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Abstract The Intra-Pontide Suture between the Istanbul and Sakarya zones was regarded debatably

either as a Neotethyan Suture or a trace of the Rheic Suture in Turkey. Here, we present U-Pb ages and Lu-
Hf isotopic compositions of detrital zircons from the Silurian to Triassic sandstones of the Istanbul Zone.
Upper Silurian-Lower Devonian sandstone is dominated by Mesoproterozoic zircons (1950-900 Ma), with
subordinate peaks at the latest Neoproterozoic to Silurian (750-420 Ma) and mid-Archean (2850-2750 Ma)
confirming their Avalonian affinity. Detrital zircon ages from Carboniferous-Triassic sandstones show major
peaks at Carboniferous-Early Permian (360-270 Ma) and Late Neoproterozoic—Cambrian (750480 Ma)
while Mesoproterozoic zircons are insignificant. The eHf(t) values of the detrital zircons exhibit a wide range
from —21.3 to +11.7, and over 62% of zircon grains have negative values, largely coinciding with those of the
Paleozoic igneous rocks in the Sakarya Zone. The Istanbul Zone is devoid of Carboniferous igneous and/or
metamorphic rocks. Therefore, abundant Carboniferous zircons and the disappearance of the Mesoproterozoic
zircons in the Carboniferous-Triassic sandstones of the Istanbul Zone require juxtaposition with a continental
domain similar to the Sakarya and Strandja zones, which are characterized by widespread Carboniferous
magmatism. We suggest that the Intra-Pontide Suture represents the trace of the Rheic Suture in Turkey, along
which Avalonia and Armorica collided during the Early Carboniferous.

1. Introduction

The Paleozoic evolution of Europe and Eastern Mediterranean region involves successive rifting of the conti-
nental blocks such as Avalonia and Armorica from the northern margin of Gondwana-Land to the south, and
their progressive accretion to the northerly continental domain is made of Laurentia and Baltica (e.g., Cocks &
Torsvik, 2002; Meschede & Warr, 2019, pp. 37-40; Murphy et al., 2006; Nance et al., 2010, 2012; Okay & To-
puz, 2017; Stampfli et al., 2002, 2013; Figure 1). The rifting of the Avalonia is thought to have occurred during
Late Cambrian-Early Ordovician, and the amalgamation to Laurentia and Baltica during Late Ordovician-Silu-
rian, leading to the formation of Laurussia (e.g., Cocks & Torsvik, 2002; Nance et al., 2010). On the other hand,
Armorica has rifted from the northern margin of Gondwana during Late Ordovician to Silurian, and amalgamated
to Laurussia by Early to Late Carboniferous (e.g., Nance et al., 2012, 2010; Meschede & Warr, 2019, pp. 37-40;
Topuz et al., 2020). The oceanic domain, which opened as a result of detachment of Avalonia from Gondwana
and closed due to collision of the Armorica with Laurussia, is called the Rheic Ocean. The closure of the Rheic
Ocean and subsequent collision of Gondwana and Laurussia led to the Variscan Orogeny and resulted in the
formation of Pangea.

The Rheic Suture between Armorica and Laurussia is well-documented in Europe. However, the easterly contin-
uation of the Rheic Suture is still not well understood. This is due to the fact that parts of the Variscan orogenic
belts underwent rifting and opening of the Neo-Tethyan Ocean during Permo-Triassic time (e.g., Sengér & Yil-
maz, 1981; Stampfli & Borel, 2002; Stampfli & Kozur, 2006). These Neo-Tethyan oceanic domains were closed
during the course of the Alpine orogeny (e.g., Schmid et al., 2020; Stampfli & Borel, 2002).

In the Eastern Mediterranean region, the Istanbul Zone, Moesian Platform, and Scythian Platform were regarded
as eastern extension of Avalonia on the basis of its stratigraphic similarities and the detrital zircon pattern of the
basement rocks (e.g., Okay et al., 2011; Ustadmer et al., 2011). On the other hand, due to similar pre-Mesozoic
basement with widespread occurrence of Carboniferous crystalline rocks, the Sakarya and Rhodope-Strandja
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Figure 1. Simplified tectonic map of the Eastern Europe and Black Sea region, emphasizing Avalonian and Armorican terranes (modified after Topuz et al., 2020).
WBSF, West Black Sea Fault; IPS, Intra-Pontide Suture; RSS, Rhodope-Strandja-Sakarya Suture; Op, Upper Cretaceous ophiolitic mélange.

