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ABSTRACT
Apatite fission-track and (U-Th)/He ages from Carboniferous to Eocene siliciclastic rocks of the Istanbul 
Zone (NW Turkey) range from 220 to 46 Ma, and from 46 to 18 Ma, respectively. Apatite grains from the 
upper Cretaceous and Eocene volcaniclastic and siliciclastic formations yielded unreset fission-track 
ages (85 to 65 Ma), whereas the Lower Cretaceous siliciclastic rocks yielded both reset and unreset 
apatite fission-track ages. This suggests the absence of substantial burial after the Early Cretaceous. 
The thermochronological dataset presented here in conjunction with published data defines three 
major deformation and uplift/exhumation phases: (i) 220–179 Ma (Late Triassic-Early Jurassic), (ii) 
101–107 Ma (mid-Cretaceous), and (iii) 66–16 Ma (Palaeocene-early Miocene). The Late Triassic-Early 
Jurassic uplift/exhumation phase can be attributed to the Cimmeride orogeny and the uplift of the 
Pontides. The mid-Cretaceous uplift/deformation is also reflected in the stratigraphic record as 
a major unconformity, which was probably caused by the accretion of an oceanic plateau or 
a seamount. The Palaeocene-early Eocene uplift/deformations resulted from the closure of the Izmir- 
Ankara-Erzincan oceanic domain. The late Oligocene-early Miocene uplift/deformation is probably 
caused by extension in the Aegean region due to the suction along the Hellenic trench.
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Introduction

The current morphotectonic features of Turkey are essen
tially shaped by the closure of the Neotethyan oceans 
and subsequent convergence between the Arabian and 
Eurasian plates (e.g., Şengör and Yılmaz 1981; Okay and 
Tüysüz 1999; Bozkurt 2001; Okay et al. 2006, 2010; Yılmaz 
2017; Figure 1). The Izmir-Ankara-Erzincan suture marks the 
closure of the northern branch of the Neotethys during 
Palaeocene-early Eocene, and the Bitlis-Zagros suture 
marks the closure of the southern branch of Neotethys 
during the early-mid Miocene (Okay and Tüysüz 1999; 
Okay et al. 2010; Cavazza et al. 2018). Continued conver
gence led to the initiation of the currently active North and 
East Anatolian strike-slip fault system during mid-Miocene 
(Serravallian) (Şengör et al. 1985, 2005; Figure 1). This con
figuration is responsible for the westward movement of 
the Anatolian plate (Şengör et al. 2005 and references 
therein). In the west, the Aegean region has been under
going extension since the Oligocene due to slab rollback of 
the Hellenic subducting plate (Jolivet and Faccenna 2000; 
Okay et al. 2008). The present-day morphology of Turkey is 

reshaped by several geodynamic processes whereby the 
younger processes mostly overprinted the older ones. 
Understanding of the morphotectonic evolution of the 
region requires detailed low-temperature thermochrono
logical data which became increasingly available in the last 
decade (e.g., Okay et al. 2008, 2010; Cavazza et al. 2009, 
2012, 2018; Zattin et al. 2010; Espurt et al. 2014; Frassi et al. 
2018; Ballato et al. 2018; Sunal et al. 2019).

Here, we present apatite fission-track and (U-Th)/He 
data from Carboniferous to Eocene sedimentary rocks of 
the Istanbul Zone in order to understand its uplift and 
exhumation history. Our data, together with those in lit
erature, record three main uplift phases: (i) Late Triassic- 
Early Jurassic, (ii) mid-Cretaceous, and (iii) Palaeocene to 
Early Miocene. Such discrete episodes can be correlated 
with the accretion history along the southern Eurasian 
continental margin and the ensuing deformation pattern.

