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Abstract Apatite fission-track analyses indicate that the

Kazdağ Massif in northwestern Anatolia was exhumed

above the apatite partial annealing zone between 20 and

10 Ma (i.e. early-middle Miocene), with a cluster of ages at

17–14 Ma. The structural analysis of low-angle shear

zones, high-angle normal faults and strike-slip faults, as

well as stratigraphic analysis of upper-plate sedimentary

successions and previous radiometric ages, point to a two-

stage structural evolution of the massif. The first stage -

encompassing much of the rapid thermal evolution of the

massif- comprised late Oligocene-early Miocene low-angle

detachment faulting and the associated development of

small supradetachment grabens filled with a mixture of

epiclastic, volcaniclastic and volcanic rocks (Küçükkuyu

Fm.). The second stage (Plio-Quaternary) has been domi-

nated by (i) strike-slip faulting related to the westward

propagation of the North Anatolian fault system and (ii)

normal faulting associated with present-day extension. This

later stage affected the distribution of fission-track ages but

did not have a component of vertical (normal) movement

large enough to exhume a new partial annealing zone. The

thermochronological data presented here support the notion

that Neogene extensional tectonism in the northern Aegean

region has been episodic, with accelerated pulses in the

early-middle Miocene and Plio-Quaternary.

Keywords Fission-track analysis � Thermochronology �
North Anatolian fault system � Aegean Sea �
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Introduction

Much research has focused on the low-angle detachments

associated with metamorphic core complexes in the

Aegean and peri-Aegean region (Fig. 1). These include (1)

southernmost Peloponnesus, northern Pelagonian Zone,

and the Chalkidiki peninsula in Greece, (2) the Rhodope

massif of southern Bulgaria and eastern Greece, (3) the

Kazdağ and Menderes massifs of western Anatolia, (4)

Crete, and (5) the Attic-Cycladic belt of the western-central

Aegean (see Walcott and White 1998; Jolivet et al. 2004;

for reviews). These basement complexes form an elliptic

constellation with a N–S axis and centered on the Cycladic

minimum in crustal thickness (\20 km). Such extension

has followed a middle Eocene phase of crustal thickening

(see Papanikolaou et al. 2004, for a review) and is con-

sidered to be driven either by orogenic collapse (e.g.,

Berckhemer 1977; Jolivet et al. 1994) or by roll-back of the

Hellenic subduction zone (e.g., LePichon and Angelier

1981; Buick 1991). The beginning of extension in the

Aegean region is poorly constrained, with age estimates

ranging from the late Oligocene (e.g., Seytoğlu et al. 1992)

to the late Miocene (e.g., Dewey and Şengor 1979).

The ductile to brittle fabrics in the metamorphic core

complexes of the Aegean domain provide information on

the finite strain field during extension. In terms of

direction and rates, the (Oligo-Miocene?) strain field is

similar to the present-day active strain pattern, which is

known in considerable detail from Global Positioning

System (GPS) data (Jolivet 2001). GPS velocities and the

W. Cavazza (&) � M. Zattin

Department of Earth and Geoenvironmental Sciences,

University of Bologna, 40126 Bologna, Italy

e-mail: william.cavazza@unibo.it

A. I. Okay

Eurasia Institute of Earth Sciences, Istanbul Technical

University, 34469 Istanbul, Maslak, Turkey

123

Int J Earth Sci (Geol Rundsch) (2009) 98:1935–1947

DOI 10.1007/s00531-008-0353-9



presence of diffuse active normal faulting in the Aegean

(e.g., Reilinger et al. 2006) suggest that the middle-to-

lower crust is extending in a ductile manner. Has the

extension been continuous from the late Oligocene (e.g.,

Seytoglu et al. 1992), or were there periods of quiescence

or even periods of regional contraction (e.g., Koçyiğit

et al. 1999; Bozkurt and Sözbilir 2004)? This problem

can be addressed through detailed thermochronological

and structural studies in the metamorphic core complexes.

In this paper we present the first fission-track data on the

Kazdağ Massif of western Anatolia. The integration of

fission-track data and preexisting petrologic, isotopic,

structural, and stratigraphic data provides a coherent

picture of the thermochronological evolution of this

basement complex and points to a wholesome, rapid

exhumation in early-middle Miocene times.
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Fig. 1 Geotectonic map of the

Aegean region (modified from

Okay and Satır 2000) showing

the outcrops of Eocene and Late

Oligocene-Miocene

metamorphism and magmatism

and Neogene extension

directions (data from Beccaletto

2004; Buick 1991; Dinter and

Royden 1993; Gautier et al.