zones were thought to be parts of Armorica in Europe (e.g., Okay & Topuz, 2017; Okay et al., 2008; Ustadmer,
Robertson, Ustadmer, et al., 2012; Ustadmer, Ustadmer, & Robertson, 2012). However, the suture zone between
the Avalonian Istanbul Zone and the Armorican Sakarya Zone in the south, called as the Intra-Pontide Suture,
has long been regarded as a Neo-Tethyan suture (e.g., Marroni et al., 2020; Sengor et al., 2019; Sengor & Yil-
maz, 1981), and there is no consensus on the timing of the opening and closing of the intervening ocean (e.g.,
Akbayram, Okay, & Satir, 2013; Akbayram, Sengor, & Ozcan, 2016; Elmas & Yigitbas, 2001, 2005; Okay &
Topuz, 2017; Okay et al., 2011; Robertson & Ustadmer, 2004; Sengor & Yilmaz, 1981). In this study, we ex-
amine the provenance of the Paleozoic to Lower Mesozoic sedimentary rocks of the Istanbul Zone integrating
U-Pb detrital zircon ages, Th/U values, and Lu-Hf isotope analysis of the dated zircon grains. Our new dataset
combined with previous geochronological data from Paleozoic-Mesozoic sedimentary rocks indicates that the
Istanbul Zone was amalgamated with an Armorican type terrane, such as the Sakarya and Rhodope-Strandja
zones during Early Carboniferous, and the Intra-Pontide Suture probably represents the eastward continuation of
the Rheic Suture, which was reworked by the Alpine Orogeny.

2. Geological Background

The Pontide mountain belt, the northernmost tectonic unit of Turkey, is made of three continental blocks called
the Istanbul Zone, Sakarya Zone, and Rhodope-Strandja Zone (Okay & Tiiystiz, 1999).

2.1. The Istanbul Zone

Istanbul Zone is a 400 km long and 75 km wide continental fragment located between Rhodope-Strandja Zone in
the west, the Sakarya Zone in the south and east, and Black Sea in the north (Figure 1). The boundary between
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Figure 2. Geological map of the Istanbul Zone showing the pre-Cretaceous rocks (modified after Okay et al., 2013; Tiirkecan & Yurtsever, 2002). Samples used for
U-Pb detrital zircon dating in earlier studies are also shown (Akdogan et al., 2017; Okay & Topuz, 2017; Okay et al., 2011; Ustadmer et al., 2011).

the Rhodope-Strandja Zone and Istanbul Zone is represented by right lateral strike slip fault passing through a
wide valley filled up by Eocene-Oligocene sedimentary rocks, called Western Black Sea Fault, which offsets the
Upper Cretaceous volcanic arc north of Istanbul (Okay et al., 1994, 2017, Figure 2). Recently, Ulgen et al. (2018)
argued that the boundary is a thrust fault. However, the Triassic sequences north of Istanbul attributed by Ul-
gen et al. (2018) to the Strandja Massif, form part of the Triassic sequence of the Istanbul Zone (e.g., Kaya &
Lys, 1980), and the thrust fault is a well-known Eocene structure, which extends for more than 60 km east of
the Bosphorus (Akartuna, 1963; Baykal, 1942). The Istanbul Zone is bounded in the south at present by the
active dextral North Anatolian Fault (NAF). The pre-NAF nature of boundary between the Istanbul Zone and
the Sakarya Zone is debated (e.g., Akbayram, Okay, & Satir, 2013; Akbayram, Sengor, & Ozcan, 2016; Boz-
kurt et al., 2012; Elmas & Yigitbas, 2001, 2005; Gonciioglu & Erendil, 1990; Gonciioglu et al., 2008; Goriir &
Okay, 1996; Robertson & Ustadmer, 2004; Okay & Topuz, 2017; Okay, et al., 1994; Ozcan et al., 2012; Sengor
& Yilmaz, 1981; Tiiysiiz, 1999; Yilmaz et al., 1995). Before the opening of the Black Sea, the Istanbul Zone was
located on the southern margin of Odessa Shelf north of the Black Sea and was contiguous with the Moesian
Platform; it moved to the present position during Late Cretaceous opening of the Western Black Sea basin (Okay
et al., 1994; Figure 1).