Geological framework

Within the Tethyan realm, Turkey is made up of 
several microplates which rifted from Gondwana and 
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amalgamated to Laurasia at different times (e.g., Şengör 
and Yılmaz 1981; Okay and Tüysüz 1999; Stampfli and 
Borel 2002; Figure 1). These microplates were successively 
accreted to the southern margin of Laurasia. The Pontides 
(northern Turkey) are separated from the Anatolide- 
Tauride block to the south by the Izmir-Ankara-Erzincan 
suture, which represents the trace of a long-lived ocean at 
least from the Silurian to the Palaeocene/early Eocene 
(e.g., Okay 2000; Topuz et al. 2013, 2020). In turn, the 
Anatolide-Tauride block is separated from the Arabian 
Platform by the Bitlis-Zagros suture, which represents 
the trace of an Early Triassic to the Cenozoic oceanic 
domain (Şengör and Yılmaz 1981; Okay et al. 2010; 
Uzuncimen et al. 2011; Robertson et al. 2012). Turkey 
became a single land mass after the closure of the south
ern Neotethyan oceanic domain by the early-mid 
Miocene time. The current convergence rate between 
the Arabian platform and Eurasia is ~15 mm/yr (Reilinger 
et al. 2006; Figure 1). This convergence, together with the 
suction along the Hellenic subduction zone is responsible 
for the westward movement of Turkey along the North 
and East Anatolian fault systems at least since the mid- to 
late Miocene (Şengör and Yılmaz 1981; Jolivet and 
Faccenna 2000; Okay et al. 2008, 2010).

The Pontides comprise three juxtaposed continental 
fragments: the Istanbul, Sakarya, and Rhodope-Strandja 

zones separated by sutures and strike-slip faults (Okay 
and Tüysüz 1999; Figure 1). The Late Cretaceous strati
graphy of these three microplates are similar suggesting 
a pre-Late Cretaceous amalgamation (Figure 2). The 
Istanbul Zone of the Pontides is ca. 400 km long and 
55 km wide and has a Late Neoproterozoic to Cambrian 
crystalline basement (e.g., Chen et al. 2002; Ustaömer 
and Rogers 1999; Ustaömer et al. 2005; Figure 2). This 
basement is unconformably overlain by a continuous 
sedimentary succession ranging in age from Ordovician 
to late Carboniferous (Özgül 2012). The Permian conti
nental clastic series unconformably overlie the 
Ordovician to Upper Carboniferous sequences (Gand 
et al. 2011; Stolle 2016; Okuyucu et al. 2017), suggesting 
uplift and major erosion at the end of the Carboniferous. 
A few granitic bodies were also emplaced during the 
Permian (Okay et al. 2013; Aysal et al. 2018a). During 
Triassic time, there was local marine transgression in 
the western part of the Istanbul Zone, while the eastern 
part was largely erosional with minor local continental 
sedimentation (Alişan and Derman 1995; Tüysüz et al. 
2004). Apart from Triassic marine deposits in its western 
part, there are no marine deposits of Permian to Middle 
Jurassic age in the Istanbul Zone. The Upper Jurassic- 
Lower Cretaceous shallow-marine platform carbonates 
lie unconformably over all the older units (e.g., Tüysüz 
1999; Okay et al. 2018). These carbonates are the first 
common cover on the Istanbul and Sakarya zones, thus 
constrain their amalgamation in the Central Pontides. 
The deposition of the Upper Jurassic-Lower Cretaceous 
shallow-marine carbonates was followed by uplift and 
erosion during Valanginian-Hauterivian times. 
Barremian-Aptian shelf deposits and turbidites uncon
formably cover all the older units (Görür 1997; Tüysüz 
1999; Hippolyte et al. 2010; Okay et al. 2013, 2018; 
Akdoğan et al. 2017). The Late Cretaceous is represented 
by thick volcanic and volcaniclastic sequences with pink
ish pelagic limestone interlayers of Turonian to 
Campanian age (Tüysüz et al. 2012, 2016; Özcan et al. 
2012; Keskin and Tüysüz 2018; Akdoğan et al. 2019). The 
volcanism occurred in a magmatic arc due to northward 
subduction of the northern branch of the Neotethyan 
Ocean. The Black Sea was opened as a back-arc basin 
during the Late Cretaceous (Nikishin et al. 2015). The 
volcaniclastic sequence passes upward to the upper 
Campanian to mid-Palaeocene calciturbidites and lime
stones. The lower Eocene clastic and volcanic rocks lie 
unconformably on the Campanian to mid-Palaeocene 
and locally older rock successions (Özcan et al. 2012, 
2020). There are no records of the upper Eocene and 
younger marine sedimentary rocks, apart from the 
Thrace Basin (Okay et al. 2020b).