1993; Hetzel et al. 1995; Isık
et al. 2004; Lee and Lister 1992;

Sokoutis et al. 1993; Walcott

and White 1998; Wawrzenitz

and Krohe 1998)
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A second problem addressed here is the relation between

sedimentation and exhumation in the peri-Aegean realm.

Neogene terrigenous sequences, often associated with

volcanic rocks, cover large areas of northwestern Turkey.

The tectonic setting during their deposition has been a

matter of controversy, with both contractional (e.g., Yılmaz

et al. 2000; Yilmaz and Karacik 2001) and extensional

(e.g., Seytoglu et al. 1992) tectonic regimes favored during

their formation. We show through structural and strati-

graphic relations and fission-track dating that Neogene

continental sedimentation and associated volcanism in

NW Anatolia took place in supradetachment basins during

mid-crustal extension.

Geologic setting

The Kazdağ Massif is located at the southern end of the

Biga peninsula of Turkey (Fig. 1), a region where the

combination of Aegean extensional tectonism and strike-

slip faulting related to the North Anatolian fault system has

induced significant crustal thinning and exhumation during

the Neogene (Okay and Satır 2000). The massif is a NE-

trending, 55 km long and 15 km wide structural and

topographic dome of high-grade metamorphic rocks which

represents both the highest peak (maximum elevation

1,766 m) and the deepest section of continental crust

exposed in northwestern Anatolia (Schuling 1959; Bingöl

1969; Okay et al. 1991, 1996; Pickett and Robertson 1996;

Duru et al. 2004). The topography of the Kazdağ Massif is

explained as the result of transpression along a restraining

step-over of the southern margin of the North Anatolian

fault system (Okay and Satır 2000).

In order of decreasing abundance, the Kazdağ Massif is

made of gneiss (and associated migmatite), amphibolite,

marble, and meta-ultramafic rocks (metaserpentinite, me-

taperidotite) (Duru et al. 2004) (Fig. 2). The thickness of

the entire succession exposed in the western part of the

massif has been estimated [6 km (Okay and Satır 2000).

The massif is metamorphosed in amphibolite facies with-

out any noticeable change in metamorphic grade across the

area. The predominant structure in the massif is a com-

positional banding and foliation that in the area studied by

Okay and Satır (2000) dips consistently 35� to the north-

west. The rocks also display a weak mineral stretching

lineation plunging NNW.

Although the lack of dated fossils hampers the deter-

mination of the depositional age of the succession, the

Kazdağ Massif is correlated with the Rhodope crystalline

complex in northern Greece and Bulgaria (Papanikolaou

and Demirtaşlı 1987). In fact, four zircon crystals from

gneisses of the Kazdağ Massif analyzed by single-zircon

stepwise Pb evaporation yielded a mean mid-Carboniferous

age (308 ± 16 Ma, Okay et al. 1996). This was interpreted

as the age of Hercynian high-grade metamorphism, thus

pointing to a Laurasian (Rhodopian) affinity for this

basement complex (Dinter et al. 1995; Wawrzenitz and

Krohe 1998), a correlation that is also based on lithological

and tectonic grounds. Bingöl (1969) reported K/Ar mica

ages of 26 ± 3 and 27 ± 3 Ma from two Kazdağ gneiss

samples. More recently, Okay and Satır (2000) investigated

nine gneiss samples by the Rb/Sr method: muscovite ages

cluster at 24–20 Ma, biotite ages at 20–18 Ma. They con-

cluded that the massif is made of late Hercynian

metamorphic rocks completely recrystallized during the

latest Oligocene at peak conditions of 5 ± 1 kbar and

640 ± 50�C, with only the zircons retaining a memory of

the older metamorphic event.

Permian-to-Neogene sedimentary, magmatic and meta-

morphic rocks tectonically overlie the basement rocks of

the Kazdağ Massif. To the north and east of the massif,

Triassic low-grade metamorphic and sedimentary rocks -

including olistoliths of distinctive Permo-Carboniferous

limestone- belong to the Karakaya Complex, an accretion-

subduction complex marking the closure of the Paleoteth-

yan oceanic domain. West of the Kazdağ Massif lies

the Çetmi mélange (Okay et al. 1991; Beccaletto 2004;

Beccaletto and Steiner 2005; Beccaletto et al. 2005), an

unmetamorphosed Cretaceous tectonic mélange made of

slices/blocks of altered basic and pyroclastic volcanic

rocks, blocks of upper Triassic limestone, eclogite, ser-

pentinite, listwaenite, and radiolarite within a matrix

consisting of an alternation of greywacke and shale.

