4T3 T6 ← 2T2

8. Z3 ← Z2T3 T6 ← T4 + T6

9. T3 ← T 2
5

10. T1 ← T1T4 X3 ← T3 − T6

11. aZ4
3 ← Z2

3 T2 ← T2 −X3

12. T3 ← T5T2

13. aZ4
3 ←

(
aZ4

3

)2
Y3 ← T3 − T1

14. aZ4
3 ← a

(
aZ4

3

)
latency = 14TMM

Require: P1 = (X1, Y1, Z1, aZ4
1)

Ensure: 2P1 = P3 = (X3, Y3, Z3, aZ4
3)

1. T1 ← Y 2
1 T2 ← 2X1

2. T3 ← T 2
1 T2 ← 2T2

3. T1 ← T2T1 T3 ← 2T3

4. T2 ← X2
1 T3 ← 2T3

5. T4 ← Y1Z1 T3 ← 2T3

6. T5 ← T3
(
aZ4

1

)
T6 ← 2T2

7. T2 ← T6 + T2

8. T2 ← T2 +
(
aZ4

1

)
9. T6 ← T 2

2 Z3 ← 2T4

10. T4 ← 2T1

11. X3 ← T6 − T4

12. T1 ← T1 −X3

13. T2 ← T2T1 aZ4
3 ← 2T5

14. Y3 ← T2 − T3

latency = 8TMM +6TMAS

Modular Addition, Subtraction Circuit over GF (p)

Require: M , 0 ≤ A < M ,

0 ≤ B < M

Ensure: C = A+B mod M

C′ = A+B

C′′ = C′ −M

if C′′ < 0 then

C = C′

else

C = C′′

end if

Require: M , 0 ≤ A < M ,

0 ≤ B < M

Ensure: C = A−B mod M

C′ = A−B

C′′ = C′+M

if C′ < 0 then

C = C′′

else

C = C′

end if

Power-Analysis Attacks: Why do they work?

VDD

PULL-UP Network

PULL-DOWN Network

b

c

d

a

a

b c
d

d+a.(b+c)

CL

Dynamic power consumption is mainly due to the charge and discharge of the

load capacitance CL.

Types of Power-Analysis Attacks

Simple Power Analysis (SPA) Attacks:

• every instruction =⇒ unique power-consumption trace

• one measurement

Differential Power Analysis (DPA) Attacks:

• many measurements

• statistical analysis used

SPA Attack on Elliptic Curve Point Multiplication
Require: EC point P = (x, y), integer k, k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1
Ensure: Q = (x′, y′)

Q← P

for i from l − 2 downto 0 do
Q← 2Q
if ki = 1 then

Q← Q+ P

end if
end for

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1

0

1

2

3

4

5

6

clock cycle

m
A

0 0 1 1 0 0

The key used during this measurement is 1001100.

Countermeasure for SPA Attack

Require: EC point P = (x, y), integer k, k = (kl−1, kl−2, · · · , k0)2, kl−1 = 1

Ensure: Q = (x′, y′)
Q← P

for i from l − 2 downto 0 do

Q1 ← 2Q

Q2 ← Q1 + P

if ki = 1 then

Q← Q2

else

Q← Q1

end if

end for

0 0.5 1 1.5 2 2.5

x 10
6

−2

−1

0

1

2

3

4

5

6

7

8

9

sample

m
A

attack point

Current Consumption Measurement for DPA Attack

• Data length: 2400 clock cy-

cles around the 2nd update of

Q1.

• Clock frequency: 300 kHz.

• Sampling frequency:

250 MHz.

0 0.5 1 1.5 2

x 10
6

−3

−2

−1

0

1

2

3

4

5

6

7

sample

m
A

Pre-Processing

260 280 302.8 320 340 360
0

0.5

1

1.5

2
x 10

9

frequency (kHz)
0 200 400 600 800 1000 1200 1400 1600 1800

−1

0

1

2

3

4

5

6

7

clock cycle
m

A 1st spike 2nd spike

3rd spike

4 th spike
5 th spike

Discrete Fourier transform maximum in every clock cycle
between 250 kHz and 375 kHz
Clock frequency : 302.8 kHz

Correlation Analysis

1. hypothetical model =⇒ predict side-channel output for N inputs.

Prediction is the number of bits changed from 0 to 1 from Xi to Xi+1

2. Prediction is for:

• a certain moment of time

• a certain key guess

3. Predictions are correlated with the real side-channel output.

• Correlation is high =⇒ model is correct

Results of the Correlation Analysis

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

number of measurements

co
rr

el
at

io
n

guess: key−bit=0
guess: key−bit=1

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

number of measurements

co
rr

el
at

io
n

guess: key−bit=0
guess: key−bit=1

Third spike Fifth spike

Electromagnetic Analysis of an FPGA Implementation of

Elliptic Curve Cryptosystem over GF (p)

SEMA Attack

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

1

2

3

4

5

6

7

8

Sample

E
le

ct
ro

m
ag

n
et

ic
 r

ad
ia

ti
o

n
 (

m
V

)

0 0 0 0 1 1 1
0 0.5 1 1.5 2 2.5

x 10
6

0

1

2

3

4

5

6

7

8

Sample
E

le
ct

ri
m

ag
n

et
ic

 r
ad

ia
ti

o
n

 (
m

V
)

with double and add algorithm with always double and add algorithm

DEMA Attack

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

1

2

3

4

5

6

7

Sample

E
le

ct
ro

m
ag

ne
tic

 r
ad

ia
tio

n
(m

V
)

Electromagnetic radiation trace of the FPGA for the attacked point

Correlation Analysis

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

number of measurements

co
rr

el
at

io
n

guess: key−bit=0
guess: key−bit=1

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

number of measurements
co

rr
el

at
io

n

guess: key−bit=0
guess: key−bit=1

Third spike Fifth spike