Figure 1. Tectonic map of Eastern Europe and the Black Sea 
region (modified after Topuz et al. 2020). Red arrows and corre
sponding numbers indicate GPS-derived plate velocities (mm/yr) 
relative to Eurasia after Reilinger et al. (2006). IPS: Intra-Pontide 
Suture, IAES: Izmir-Ankara-Erzincan Suture, BZS: Bitlis Zagros 
Suture, WBSF: West Black Sea Fault, NAF: North Anatolian 
Fault, EAF: East Anatolian Fault.
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Material and methods

To constrain the exhumation history of the north-eastern 
part of the Istanbul Zone, we used low-temperature 
thermochronological methods including fission-track 
and (U-Th)/He analyses. The investigated samples were 
collected from late Carboniferous to early Eocene silici
clastic and volcaniclastic sandstones of the north- 
eastern part of the Istanbul Zone, distributed over 
a distance of 100 km along the coastal region of the 
Black Sea (Figures 1 and Figure 3). Mineral separation 
was performed at the Eurasian Institute of Earth Sciences 
of Istanbul Technical University by standard heavy- 
mineral separation techniques involving crushing, siev
ing and magnetic and heavy-liquid separations. Apatite 
fission-track analysis were carried out on 14 samples, 

and apatite (U-Th)/He analyses on 11 samples at the 
GÖochron Laboratories, Geoscience Centre, University 
of Göttingen (Germany) (Supp. Tables 1 and 2).

Fission-track dating on apatite grains

The apatite crystals from 14 samples were embedded in 
epoxy resin. The mounts were polished to reveal inter
nal structure of the apatite grains. Afterwards, the 
epoxy mounts were etched with 5 N HNO3 at 21°C for 
20 seconds to reveal the spontaneous fission-tracks 
(Donelick et al. 1999). Fission-tracks were counted on 
at least 25 grains, and on 50 grains in two samples 
(R-136 and R-266; Supp. Table 1). The external detector 
method was used (Gleadow 1981). The samples 

Figure 2. Generalized chronostratigraphic chart of the Istanbul and Sakarya zones (modified after Akdoğan et al. 2017, 2019). The time 
scale is from Cohen et al. (2020). Isotopic ages are from Chen et al. (2002), Ustaömer et al. (2005), Nzegge et al. (2006), Nzegge (2008), 
Okay et al. (2013), Şahin et al. (2012), Akbayram et al. (2013), Aysal et al. (2018a), 2018b), Ballato et al. (2018), Şen (2020)
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together with low-uranium muscovite mica sheets, age 
standards and CN-5 dosimeter glasses were irradiated 
with thermal neutrons at the FRM-II reactor at Munich 
(Germany). After irradiation, the induced fission-tracks 
in the mica detectors were etched by 40% HF for 
40 minutes at 21°C. Track counting was carried out at 
the GÖochron Laboratories, Geoscience Centre, 
University of Göttingen (Germany) using a Zeiss 
Axioskop microscope-computer-controlled stage sys
tem (Dumitru 1993), with a magnification of 1000×. 
The size of the etch-pit (Dpar) was measured and 
used as a kinetic parameter for the thermal history 
modelling (Donelick et al. 2005; Ketcham et al. 2009). 
Track length analyses on apatite grains were carried out 
on horizontal confined tracks together with the angle 
between the track and the c-axis (Ketcham et al. 2007). 
The measurement of fission-track lengths gives infor
mation about thermal evolution in the temperature 
range of ~60 − 125°C (partial annealing zone, PAZ; 
Gleadow and Fitzgerald 1987). Fission-track ages were 
calculated using the zeta calibration method (Hurford 

and Green 1983; Green 1985; Hurford 1990). 
Calculations and plots were made by the TRACKKEY 
and RadialPlotter computer programs (Dunkl 2002; 
Vermeesch 2009). To model the thermal histories we 
used the HeFTy computer program (Ketcham 2005; 
Ketcham et al. 2017).