Low-angle normal faults with thick shear zones mark

the contact between the Çetmi mélange in the hanging wall

and the Kazdağ metamorphic rocks in the footwall. This is

evident along the better exposed and well studied western

margin of the massif. In this area, felsic gneisses generally

show a well-defined mylonitic foliation -parallel to the

compositional banding-, which increases in intensity

toward the top of the metamorphic sequence. Shear sense

indicators point to a top-to-the-north shear sense (Walcott

and White 1998; Okay and Satır 2000), although top-to-

the-southwest directions have been also measured (Bec-

caletto and Steiner 2005).

The Alakeçi shear zone is a 2 km thick zone of

strongly mylonitized gneiss and serpentinite occurring

between the Kazdağ massif and the accretionary mélange

to the north (Fig. 2). The mylonites show a well-defined

mineral lineation plunging N12�E at ca. 30�. The foliation

is more scattered but shows a general dip to the north-

west. The Alakeçi fault constitutes the upper contact of

the shear zone and is interpreted as a low-angle detach-

ment juxtaposing brittlely deformed upper crustal rocks

(the mélange) over ductilely deformed middle crustal

rocks (Okay and Satır 2000). The transition between
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mylonites and the underlying Kazdağ gneisses is cut out

by the younger, N-dipping Biçkidere normal fault. Mini-

mum and maximum estimates of the pressure conditions

for the mylonites in the shear zones are provided by the

estimated depth of emplacement of the Evciler pluton (ca.

3 kbar) and by the Kazdağ regional metamorphism (ca.

5 kbar). Several lines of evidence suggest the existence of

a variable dextral strike-slip component of the down-dip

extension: (1) the lineation in the mylonites of the

Alakeçi shear zone is slightly oblique to the boundaries

of the shear zone, (2) serpentinite bodies within the shear

zone are arranged en echelon, and (3) the azimuths of the

lineations show a clockwise rotation going northward

from Kazdağ to the Alakeçi shear zone.

Another low-angle shear zone separating the Kazdağ

basement in the footwall and the Çetmi mélange (or the

overlying Küçükkuyu Formation, see below) in the hang-

ing wall was described by Beccaletto (2004) and

Beccaletto and Steiner (2005). The Şelale detachment fault

can be traced along the southwestern margin of the Kazdağ

massif for about 10 km and dips to the south at 15–20�
(Fig. 2). In spite of abundant S- or SW-trending slip lin-

eations on the fault planes, shear sense indicators studied

by Beccaletto and Steiner (2005) were inconclusive.

Kazdağ marbles and gneisses are brecciated along the fault

planes. The bulk of shear deformation along the Şelale

detachment occurred in the greenschist facies, thus retro-

gressing the amphibolite facies rocks of Kazdağ. Several

Fig. 2 Geologic map of the

Kazdağ massif (modified from

Duru et al. 2004) with fission-

track ages (this study)

1938 Int J Earth Sci (Geol Rundsch) (2009) 98:1935–1947

123



small elliptic granitoid bodies (150 m maximum length)

are present in the mélange in the vicinity of the detach-

ment. According to Beccaletto and Steiner (2005), cross-

cutting stratigraphic relationships and other lines of

evidence indicate that these granitoid bodies –dated at

29.94 ± 0.37 Ma by the U-Pb method- predate detachment

activity.

The Kazdağ Massif, the Alakeçi shear zone and the

Çetmi mélange are intruded by the granodioritic Evciler

pluton dated at ca. 21 Ma (Aquitanian) by Rb/Sr analyses

on biotites, analytically indistinguishable from the Rb/Sr

biotite ages in the surrounding footwall gneiss (Okay and

Satır 2000). To the north the pluton has intruded late Oli-

gocene—early Miocene andesites, dacites and intercalated

lacustrine sedimentary rocks. Such volcanic rocks are

geochemically close to the Evciler pluton and considered

as its extrusive equivalents (Genç 1998). The pluton is

generally undeformed yet, near the southern margin of its

outcrop, the granitoids are foliated and lineated subparallel

to the regional fabric in the adjacent gneisses. Isotopic and

geobarometric data (see Okay and Satır 2000, for a review)

indicate that the Evciler pluton intruded the Kazdağ

metamorphic rocks at about the Oligocene-Miocene

boundary at a depth of ca. 7 km, shortly after the peak

deformation and metamorphism.