The Istanbul Zone has a Late Neoproterozoic granitic and metamorphic basement (Chen et al., 2002; Ustadmer
et al., 2005). The basement comprises (i) medium-to high-grade metamorphic rocks consisting of quartzofelds-
pathic gneiss and amphibolite, (ii) disrupted metaophiolite consisting of amphibolite/metagabbro and metaperi-
dotite, and (iii) meta-andesite to -rhyolite intercalated with metasedimentary rocks. These metamorphic rocks
are intruded by voluminous granites with U-Pb zircon ages of 565-576 Ma (Chen et al., 2002; Okay et al., 2008;
Ustadmer & Rogers, 1999; Ustadmer et al., 2005; Yigitbas et al., 2004) (Figures 2 and 3). A continuous, > 5 km
thick sedimentary succession of Ordovician to Carboniferous age unconformably overlies the crystalline base-
ment (Dean et al., 2000; Ozgiil, 2012).

In the Istanbul region, the Paleozoic sequence forms a transgressive series starting with Ordovician lacustrine
shales, siltstones, fluviatile sandstone, and conglomerates overlain by shallow marine Ordovician quartzites. The
quartzites pass up into a clastic sequence of siltstone, sandstone and shale of late Ordovician to Early Silurian
age, which are overlain by Silurian-Lower Devonian shallow marine limestones (Haas, 1968; Ozgijl, 2012; Sayar
& Cocks, 2013; Sayar, 1979, 1984, and references therein). The limestones are overlain by Lower to Middle
Devonian siltstones and shales rich in brachiopods, trilobites, and corals. This is followed by Middle Devonian to
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Conglomerate =4 Nodular limestone limestones are the first common cover rocks over the Istanbul and Sakarya
[[ZI[] Crystalline basement ] Chert zones (e.g., Okay et al., 2018; Tiiysiiz, 1999). The deposition of the Upper

Figure 3. Generalized chrono-stratigraphic chart of the Istanbul and Sakarya
zones. The time scale is after Gradstein et al. (2012). Isotopic ages are from
Aysal et al. (2012, 2018), Ballato et al. (2018), Bozkurt et al. (2012), Chen

et al. (2002), Dokuz (2011), Dokuz et al. (2010), Kaygusuz et al. (2012, 2016),

Nzegge (2008), Nzegge et al. (2006), Okay et al. (2008, 2013, 2015),
Sunal (2012), Topuz et al. (2010, 2020), Ustadmer et al. (2005), Ustadmer,
Robertson, Ustadmer et al. (2012), and Ustadmer, Ustadmer and
Robertson (2012).

Jurassic—lowermost Cretaceous shallow-marine carbonates was followed by
uplift and erosion during Valanginian—Hauterivian. The limestones are in
turn unconformably covered by the Lower Cretaceous (Barremian-Aptian)
clastic—carbonate shelf deposits near Zonguldak and Amasra regions and si-
liciclastic turbiditic sequence in the south-southeastern parts of Bartin region.

2.2. The Sakarya Zone

The Sakarya Zone is the main tectonic unit of the Pontides, extending
1500 km north of the Izmir-Ankara-Erzincan Suture (Figures 1 and 2).

Pre-Jurassic basement of the Sakarya Zone is represented by three main components: (i) Carboniferous high tem-
perature-low pressure (HT-LT) metamorphic rocks (e.g., Okay, 1996; Topuz et al., 2004, 2007), (ii) voluminous
Carboniferous granitoids (e.g., Dokuz, 2011; Nzegge et al., 2006; Okay et al., 1996; Topuz et al., 2010; Ustadmer,
Robertson, Ustadmer, et al., 2012; Ustadmer, Ustadmer, & Robertson 2012) are covered by unmetamorphosed
Permo-Carboniferous sedimentary rocks (e.g., Capkinoglu, 2003; Kandemir & Lerosey-Aubril, 2011; Okay &
Leven, 1996), (iii) Permo-Triassic accretionary complex (Okay & Gonciioglu, 2004; Okay & Monié, 1997; Okay
et al., 2002; Topuz et al., 2014, 2018; Ustadmer & Robertson, 1994, Figure 3). There are also small stocks of
the Mid to Upper Ordovician (ca. 460 Ma) and Devonian (ca. 390400 Ma) metagranites intruding undated low-
grade metamorphic rocks in the western part of the Sakarya Zone (Aysal et al., 2012; Okay et al., 1996, 2008;
Sunal, 2012). On the basis of the presence of Carboniferous eclogites at the Fore Range Zone of the Greater Cau-
casus (Perchuk & Philippot, 1997; Somin, 2011), the HT-LP metamorphism is thought to have occurred during
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Table 1
Sample Information Used for U-Pb Detrital Zircon Geochronology and Lu-Hf Isotope Analysis
Coordinates UTM (36T) Description Zircon
Number of Number
Number concordant of Lu-Hf
Sample of analysis isotope
D Location Easting Northing ~ Formation Lithology Stratigraphic age analysis (90%—-110%) analysis
1 270  Amasra (Bartin) 0,435,819 4,613,298  Findikli Sandstone  Upper Silurian-Lower Devonian 119 100 89
2 273 Kozlu (Zonguldak) 0,402,302 4,586,159 Kozlu Sandstone Upper Carboniferous 120 84 -
3 262  Kurucasile (Bartin) 0,478,506 4,629,574  Cakraz Sandstone Permian 120 102 98
4 263  Kurucasile (Bartin) 0,477,486 4,626,916  Cakraz Sandstone Permian 150 120 -
5 4076  Kurucasile (Bartin) 0,475,619 4,623,708 Cakrazboz Sandstone Upper Triassic 180 80 76