(U-Th)/He dating on apatite grains

The (U-Th)/He dating is based on the accumulation of 
4He produced by the decay of 238U, 235U, 232Th, and 
147Sm. He concentrations were determined through 
extraction of He by heating the sample in a furnace or 
by a laser and followed by purification and analysis of 
emitted gases by mass spectrometry. Apatite has a low 
closure temperature ~70°C for (U-Th)/He system (Farley 
2000, 2002). Thus, apatite (U-Th)/He ages document the 
latest stages of cooling in the uppermost crust. Details 
about the procedures and applications of the method 
are given in Reiners et al. (2017).

Figure 3. A) Geological map of the study area, showing the sample locations used for apatite fission-track and (U-Th)/He thermo
chronology. b) Structural cross-sections across A-Aı and B-Bı lines.
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(U-Th)/He analyses were carried out on apatites from 
11 samples which were selected out of 14 samples used 
for AFT analysis (Supp. Table 2). Single apatite crystals 
which show well-defined (ideally euhedral) external 
morphologies, free of cracks and inclusions were hand- 
picked from each sample using binocular and polarizing 
microscopes. The selected crystals were photographed 
and packed in platinum capsules. Crystal dimensions 
were measured on the photographs. To determine the 
4He content, the platinum capsules with the enclosed 
crystals were degassed under high vacuum by heating 
with an infrared diode laser. After purification of the 
released gas with a SAES Ti-Zr getter at 450°C, the 
extracted gas was analysed with a Hiden triple-filter 
quadrupole mass spectrometer, equipped with 
a positive ion counting detector. To ascertain 
a quantitative helium extraction, re-extraction was per
formed for every sample. To determine the amount of 
the alpha-emitting elements the platinum capsules were 
retrieved after He analysis and apatite grains were dis
solved in nitric acid. The solutions were spiked with 
calibrated amount of 230Th and 233U, and analysed by 
the isotope dilution on a Perkin Elmer Elan DRC ICP-MS 
equipped with an APEX microflow nebulizer. An alpha- 
ejection correction (FT correction) was applied to all raw 
(U-Th)/He ages, following the procedures of Farley et al. 
(1996).

Analytical results

Apatite fission-track ages

The apatite fission-track central ages range from 220 to 
46 Ma (Figures 1 and Figure 3; Supp. Table 1). Out of 14 
samples, seven samples yielded unreset ages, which are 
older or coeval to the deposition age of the sedimentary 
rocks. All Upper Cretaceous and Eocene sedimentary 
rocks yielded unreset apatite fission-track ages. Of the 
two Lower Cretaceous sandstone samples, one (R268) 
gave an unreset age (122 ± 9 Ma), while the other (R272) 
has experienced thermal reset (46 ± 4 Ma). To sum up, all 
the sedimentary rocks with Late Cretaceous and Eocene 
sedimentation ages contain unreset apatite fission-track 
ages, while those from the Lower Cretaceous sandstones 
are mixed. The mean track lengths in the samples with 
unreset apatite fission-track ages are quite variable, ran
ging from 12.7 to 14.7 µm. This indicates complex time- 
temperature paths and long residence times in the PAZ.

The reset ages define three groups (i) 220 to 179 Ma, 
(ii) ca. 101 Ma and (iii) 49 to 46 Ma (Figures 3 and Figure 4 
a; Supp. Table 1). All the ages from 220 to 179 Ma come 
from the Permian continental sandstones. The Early 
Cretaceous age (101 ± 6 Ma) also came from one 

Permian continental sandstone sample (sample R261). 
The Eocene apatite fission-track ages come from Upper 
Carboniferous and Lower Cretaceous siliciclastic sedi
mentary rocks (samples R273 and R272, respectively) in 
the southwestern part of the investigated area (Figures 3 
and Figure 4 a). The samples with Late Triassic to Early 
Cretaceous apatite fission-track ages gave mean apatite 
track lengths from 11.2 to 12.2 µm, while samples with 
Eocene apatite fission-track ages have slightly longer 
mean apatite track lengths from 13.2 to 13.3 µm.