The Kazdağ basement rocks are tectonically overlain in

the south by the Miocene continental sedimentary rocks

and volcanics of the Küçükkuyu Formation. At the base of

the Küçükkuyu Formation there is a highly tectonized and

altered layer, ca. 250 m thick, of volcanic rocks (Fig. 3).

Beccaletto and Steiner (2005) regard this strongly sheared,

fractured, hydrothermally altered layer as the lowest

member of the Küçükkuyu Formation. Such volcanic layer

is overlain through poorly exposed contacts by shale-

dominated lake turbidites (intermediate member). Such a

rhythmic infill, together with slump and normal fault

structures, suggests the presence of syn-sedimentary tec-

tonics. Accommodation came to an end with the deposition

of the upper member, consisting of acidic to intermediate

tuffites without any micro-fracturing and hydrothermal

alteration. The age of the Küçükkuyu Formation is sup-

posed to be early Miocene (Inci 1984), based on a

palynomorph association from the bituminous shales in the

intermediate member. Beccaletto and Steiner (2005) dated

at 34.4 ± 1.2 Ma a biotite grain sampled in a detritic tuffite

of the upper member. However, this age does not fit with

the age of the flora of the intermediate member. Thus,

Beccaletto and Steiner (2005) interpreted this age not as the

age of the deposit, but as the age of the source of the

detritic material for the upper member. Late Eocene—

Early Oligocene tuffs crop out widely in the northern part

of the Biga peninsula.

Apatite fission-track analysis

Thirteen samples were collected from the Kazdağ core

complex along two transects trending NW–SE, i.e. per-

pendicular to the structural fabric. Samples were taken at

different altitudes to detect possible relationships between

age and elevation. An additional sample (TU59) was taken

from a tuffite from the upper member of the Küçükkuyu

Formation in order to compare exhumation of the Kazdağ

gneisses with the age of overlying sediments. Procedures

for sample preparation and analysis are outlined in Table 1

and described in more detail in Zattin et al. (2000).

Apatite fission-track ages from Kazdağ range from

20.4 ± 2.4 to 10.2 ± 2.5 Ma (Table 1, Figs. 2, 4 and 5)

and are consistent with the older U/Pb and Rb/Sr dates

previously described. The ages do not show a clear corre-

lation with elevation or with structural position (Fig. 5,

Table 1). Even samples collected along a nearly vertical

profile (samples TU16-20) did not yield progressive ages.

However, the five youngest ages (from 14.6 to 10.2 Ma)

were yielded by samples taken near the borders of the

massif at lower elevations. Track-length distributions are
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leptokurtic (Fig. 4), thus indicating fast exhumation

through the apatite partial annealing zone.

With the exception of TU21, all samples yielded good

quality apatites, in some cases with high uranium content

(TU19 and TU20). All samples passed the v2 test, thus

pointing to a single grain population in each sample

(Table 1). Therefore, the calculated FT ages represent well

the time of cooling through the *110�C isotherm. This is

confirmed by track length measurements that show a uni-

modal distribution with a mean higher than or very close to

14 lm.

Interpretation

Thermal history modelling

Quantitative evaluation of the thermal history can be car-

ried out through modelling procedures, which find a range

of cooling paths compatible with the FT data (Gallagher

1995; Willett 1997; Ketcham et al. 2000). During this

research, inverse modelling of track length data was per-

formed using the AFTSolve program (Ketcham et al.

2000), which generates the possible T–t paths by a Monte

Carlo algorithm. Predicted FT data were calculated

according to the Laslett et al. (1987) annealing model.

In order to constrain further the thermal histories, we

applied an inverse modelling procedure to samples TU-12,

TU-13, TU-16, TU-19, and TU20. Sample TU20 was

collected in the same locality where samples for Rb/Sr

dating were taken by Okay and Satır (2000). These radio-

metric ages were used to constrain the modelling. Although

the match between synthetic and observed data is variable,

the T–t paths thus produced (Fig. 6) consistently indicate a

very fast rate of cooling through the PAZ, whose lower

temperature boundary was reached between 17 and 13 Ma.