early Carboniferous at the mid-lower crustal part of a magmatic arc (Okay & Topuz, 2017). All these basement
units were unconformably overlain by Jurassic volcanic and volcaniclastic rocks (Akdogan et al., 2018; Altiner
et al., 1991; Geng & Tiiysiiz, 2010; Kandemir & Yilmaz, 2009; Sen, 2007). Upper Jurassic-Lower Cretaceous
shallow marine carbonates lie over the volcaniclastic rocks of the Sakarya Zone and also pre-Jurassic basement
of the Istanbul Zone (Altiner et al., 1991; Okay et al., 2018; Tiiysiiz, 1999; Vincent et al., 2018, Figures 2 and 3).

2.3. The Rhodope-Strandja Zone

The Rhodope-Strandja Zone is located between the Moesian Platform to the north and the Sakarya Zone to the
south (Okay & Tiiystiz, 1999, Figures 1 and 2). It is delimited by the dextral strike-slip West Black Sea Fault
in the east (Okay et al., 1994). The Rhodope-Strandja Zone has a polymetamorphic crystalline basement. An
earlier episode of metamorphism and deformation is thought to have taken place during Carboniferous (Okay
et al., 2001). The rock types involved in Carboniferous metamorphism range between Upper Neoproterozoic
metagranites and Paleozoic metasedimentary rocks, which are intruded by voluminous Upper Carboniferous
and Permian granites (Okay et al., 2001; Sunal et al., 2006, 2008; Sahin et al., 2014). Triassic to Middle Jurassic
continental to shallow marine sedimentary rocks were deposited over this basement. The whole sequence was
metamorphosed and deformed at Late Jurassic-Early Cretaceous mainly in greenschist facies (Okay et al., 2001;
Sunal et al., 2011). The metamorphic rocks are unconformably overlain by earliest Upper Cretaceous (Cenoma-
nian) shallow marine sandstones that pass up into a thick sequence of volcanic and volcanogenic rocks of Late
Cretaceous age.

The Paleozoic basement rocks of the Rhodope-Strandja Zone resemble those of the Sakarya Zone. Therefore, they
are regarded as a single continental block during the Paleozoic (e.g., Okay & Topuz, 2017; Okay et al., 2001).
However, their post-Triassic sequences and Late Jurassic-Early Cretaceous metamorphism are unknown in the
Sakarya Zone, suggesting that both zones underwent different geodynamic evolutions. This is testified by the
presence of the Late Cretaceous high-pressure metamorphic rocks and ophiolitic mélanges (Aygiil et al., 2012;
Beccaletto & Jenny, 2004; Okay & Satir, 2001; Okay et al., 2001; Topuz et al., 2008). The exact timing of the
rifting of the Sakarya and Rhodope-Strandja zones are unconstrained. The suture separating the Sakarya Zone
and Rhodope-Strandja zones were regarded as westward elongation of the Intra-Pontide suture, which separates
the Sakarya and Istanbul zones (e.g., Marroni et al., 2020; Sengor & Yilmaz, 1981, Figure 1). However, no Late
Cretaceous high-pressure rocks have been documented from the Intra-Pontide Suture between the Istanbul and
Sakarya Zones.

3. Analytical Methods

In order to constrain the source areas of the Paleozoic to Mesozoic clastic rocks of the Istanbul Zone, we per-
formed petrographic observations, U-Pb detrital zircon dating, and Lu-Hf isotope analysis on five sandstone
samples. Internal structure and the Th/U values of the dated zircons are also used to discriminate their origin. The
UTM coordinates of the investigated samples and short summary of the analytical data are given in Table 1, and
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the sample locations are shown in the geological map in Figure 2. The petrographic descriptions of the samples
are given in Text S1.