Apatite (U-Th)/He results

Apatite (U-Th)/He ages were obtained on 11 samples 
which are also used for apatite fission-track dating 
(Figure 4b; Supp. Table 2). The results represent the 
unweighted arithmetic mean age of several single- 
grain analyses. The disregarded analysis due to low 
degree of reproducibility are marked red in Supp. Table 
2. As expected apatite (U-Th)/He ages are younger than 
those apatite fission-track ages for the same samples, 
and range from 46 to 18 Ma. Overall, the apatites from 
the Upper Cretaceous volcaniclastic rocks gave (U-Th)/ 
He ages of 46 to 39 Ma, while those from the Eocene 
siliciclastic rocks yielded 28 to 23 Ma (Supp. Table 2). The 
Carboniferous and Permian siliciclastic rocks have apa
tite (U-Th)/He ages ranging from 32 to 12 Ma.

Discussion

Unreset apatite fission-track ages

Apatites from the Upper Cretaceous volcaniclastic and 
the early Eocene siliciclastic rocks yield fission-track ages 
nearly identical or significantly older than the age of 
deposition (Figure 4a; Supp. Table 1). This suggests 
that the Upper Cretaceous and Eocene sedimentary suc
cessions were not deeply buried after their deposition, 
and have not stayed in the partial annealing zone for 
long time. Likewise, Zattin et al. (2010) report an unreset 
apatite fission-track age of 66 ± 10 Ma from a mid- 
Eocene sample from the Istanbul Zone. On the other 
hand, apatite grains from the Lower Cretaceous silici
clastic rocks yielded both reset and unreset fission-track 
ages, indicating that some parts of the Lower Cretaceous 
successions were buried and subjected to temperatures 
higher than ca. 120°C.

The apatite fission-track ages in the Upper Cretaceous 
volcaniclastic rocks vary between 85 and 72 Ma, and 
those in the lower Eocene siliciclastic rocks from 71 to 
64 Ma (Supp. Table 1). These ages correspond to the age 
of arc magmatism in the Istanbul and Sakarya zones 
(Şahin et al. 2012; Aysal et al. 2018b; Figure 2). The 
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absence of older apatite fission-track ages suggests that 
the source area was the magmatic arc. The apatite fis
sion-track age in the Lower Cretaceous siliciclastic sam
ple (R268) is 122 ± 9 Ma. Magmatic rocks with Early 
Cretaceous ages have not been reported from the 
Pontides. However, in the Central Pontides, there is 
a large Early Cretaceous blueschist- and eclogite-facies 
area, pointing to Early Cretaceous subduction (Okay 
et al. 2006, 2013).

The thermal modelling based on apatite fission track 
ages, track length and (U-Th)/He ages indicates that the 
Upper Cretaceous volcaniclastic formations (e.g., sample 
R264) have not experienced significant burial after their 
formation, and stayed near-surface conditions 
(Figure 7a). The track-length distributions are suggestive 
of rapid-cooling. On the other hand, the track-length 
distribution in the apatites from the early Eocene sand
stones (e.g., sample R133) is suggestive of a complex 

Figure 4. A) Apatite fission-track ages from this study together with those from Cavazza et al. (2012). Red circles represent domains 
with reset ages. Black circles stand the domains with unreset ages. b) Apatite (U-Th)/He ages obtained in this study. c) Schematic 
structural cross-section between Akçakoca and Cide, as proposed by Tüysüz et al. (2012)
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burial history. The thermal modelling indicates that the 
apatites were recycled from latest Cretaceous-earliest 
Palaeocene rocks (ca. 66 Ma) or from an older source 
that experienced thermal reset at latest Cretaceous- 
earliest Palaeocene. The early Eocene sandstones were 
buried between 40 and 25 Ma in the partial retention 
zone, and subjected to rapid exhumation at around 
20 Ma (Figure 7b).