After 13 Ma, the lack of important variations in tempera-

ture denotes the absence of vertical movements large

enough to exhume a new PAZ. The data appear to be quite

consistent for all the samples but TU13, whose thermal
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Fig. 4 Confined-track length histograms and radial plots of apatite samples. Radial plots show single grain ages; age precision is indicated on the

x-axis (Galbraith 1990). See Table 1 for analytical data

Int J Earth Sci (Geol Rundsch) (2009) 98:1935–1947 1941

123



8

10

12

14

16

18

20

22

24

TU10

TU11

TU59

TU13

TU14

TU15

TU60

TU21

TU16
TU20

TU19

TU18

TU17

gneiss

gneiss

Alakeçi mylonites

Western transect Eastern transect

Margins of the
Kazda Massif

Apatite fission track age Rb/Sr biotite age Rb/Sr muscovite age

~4 km

To
rt

on
ia

n
S

er
ra

v.
La

ng
hi

an
B

ur
di

ga
lia

n
A

qu
ita

n.E
ar

ly
M

io
ce

ne
M

id
dl

e
M

io
ce

ne
La

te
M

io
ce

ne

K kkuyu Formationüçü

TU12

15

13

11

9

17

19

21

23

Ma

Ma

Fig. 5 Apatite fission track and Rb/Sr mica ages plotted against time, structural position and elevation. Rb/Sr ages are from Okay and Satir

(2000)

Pred. mean length: 14.52 µm
Obs. mean length: 14.37 µm
GOF: 0.65

Pred. age: 13.5 Ma
Obs. age: 13.7 Ma
GOF: 0.76

TU20

Pred. mean length: 14.46 µm
Obs. mean length: 14.27 µm
GOF: 0.80

Pred. age: 14.2 Ma
Obs. age: 14.6 Ma
GOF: 0.78

TU16

Pred. mean length: 13.93 µm
Obs. mean length: 13.47 µm
GOF: 0.81

Pred. age: 20.1 Ma
Obs. age: 20.2 Ma
GOF: 0.97

TU13

Pred. mean length: 14.58 µm
Obs. mean length: 14.49 µm
GOF: 0.14

Pred. age: 15.7 Ma
Obs. age: 16.0 Ma
GOF: 0.70

TU19

30 25 20 15 10 5 0

T
em

pe
ra

tu
re

 (
°C

)

80

60

40

20

0
Pred. mean length: 14.36 µm
Obs. mean length: 14.52 µm
GOF: 0.36

Pred. age: 14.4 Ma
Obs. age: 15.6 Ma
GOF: 0.37

TU12

140

120

100

Time (Ma)

30 25 20 15 10 5 0

T
em

pe
ra

tu
re

 (
°C

)

80

60

40

20

0

140

120

100

Time (Ma)

30 25 20 15 10 5 0

T
em

pe
ra

tu
re

 (
°C

)

80

60

40

20

0

140

120

100

Time (Ma)

30 25 20 15 10 5 0

T
em

pe
ra

tu
re

 (
°C

)

80

60

40

20

0

140

120

100

Time (Ma)

30 25 20 15 10 5 0

T
em

pe
ra

tu
re

 (
°C

)

80

60

40

20

0

140

120

100

Time (Ma)

Fig. 6 Time-temperature paths obtained from inverse modelling.

Shaded areas mark envelopes of statistically acceptable fit and the

thick lines correspond to the most probable thermal histories. Thermal

paths out of the partial annealing zone are largely inferential as

fission-track data cannot give reliable information out of this

temperature range. In each diagram, parameters related to inverse

modelling are reported: obs. age observed age (in Ma); pred.
age predicted age (in Ma); obs. MTL observed mean track length

(in microns); pred. MTL predicted mean track length (in microns).

GOF gives an indication about the fit between observed and predicted

data (values close to 1 are best)

1942 Int J Earth Sci (Geol Rundsch) (2009) 98:1935–1947

123



path suggests a slightly older exhumation. The reason for

this apparent discrepancy is not clear, but could be related

to some differences in the kinetics of apatites (unfortu-

nately, no composition data are available) or, more

probably, to some late tectonics (Plio-Quaternary?) as

discussed in the following sections.

In summary, apatite FT ages collected across Kazdağ

indicate that exhumation of the core complex to shallow

crustal levels occurred during late Early–early Middle

Miocene time (late Burdigalian-Langhian). FT ages of nine

out of thirteen samples from the Kazdağ basement rocks

cluster from 17.7 ± 0.8 to 13.7 ± 0.7 Ma.

Composite t–T paths

Integration of our new apatite FT results with preexisting

radiometric data on the basement rocks of Kazdağ allows

the construction of a detailed time-temperature path

(Fig. 7). In addition to the FT data presented in this study,

the path is constrained by (1) geothermometric and geo-

barometric estimates from metamorphic and granitic

mineral assemblages and (2) 87Rb/86Sr geochronologic data

on biotites and muscovites (Okay and Satır 2000). The

cooling path thus obtained is coherent and points to a fairly

constant cooling rate (ca. 60�C/Ma) between the time of

peak metamorphism (latest Oligocene) and the late Burd-

igalian-Langhian, when Kazdağ basement rocks reached

the base of the apatite partial annealing zone. Successively,

FT data indicates a faster cooling rate across the apatite

PAZ.