Detrital zircon grains were separated using conventional separation techniques including crushing, sieving, wash-
ing, and magnetic and heavy liquid separation at Mineral Separation Laboratories of Eurasian Institute of Earth
Science Istanbul Technical University (see Text S2). Zircons were randomly hand-picked under binocular micro-
scope from heavy mineral separates. Hand-picked zircons were placed over a double-sided band and embedded
into an epoxy resin. The epoxy mounts were ground and polished in order to reveal the internal structure of
zircons. Cathode-luminescence (CL) images were taken from the polished mounts by an electron-scanning mi-
croscope with an attached cathode-luminescence detector in State Key Laboratory for Mineral Deposits Research
of the Nanjing University. A laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS, Ther-
moFisher Scientific iCAP QR ICP-MS coupled to a Geolas 193 nm laser system) at the State Key Laboratory for
Mineral Deposits Research of the Nanjing University was used for U-Pb zircon dating of the zircons. Analytical
procedure for U-Pb dating is given in Text S3, and all analytical results are listed in Table S1.

Zircon Hf isotopic analyses were carried out at the State Key Laboratory for Mineral Deposits Research, Nan-
jing University, using a Neptune plus MC-ICP-MS with the ESI NWR193HE laser ablation system. Hf isotopic
measurements were performed on the same spots or the same age domains of the zircon grains with concordant
U-Pb age (discordance <10%). Analytical procedure for Hf measurements is given in Text S4, and the results are
given in Table S2.

4. Analytical Results
4.1. Zircon Morphology, Internal Structure and Origin

The CL images of the dated zircon grains mostly exhibit a clear oscillatory zonation and sector zoning (Figure
S2 in Supporting Information S1). Shapes of zircons range from nearly euhedral to rounded. The rounded grains
make >70% (visual estimation) of the detrital zircons.

U and Th concentrations of the dated zircons form the Upper Silurian-Lower Devonian sandstone (sample 270,
Findikli Formation) range 12-571 and 5-397 ppm, respectively, while those from the Upper Carboniferous sand-
stone (sample 273) are 51-1096 and 13-735 ppm, respectively (Table S1). Zircons from these two samples
generally have quite similar Th/U ratios ranging from 0.13 to 2.78 and from 0.13 to 2.40, respectively. Only one
grain from both samples has Th/U ratio less than 0.1. Generally, zircons with Th/U values below 0.1 are attribut-
ed to metamorphic origin, and those with Th/U values above 0.1 to igneous origin (e.g., Belousova et al., 2002;
Hoskin & Ireland, 2000; Hoskin & Schaltegger, 2003; Rubatto, 2002). Permian continental sandstone samples
from the Cakraz Formation (samples 263 and 262) have U and Th concentrations ranging from 26 to 1282 ppm
and from 5 to 1661 ppm, respectively (Table S1). Th/U ratios of the zircons from sample 263 span 0.01 to 5.5
and those from the sample 262 range from 0.22 to 1.52. Detrital zircons from these samples have predominantly
Th/U ratios >0.1. There are only five grains with Th/U ratio <0.1 from sample 263. U and Th values from of the
detrital zircons from Upper Triassic sandstone sample of Cakrazboz Formation (sample 4076) are 19—897 ppm
and 10-549 ppm, respectively. The Th/U ratios are 0.11-2.59. Based on Th/U ratios, we can conclude that the
dated zircons were overwhelmingly derived from igneous rocks, and those of metamorphic origin are minimal.
This is in line with the internal structures of the zircons, which commonly exhibit oscillatory and sector zoning
(Figure S2 in Supporting Information S1).

4.2. U-Pb Detrital Zircon Ages

A total of 645 spot analyses were performed on detrital zircons from five sandstone samples of Paleozoic to Mes-
ozoic rocks of the Istanbul Zone. 486 zircon grains (75% of the total population) yielded concordant U-Pb ages
at 90%—110% level and are used in this study (Tables 1 and S1).