Reset apatite fission-track and (U-Th)/He ages

The data in this paper in conjunction with those in litera
ture (Zattin et al. 2010; Cavazza et al. 2012) suggest three 
main cooling/exhumation phases in the Istanbul Zone 
(Figures 5 and Figure 6). These are (i) Late Triassic-Early 
Jurassic, (ii) mid-Cretaceous, and (iii) Palaeocene-early 
Miocene. Apart from the Late Triassic-Early Jurassic 
phase, the other ones are also shown by apatite fission- 
track and (U-Th)/He ages in the Sakarya Zone (Okay et al. 
2008; Cavazza et al. 2009, 2012; Zattin et al. 2010; Espurt 
et al. 2014; Frassi et al. 2018; Ballato et al. 2018; Sunal et al. 
2019). Below we discuss the inferred cooling/exhumation 
phases and possible underlying possible tectonic events.

The Late Triassic-Early Jurassic cooling/exhumation 
phase
Late-Triassic-Early Jurassic apatite fission-track ages 
(220–179 Ma) are the oldest ages reported so far in 
the Pontides (Figure 5). During the Late Triassic, most 
of the Istanbul Zone and the Variscan continental units 
of the Sakarya Zone emerged above sea level, as implied 
by the absence of Upper Triassic to Middle Jurassic 
marine deposits (except for the Kocaeli Triassic 
sequence). The emergence above sea level can be 
related to a compressional deformation event. The ther
mal modelling on the apatites from Permian continental 
sandstones (e.g., sample R266) indicates burial and 
cooling below 120°C during Early Jurassic (ca. 177 Ma; 
Figure 7c). This is followed by slow cooling through the 
PAZ until 20 Ma, and subsequent rapid exhumation.

In the Sakarya Zone, there are widespread exposures 
of the Permo-Triassic and Early to Middle Jurassic accre
tionary complexes (e.g., Okay 2000; Okay and Göncüoğlu 
2004; Robertson and Ustaömer 2012; Okay et al. 2013, 
2020a; Topuz et al. 2013, 2014, 2018). It has been sug
gested that the accretion of submarine topographic rises 
such as oceanic plateaus or seamounts led to the jam
ming of the Permo-Triassic subduction zone south of 
Pontides (the so-called Cimmerian orogeny), and 
resulted in the initiation of a new subduction zone 
along the Izmir-Ankara Erzincan oceanic domain (Okay 
2000; Topuz et al. 2014, 2018). There was a major marine 
transgression in the Sakarya Zone in the Early Jurassic, in 

clear distinction to the Istanbul Zone (Figure 2). Most of 
the Istanbul Zone remained above sea level from 
Permian to Late Jurassic, except for the Kocaeli Triassic 
sequence and local mid-Jurassic shallow marine 
sequences with swamp deposits in Bartın-Amasra (e.g., 
Tüysüz et al. 2004; Figure 2). Thus, Late Triassic-Early 
Jurassic apatite fission-track ages are related to 
a compressional event, probably caused by the accretion 
of oceanic plateaus or seamounts to the southern mar
gin of the Pontides. The temporal evolution of the Intra- 
Pontide suture which separates the Istanbul and Sakarya 
zones is highly contentious (e.g., Şengör and Yılmaz 
1981; Elmas and Yiğitbaş 2001, 2005; Robertson and 
Ustaömer 2004; Ustaömer and Robertson 2005; 
Akbayram et al. 2013). However, abundant 
Carboniferous detrital igneous zircons from 
Carboniferous and younger succession of the Istanbul 
Zone indicate Carboniferous amalgamation of the 
Sakarya and Istanbul zones, since, the Carboniferous 
igneous rocks are absent in the Istanbul zone, in contrast 
they are common in the Sakarya Zone (Okay et al. 2011; 
Okay and Topuz 2017; Akdoğan et al. under revision). 
However, Okay et al. (2011) argued that the Early 
Carboniferous detrital zircons of the Carboniferous 
flysch sequence might have originated from the 
Bohemian Massif, because the Late Devonian-Early 
Carboniferous magmatic events were not documented 
yet from the Sakarya Zone at that time.