The perfect euhedral shape of apatite grains obtained

from the tuffite sample (TU59) interbedded within the

upper member of the Küçükkuyu Formation suggests that

these mineral grains derive from synsedimentary volca-

nism. Thus the FT age (16.8 ± 2.6 Ma) yielded by such

grains represents the depositional age of the upper member

of the Küçükkuyu Formation.

The sense of shear in the Kazdağ metamorphic core

complex is equivocal. Although there is a preponderance of

top-to-the-north shear fabrics northwest of Kazdağ (Okay

and Satır 2000), top-to-the-south fabrics are also present

and dominate the southern part of the massif. This could be

due to a major component of pure shear and/or bivergent

extension. Apatite FT data do not show a clear pattern of

directional younging; however those from the southern

margin of the massif are generally younger than those from

the north (Fig. 2). This implies a top-to-the-south sense of

shear for the Şelale detachment fault. The older apatite FT

ages in the northern part of Kazdağ combined with the

dominance of top-to-the-north shear fabrics suggest that

the Alakeçi shear zone with a top-to-the-north sense of

shear may have predated the activity of the Şelale

detachment fault. The absence of a thick mylonitic shear

zone along the Şelale detachment fault also indicates that it

is younger than the Alakeçi shear zone. However, the

southern part of Kazdağ was exhumed more than the

northern part during the Plio-Quaternary due to the foot-

wall uplift along the active Edremit fault (Fig. 2), and this

might have caused some younging in the apatite FT ages

along the southern margin.

Discussion

Yilmaz and Karacik (2001) suggested that the Küçükkuyu

Formation was deposited during a period of north–south

contraction. However, the early Miocene age of the

Küçükkuyu Formation, constrained by palinology (Inci

1984) and by the 16.8 ± 2.6 Ma apatite FT age from the tuff,

overlaps the age of exhumation of the Kazdağ Massif

(Figs. 6 and 7). This –together with the supradetachment

setting of the Küçükkuyu Formation-clearly shows that the

Küçükkuyu sediments were deposited during a period of

north-south extension rather than contraction. The apatite FT

age from gneisses directly underlying the Küçükkuyu For-

mation is also early to middle Miocene (14.7 ± 2.2 Ma)

(Fig. 3). This indicates that a thick rock section is missing

between the Küçükkuyu Formation and the Kazdağ Massif.

Such section must have been tectonically removed during

and/or after deposition of the Küçükkuyu Formation. The

missing section most probably consisted of the Çetmi mél-

ange, which forms the probable stratigraphic basement of

the Küçükkuyu Formation (Fig. 8). From this viewpoint,
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Fig. 7 Temperature-time path of Kazdağ massif. White dots indicate
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metamorphism (Okay and Satir 2000)

Int J Earth Sci (Geol Rundsch) (2009) 98:1935–1947 1943

123



the Küçükkuyu Formation can be interpreted as the filling of

a typical supra-detachment basin (Beccaletto and Steiner

2005). Sedimentation was synchronous with the ongoing

deformation in the footwall along the N-dipping Alakeçi and

S-dipping Şelale detachment faults. Cross-cutting relation-

ships indicate that the age of the latter fault is younger than

the intrusion of small granitic bodies (dated at 29.9 Ma with

the U-Pb method; Beccaletto and Steiner 2005).

Although deposition of the Küçükkuyu Formation

occurred during the exhumation of the Kazdağ Massif,

detrital modes of the Küçükkuyu Formation are charac-

teristically dominated by Çetmi mélange rock types

(Beccaletto and Steiner 2005). Kazdağ gneiss clasts are

first encountered in the fluviatile Plio-Quaternary con-

glomerates and sandstones of the Bayramiç area (Siyako

et al. 1989), thus implying that Kazdağ basement rocks

reached the surface well after deposition of the Küçükkuyu

Formation. In addition, FT ages close to the Alakeçi and

Şelale detachments range between 15 and 12 Ma -therefore

younger than the upper member of the Küçükkuyu

Formation- and confirm that exhumation at very shallow

crustal levels was achieved only late in the activity of the

detachments.