The Upper Silurian-Lower Devonian sandstone (sample 270) yielded 100 concordant U-Pb zircon ages (Tables 1
and S1). The obtained ages range between 2954 and 434 Ma (Figure 4). Late Paleoproterozoic-early Neoprote-
rozoic zircons (2184-919 Ma; 79% of the concordant zircon population) dominate the zircon population with
less pronounced late Neoproterozoic-early Cambrian (628-487 Ma; 7%) zircons. There are also tiny clusters
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ant U-Pb zircon ages (Tables 1 and S1). The obtained ages range between 2371 and 315 Ma (Figure 4). Late
Neoproterozoic-early Cambrian zircons (740-495 Ma; 74% of the concordant zircon population) dominate the

of Ordovician-early Silurian (539-434 Ma; 4%), middle Paleoproterozoic (2185-2110 Ma; 4%), and Archean
Out of 120 analyzed zircons from the Upper Carboniferous sandstone (sample 273), 84 grains yielded concord-

successions of the Istanbul Zone. Histograms on the right show the late Neoproterozoic and Phanerozoic zircons from of the
(2955-2709 Ma; 6%) zircons.

Figure 4. Age histogram with probability density curves of five sandstone samples from the Paleozoic to Mesozoic
same sample.
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Figure 5. Detrital zircon age versus eHf(t) values of the Paleozoic to
Mesozoic sandstones of the Istanbul Zone. DM, depleted mantle; CHUR,
chondritic uniform reservoir plotted using HafniumPlotter (Sundell

et al., 2019).

zircon population. There is a less pronounced cluster of Ordovician-Carbon-
iferous zircons (485-315 Ma; 12%). There are also Paleoproterozoic zircons
(2371-1818 Ma; 7%) with widely separated ages without a significant peak.

Permian continental sandstones (samples 262 and 263) yielded 102 and 120
concordant U-Pb detrital zircon ages respectively (Tables 1 and S1). They
show a similar age pattern (Figure 4). In both samples Carboniferous-earli-
est Permian zircons (355-274 Ma; 57% of the concordant zircons) dominate
the zircon population. Likewise, both samples display a significant peak at
late Neoproterozoic—Cambrian (758-489 Ma; 25%; Figure 6). There are also
widely spaced Ordovician to Devonian (478-362 Ma; 9%) and Archean—
Mesoproterozoic zircons (3149-1057 Ma; 9%) without significant peak.

Only 80 concordant ages were obtained out of 180 detrital grains from the
Upper Triassic sandstone (sample 4076) (Tables 1 and S1). The ages range
from 2526 to 262 Ma (Figure 4). Similar to those samples 262 and 263, this
samples also yielded major zircon population at Late Neoproterozoic—Cam-
brian (740-489 Ma; 43%) and Carboniferous (20%). There are also minor
peaks at Ordovician (5%), early Mesoproterozoic (1520-1440 Ma; 6%), and
Middle and Late Paleoproterozoic (2170-2010 Ma; 9% and 1850-1710 Ma;
9% respectively).

4.3. Lu-Hf Isotope Values

The eHf(t) values of the zircon grains from the Upper Silurian-Lower Devo-
nian sandstone (sample 270) range between —17.4 and + 5.2, whereby the
negative eHf(t) values make 64% (Table S2, Figure 5). Positive eHf(t) values
indicate mantle derived melts whereas negative values are indicative of recy-
cled, old crust-derived melts from which zircons were originated. Late Ne-
oproterozoic—early Paleozoic (628-434 Ma) and Archean (2954-2709 Ma)
zircons show mostly negative eHf(t) values. Detrital zircons from the Per-
mian continental sandstone (sample 262) display eHf(t) values ranging be-
tween —9.8 and + 8.4. The negative eHf(t) values are found in the 52% of
the zircons. The eHf(t) values of the zircon grains from the Upper Triassic
sandstone (sample 4076) vary between —21.3 and 11.7. The negative eHf(t)
values make 74% of the data.

5. Discussion

In order to assess the provenance of Paleozoic-Mesozoic clastic sedimen-
tary rocks, we also compiled a total of 853 concordant detrital zircon ages
from Ordovician, Lower Carboniferous, Triassic, and Lower Cretaceous
sandstones of the Istanbul Zone (in total 12 samples) from previous studies
(Akdogan et al., 2017; Okay & Topuz, 2017; Okay et al., 2011; Ustadmer
et al., 2011; Ulgen et al., 2018, Figure 6). The initial eHf values reported

in this study are also compared with initial eHf values in literature (Figure 7). eNd(t) values of the whole rock

samples are also compared when the eHf(t) values are not available, because initial eHf values are mostly coupled

with initial eNd values.