The mid-Cretaceous uplift/exhumation phase
The only Albian apatite fission-track central age 
(101 ± 6 Ma) was obtained from a Permian continental 
sandstone (Figures 4a and Figure 5). The published apa
tite fission-track ages reveal only sporadic presence of 
Early Cretaceous ages in the Istanbul Zone (107 ± 12 Ma; 
Cavazza et al. 2012) and Sakarya Zone (107 ± 10 Ma; 
Ballato et al. 2018). The major unconformity between 
Albian and Turonian in both the Sakarya and Istanbul 
zones (e.g., Okay and Şahintürk 1997; Hippolyte et al. 
2010, p. 2) has been interpreted as the result of (i) 
shoulder uplift during back-arc rifting of the Black Sea 
(Cavazza et al. 2012), (ii) exhumation of the HP-LT accre
tionary complexes of Central Pontides as a result of 
trench roll back, slab steepening, and wedge extension 
(Ballato et al. 2018), and (iii) accretion of an oceanic 
plateau or seamounts and subsequent flat subduction 
(Okay et al. 2013; Akdoğan et al. 2017). However, back- 
arc rifting related to opening of the Black Sea took place 
mostly during the Late Cretaceous, and post-dates the 
Albian-Cenomanian uplift (Okay et al. 2013; Akdoğan 
et al. 2017, 2019). To date, there are no reports of the 
Early Cretaceous arc magmatism in the Sakarya and 
Istanbul zones that can be linked to steep subduction 
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process. Moreover, there are only a few U-Pb detrital 
zircons ages of Early Cretaceous in the Lower and 
Upper Cretaceous sandstones of the Central Pontides 
indicating a general lack of magmatism during the 
Early Cretaceous (e.g., Okay et al. 2013; Akdoğan et al. 
2017, 2019). This can be linked to flat subduction, which 
also resulted in intense normal faulting of the fore-arc 
block and local block uplifts in the hinterland (e.g., 

Dickinson and Snyder 1978; McGeary et al. 1985; Cloos 
1993; van Hunen et al. 2002). Therefore, we favour flat 
subduction following accretion of oceanic plateau or 
seamount (Okay et al. 2013). Presence of systematic 
block-faulting, horst-graben system, was inferred 
between Akçakoca and Cide by Tüysüz et al. (2012), 
based on lateral facies and thickness variations 
(Figure 4c). The extensional tectonics is thought to 

Figure 5. Compilation of apatite fission-track central ages determined from the Pontides. Ş.D.: Şelale Detachement (Boztuğ et al. 2004; 
Zattin et al. 2005, 2010; Okay et al. 2008; Cavazza et al. 2009, 2012; Espurt et al. 2014; Cattò et al. 2017; Frassi et al. 2018; Ballato et al. 
2018; this study).

Figure 6. Depositional ages of the dated samples (grey boxes) versus apatite fission-track and (U-Th)/He ages with error bars (1σ). 
Note that only reset ages are shown. Pink horizontal boxes show the time of the major tectonic events effected the region. The time 
scale is from Cohen et al. (2020)
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have occurred during the Turonian-Santonian or slightly 
earlier.

The track-length distribution of the apatites from 
Permian continental sandstone (sample R261) show 
wide spread (Figure 7d inset), implying a complex burial- 
exhumation history. The thermal modelling demon
strates burial and reset between 250 and 130 Ma, and 

fast cooling/uplift during mid-Cretaceous (ca. 101 Ma; 
Figure 7d). This is followed by slow cooling in the partial 
retention zone (PRZ) up to early Miocene (20 Ma), when 
the rock was rapidly exhumed. This thermal model clo
sely resembles that of the apatites from the Upper 
Carboniferous sandstone (sample TU-116; see Figure 3 
for location; Figure 3 in Cavazza et al. 2012).