The Kazdağ Massif is bounded in the south by the active

Edremit Fault, a predominantly normal fault with a dextral

strike-slip component, whose inception probably dates

back to the late Miocene (Boztepe-Güney et al. 2000;

Yilmaz and Karacik 2001). Offshore data (seismic lines

and the stratigraphy of the Edremit-1 well) show a

[2,500 m thick section of Miocene and younger sedi-

mentary and volcanic deposits in the Edremit basin (Siyako

et al. 1989; Yilmaz and Karacik 2001). Such thickness -

coupled with the present elevation of Kazdağ (1,766 m)-

indicate a cumulative vertical offset in excess of 4.5 km

across the southern margin of the Kazdağ Massif. Despite

this considerable offset, the footwall uplift north of the

Edremit fault in Kazdağ (0.5 km) was insufficient to

exhume a new PAZ, as clearly shown in this study. At

depth the steeply south-dipping active Edremit fault must

cut and displace the much flatter (15–20�) Kazdağ
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transition
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detachment fault. A similar relation is observed between

the active graben-bounding faults in western Anatolia and

the gently dipping detachments (Bozkurt and Sözbilir

2004).

The Neogene tectonic evolution of the Kazdağ Complex

involves rapid exhumation during the early to early middle

Miocene (23 to 13 Ma) followed by quiescence, at least in

terms of vertical tectonics. A similar thermochronological

evolution has been deduced for the Simav metamorphic

core complex, 170 km east of Kazdağ (Thomson and Ring

2006). The extension in the northern Aegean region

appears to have been episodic rather than continuous, with

a rapid phase of extension and associated sedimentation

during the Early to Middle Miocene.

According to Okay and Satır (2000), (1) the estimated

conditions of metamorphism and pluton emplacement at

Kazdağ indicate that high-grade metamorphic rocks were

rapidly exhumed starting at *24 Ma from a depth of

*14 km to *7 km by activity along the Alakeçi shear

zone, and (2) the subsequent exhumation of the metamor-

phic rocks to the surface occurred during Pliocene-

Quaternary time in a transpressive ridge between two

overstepping fault segments of the North Anatolian fault

zone. Such structural configuration would be responsible

for the present anomalously high topography of the Kazdağ

range (1,767 m above sea-level, compared to an average

elevation\500 m for the entire NE Aegean region). In fact,

although most research on the Northern Anatolian Fault

system is now focused on the northern Marmara Sea over-

steps and the Ganos segment on land, which are considered

the active strands of the fault system, it must be borne in

mind that in the past 50 years several destructive earth-

quakes have occurred along the southern edge of the fault

system not only along the northern shore of the Edremit

Gulf (1944; Mw = 6.8), but also near Manyas Lake (1964;

Mw = 6.9) and near Yenice (1953; Mw = 7.2), just about

30 km northeast of Kazdağ (Nalbant et al. 1998). The

moment tensor solutions of these historical earthquakes

show that these active segments have not only strike-slip

but also normal fault characteristics (Herece 1990).

Based on the results of this research and the available

literature on the study area, we propose the following

evolutionary scheme for the region of the Kazdağ Massif

(Fig. 8).

(1) We subscribe to the notion that the present-day

scattered outcrops of the Çetmi mélange are remnants of a

widespread subduction-accretion complex of Rhodopian

affinity active at least until the Late Cretaceous (Beccaletto

et al. 2005). Widespread contractional tectonism continued

in the Paleogene in the north Aegean region and NW

Anatolia, and came to an end with the sequential and

progressive closure of the Vardar and Pindos oceans

(Stampfli and Borel 2004). In addition, closure of the Intra-

Pontide oceanic domain and coincident development of the

Intra-Pontide Suture occurred during the Oligocene (Görur

and Okay 1996). By late Oligocene time extensional tec-

tonism is well documented all over the north Aegean

region (see, for example, Gautier et al. 1999; Burchfiel

et al. 2000) and must be considered as a viable mechanism

for significant and widespread exhumation, in line with the

results of this study.

(2) During late early Miocene time prolonged extensional

tectonism and exhumation induced the development of a

full-fledged core complex and associated supradetachment

basin where the Küçükkuyu Formation was deposited

(Beccaletto and Steiner 2005). At this time -despite rapid

exhumation- the basement rocks of Kazdağ were not yet

exposed at the surface, as shown by the absence of Kazdağ-

derived detritus in the Küçükkuyu Fm. It must be noted that

the Alakeçi and Şelale detachments are discrete structures

with different timing and characteristics, and not two

segments of a continuous, single detachment. The two

detachments induced progressive exhumation along the

northern and southern margins of the massif, as shown by the

youngest FT ages along its present-day margins.