5.1. Provenance of the Upper Silurian-Lower Devonian Sandstone—Avalonian Affinity of the Istanbul

Zone

Among the detrital zircon ages obtained from Upper Silurian-Lower Devonian sandstone collected from Amasra

region (Figure 2), Late Paleoproterozoic to earliest Neoproterozoic zircons form the most significant age popula-

tion (83%) with main cluster at the Mesoproterozoic period (51%; Figure 4). Similar zircon age distribution was
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Figure 6. U-Pb detrital zircon age histograms with probability density curves of Lower Ordovician quartzites (Ustadmer

et al., 2011), Upper Carboniferous turbidites (Okay et al., 2011), Lower Carboniferous coal measures (Okay & Topuz, 2017),
Triassic clastic rocks (Ulgen et al., 2018), and Lower Cretaceous shelf to turbiditic sequences of the Istanbul Zone (Akdogan
et al., 2017) and samples from this study. Histograms on the right show the late Neoproterozoic and Phanerozoic zircons from
of the same samples. Sample locations are shown in Figure 2.

reported from Lower Ordovician arkosic sandstone of the Istanbul Zone (Ustadmer, 2011; Figure 6). The Avalo-
nian type terranes are characterized by the presence of Mesoproterozoic ages and the nearly absence of detrital
zircons with ages between 2450 and 2050 Ma in their source area (Nance & Murphy, 1994; Samson et al., 2005;
Winchester et al., 2006). Abundant Mesoproterozoic detrital zircons (51%) from the Upper Silurian-Lower De-
vonian sandstone sample of the Istanbul Zone together with the gap observed between 2700 and 1950 Ma (very
few detrital zircon grains observed in this range; Figure 4), indicate that the Istanbul Zone forms part of the
Avalonian as suggested by Ustadmer et al. (2011) and Okay et al. (2011). Avalonia rifted from Gondwana during
Early Ordovician (Arenig, 475 Ma) and collided with the Baltica during the latest Ordovician-Early Silurian
(Ashgill, 445 Ma, Cocks & Torsvik, 2002, Figure 8a). However, the timing of the rifting of the Istanbul Zone
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" . Istanbul Zone should have been added to the southern margin of Baltica-Lau-
Y eHf* (Igneous zircons) . . : . o

rentina before Devonian, as the Devonian and Carboniferous foraminiferal
T eNd** (Whole rock) assemblages in the Istanbul Zone display typical Laurussian affinity (e.g.,
Kalvoda et al., 2003). Thus, the Istanbul Zone to the north formed the passive

margin of Laurussia facing to the Rheic Ocean in the south (Figure 8a).

Figure 7. Initial eHf values versus age histogram comparing the data in
this study with those from literature. The line for depleted mantle (DM)

is taken from Sundell et al. (2019). The literature zircon initial eHf values
are from Campbell (2017), Karsli et al. (2016, 2020), Liu et al. (2018),

5.2. Provenance of the Carboniferous to Upper Triassic Siliciclastic

Sengiin et al., (2020), Topuz et al. (2020), Ustadmer et al. (2016), and Ulgen Rocks of the Istanbul Zone

et al. (2018). The initial whole rock eNd values are also shown from literature
(e.g., Aysal et al., 2012, 2018; Dokuz, 2011; Karsh et al., 2016; Kaygusuz

Gondwana derived terranes are characterized by generation of voluminous

etal., 2012, 2016; Nzegge et al., 2006; Sunal, 2012; Topuz et al., 2010). arc-related Upper Neoproterozoic igneous rocks beginning at ca. 760 Ma and

peaking at ca. 635-570 Ma (e.g., Murphy et al., 2000; Nance et al., 2002).

Almost all detrital zircon ages (86%) from the Upper Carboniferous, Per-

mian, and Upper Triassic sandstones range from the Late Neoproterozoic
(750 Ma) to Permian (274 Ma) with a major peak at Carboniferous (34%; Table S1, Figure 4). The contribution
of the Mesoproterozoic zircons is minimal (<3%). Similar detrital zircon distributions with a prominent peak of
Carboniferous zircons were obtained from Lower Carboniferous (Visean) flysch (Okay et al., 2011) and Upper
Carboniferous (Westphalian) coal measures (Okay & Topuz, 2017) of the Istanbul Zone (Figure 6). Similarly,
Carboniferous zircons also constitute the main detrital zircon population in the Triassic clastic sequence near
Kocaeli and Istanbul, and in the Lower Cretaceous clastic sequence of the Istanbul Zone (Akdogan et al., 2017,
Ustaomer et al., 2016; Ulgen et al., 2018, Figure 6). Furthermore, the abundance of Mesoproterozoic detrital
zircons decreases from Ordovician-Silurian to Carboniferous-Triassic siliciclastic rocks (Figures 4 and 6).