Figure 7. Thermal modelling results for representative samples a) R133 Eocene sandstone, b) R264 Upper Cretaceous volcanogenic 
sandstone, c) R266 continental sandstone, d) R261 continental sandstone, e) R273 Upper Carboniferous sandstone f) apatite fission- 
track length distribution of other samples from the study area. The data set used for each modelling and the goodness of fit (GOF) of 
the best run is indicated in the plots. The track-length distribution of the modelled and unmodelled samples for ≥ 40 measurements 
are given. AFT: apatite fission track, MTL: mean track length, AHe: apatite (U-Th)/He. Each good path is displayed as a magenta line, 
and each acceptable path is displayed as a green line. Thick black lines correspond to the most probable thermal histories (best-fit 
curves). Boxes represent T–t domains constrained by available data (radiometric ages, stratigraphic relationships, AFT analyses). PRZ: 
Apatite (U-Th)/He partial retention zone, PAZ: Apatite fission-track partial annealing zone.
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The Palaeocene to early Miocene uplift/exhumation 
phase
Apatite fission-track ages of 49 and 46 Ma (early to mid- 
Eocene) have been obtained from the Upper 
Carboniferous and Lower Cretaceous siliciclastic rocks 
(Figure 4a). The track lengths of apatites from the 
Upper Carboniferous sandstone (R273) are variable, but 
the majority of the track lengths is relatively long (mean 
track length 14.5 µm; inset in Figure 7e). The thermal 
modelling indicates long-term residence in the PAZ, and 
fast cooling/uplift during early Eocene. The last phase of 
exhumation occurred at early Oligocene (ca. 30 Ma).

The data from the literature indicate that the apatite 
fission-track and (U-Th)/He ages commonly range from 
Palaeocene to early Miocene (66 to 16 Ma) in the 
Istanbul and Sakarya zones (Boztuğ et al. 2004; Zattin 
et al. 2005, 2010; Okay et al. 2008; Cavazza et al. 2009, 
2012; Espurt et al. 2014; Frassi et al. 2018; Ballato et al. 
2018; Sunal et al. 2019; Figure 5). The late Oligocene- 
early Miocene ages are clustered in the western part of 
the Sakarya Zone mostly to the Kazdağ and Uludağ 
metamorphic core complexes (Figure 5). Sporadic 
younger ages such as 14 to 10 Ma are also confined to 
regions adjacent to strike-slip or detachment faults. The 
Palaeocene to early Eocene ages can be tentatively 
ascribed to the closure along the Izmir-Ankara-Erzincan 
oceanic domain (Okay and Şahintürk 1997; Figure 1). The 
Late Oligocene-Miocene ages can be related to the 
large-scale extension in the Aegean region and to the 
activity of major faults, such as the North Anatolian Fault 
and its branches (Cavazza et al. 2009; Figures 1 and 
Figure 5).

Conclusions

The main conclusions of this study can be summarized 
as follows:

(1) Upper Cretaceous and Eocene sedimentary for
mations in the Istanbul Zone were not deeply 
buried, and still contain unreset apatite fission- 
track ages, while the Lower Cretaceous succes
sions contain either reset or unset ages.

(2) The apatites in the Upper Cretaceous volcaniclas
tic rocks and Eocene siliciclastic formations were 
derived from the Late Cretaceous magmatic arc of 
the Pontides.

(3) The reset apatite fission-track and (U-Th)/He fis
sion-track thermochronometers indicate three 
main periods of cooling/exhumation in the 
Istanbul Zone: Late Triassic-Early Jurassic, mid- 
Cretaceous, and Palaeocene to early Miocene.

(4) The Late Triassic-Early Jurassic uplift/deformation 
stage is the oldest known low-temperature ther
mal event preserved in the Istanbul Zone, which 
can be attributed to the compressional event 
leading to the emergence of parts of the 
Istanbul Zone above sea level.

(5) The mid-Cretaceous uplift/deformation is prob
ably related to a compressional event, which led 
to major unconformity in the stratigraphic record. 
This is probably triggered by the accretion of an 
oceanic plateau or a seamount to the southern 
margin of the Pontides which led to the flat 
subduction.

(6) Late Palaeocene-early Miocene uplift stage can 
be tentatively attributed to the closure of the 
Izmir-Ankara-Erzincan suture and large-scale 
extension in the Aegean region at Palaeocene- 
early Eocene and by Oligocene-early Miocene, 
respectively.

(7) The absence of cooling ages younger than early 
Miocene can be attributed to the fact that the 
convergence between the Arabian platform and 
the Eurasia is taken up by the major strike slip 
faults since the mid Miocene (ca. 15 Ma).

(8) Results of the thermal modelling on apatites from 
the same formations yield different thermal his
tories (e.g., Permian and Lower Cretaceous sand
stones). This is probably caused by the 
extensional tectonics during mid- to earliest Late 
Cretaceous time, leading to the development of 
the horst-graben structures.
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