(3) During the Pliocene-Quaternary the region of the

Kazdağ Massif has been affected by intense strike-slip

tectonism associated with the development of the present-

day North Anatolian fault system. A complex array of

anastomosing faults induced localized subsidence/exhu-

mation at releasing/constraining bends and oversteps. As

clearly indicated by the results of this study, the vertical

component of this later stage was insufficient to exhume a

new PAZ. Nevertheless, in a few locations the horizontal

component was large enough to juxtapose rock volumes

originally located at distant sites across the Kazdağ domal

structure, and thus characterized by different FT ages.

Widespread high-pressure metamorphic rocks in the

central Aegean have been cited as evidence for a thick, and

consequently topographically high, continental crust prior

to the onset of extension. From this viewpoint, Aegean

extension was driven by orogenic collapse. However, in

NW Turkey there is no evidence for high topography

during the Eocene and Oligocene. Rocks of this age are

present in the northern Biga and Gelibolu peninsulae as

well as in the Thrace basin and are predominantly marine.

Paleoclimatological inferences based on paleobotanical

evidence also rule out the existence of a high relief (Mädler

and Steffens 1979; Ediger 1990). Such paleoenvironmental-

paleotopographic considerations place important constraints

on the tectonic mechanism responsible for Latest Oligocene

extension in northwest Turkey–including the development of

the Kazdağ metamorphic core complex. Orogenic collapse

can be ruled out whereas Aegean and peri-Aegean extension

could instead be the result of subduction roll-back of the

Hellenic trench.
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The Cycladic core complexes are similar to the Kazdağ

core complex yet the age of metamorphism, extensional

deformation and plutonism is younger (e.g., 16–10 Ma on

the island of Naxos, Andriessen 1991) than in the Kazdağ

and Rhodope core complexes. Exhumation of Kazdağ is

also older than that of the Menderes metamorphic core

complex to the south, where apatite fission-track ages from

the lower plate cluster between ca. 15 and 5 Ma (Gessner

et al. 2001). Such tendency toward an overall younging in

exhumation going southward across the Aegean region (cf.

also Walcott and White 1998) agrees well with the notion

of slab roll-back along the eastern Mediterranean subduc-

tion zone as the driving mechanism for lithospheric

extension in the Aegean (e.g., Jolivet 2001).

Conclusions

The Kazdağ Massif underwent high-temperature regional

metamorphism at *24 Ma at a depth of *14 km. Ensuing

exhumation took place along a couple of opposing

detachments between 20 and 10 Ma (i.e. early-middle

Miocene), with the majority of apatite FT ages at 17–

14 Ma. The post-metamorphic evolution of Kazdağ

encompasses two stages. The first stage comprises late

Oligocene-early Miocene low-angle detachment faulting

and early Miocene development of small supradetachment

grabens filled with a mixture of epiclastic, volcaniclastic

and volcanic rocks (Küçükkuyu Fm.). During this phase

much of the rapid thermal evolution of the massif occurred,

including the emplacement of a suite of granitoid stocks

with cooling ages around 21 Ma. Younger fission-track

ages are aligned along the borders of the massif, substan-

tiating the notion of a progressive, bivergent denudation

along opposing detachment faults whose remnants are still

visible. The second stage (Plio-Quaternary) is dominated

by strike-slip faulting related to the westward propagation

of the North Anatolian fault system. The overall thermo-

chronologic evolution of Kazdağ fits well in the framework

of Aegean extensional tectonism, with exhumation ages

becoming progressively younger from north to south.
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Bozkurt E, Sözbilir H (2004) Tectonic evolution of the Gediz Graben:

field evidence for an episodic, two-stage extension in western

Turkey. Geol Mag 141:63–79
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Kuşçu, _I (2000) Reflection seismic study across the continental

shelf off Baba Burnu, promontory of Biga Peninsula, northwest

Turkey. Mar Geol 176:75–85

Buick IS (1991) The late alpine evolution of an extensional shear

zone, Naxos, Greece. J Geol Soc London 148:93–103

Burchfiel CB, Nakov R, Tzankov T, Royden LH (2000) Cenozoic

extension in Bulgaria and northern Greece: the northern part

of the Aegean extensional regime. In: Bozkurt E, Winchester

JA, Piper JD (eds) Tectonics and magmatism in Turkey

and the surrounding area. Geol Soc Lond Spec Publ 173:325–

352
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