The obtained Late Neoproterozoic—early Cambrian (689—487 Ma) detrital zircon ages from this study match
well with the age of the Late Neoproterozoic crystalline basement (ca. 590-560 Ma, Chen et al., 2002; Okay
et al., 2008; Ustadmer et al., 2005) and Permian detrital zircons with the ages of the Permian acidic intrusions
of the Istanbul Zone (ca. 262-257 Ma; Aysal et al., 2018; Okay et al., 2013; Ustadmer et al., 2005). However,
there are no records of Devonian and Carboniferous magmatic and metamorphic events in the Istanbul Zone
(Figures 2 and 3), which can potentially provide numerous Carboniferous and Devonian zircons to Carboniferous
and younger clastic rocks. Abundant Carboniferous and sparse Devonian zircons require a continental domain
with Carboniferous crystalline rocks similar to the Sakarya and Rhodope-Strandja zones (Figure 4). As described
above, both the Sakarya and Rhodope-Strandja zones are characterized by widespread metamorphic and igne-
ous rocks of Carboniferous age (Dokuz, 2011; Kaygusuz et al., 2012, 2016; Nzegge, 2008; Nzegge et al., 2006;
Okay et al., 2001; Sunal et al., 2011; Topuz et al., 2004, 2007, 2010; Ustadmer, Ustadmer, & Robertson, 2012;
Figure 3). They are regarded as eastward extension of the Armorica in Europe (Okay & Topuz, 2017; Okay
et al., 2008; Ustadmer, Robertson, Ustadmer, et al., 2012; Ustadmer, Ustadmer, & Robertson, et al., 2012; Win-
chester J.A. and the PACE TMR Network Team, 2002, Figure 1). We therefore suggest that the Istanbul Zone
collided with the Sakarya/Rhodope-Strandja Zone during the Early to Late Carboniferous following southward
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Figure 8. Tectonic model illustrating the evolution of the Rheic Ocean in the Eastern Mediterranean region.

subduction of the Rheic Ocean beneath the Sakarya Zone (Figure 8b) as previously postulated by Okay and To-
puz (2017) on the basis of regional geological constraints such as (i) coeval nature of Early Carboniferous HT-LP
metamorphism and voluminous acidic magmatism similar to those in Central Europe, (ii) presence of sporadic
Carboniferous HP metamorphic rocks close to the northern margin of Greater Caucasus and Strandja-Rhodope
zones, and (iii) deposition of Middle Permian red beds with a pronounced unconformity over Silurian to Early
Carboniferous sedimentary rocks. Thus, this provenance study on the Paleozoic to Lower Mesozoic clastic rocks
of the Istanbul Zone verifies the validity of Okay and Topuz (2017)'s suggestion.

As stated above, our study documents a major provenance change using the U-Pb detrital zircon ages and defines
the timing of the collision of the two continental domains; the Istanbul and Sakarya zones, as the Early to Late
Carboniferous. There are also other proxies, which can be used to constrain the timing of this collisional event as
described by Hu et al. (2016) in detail. The Early to Late Carboniferous collision between the Sakarya and Istan-
bul zones is further supported by the following observations in the Istanbul Zone (i) deepening character of the
sedimentation from Late Devonian to Early Carboniferous, (ii) cessation of the marine sedimentation during Late
Carboniferous, (iii) Carboniferous contractional deformation and (iv) the presence of major middle Permian un-
conformity (see Figure 3 and Section 2.1.). On the other hand, in the Sakarya Zone, Devonian and Carboniferous
periods are represented by metamorphic rocks and gabbroic to granitic intrusions (Figure 3). Upper crustal rocks
of Late Devonian and Carboniferous ages apart from a minor exposure of uppermost Carboniferous to lowermost
Permian sedimentary rocks (e.g., Okay & Leven, 1996) are mostly absent, implying that the Sakarya Zone was
undergoing erosion, and was supplying sediment to the Istanbul Zone. This state lasted up to Early Jurassic time
when there was a large-scale marine transgression in the Sakarya Zone (see Figures 3, 8b and 8c). Reworking of
the pre-Carboniferous clastic rocks of the Istanbul Zone was minimal. This can also explain the nearly absence of
2050-2400 Ma and 1000-1500 Ma zircons in Carboniferous and post-Carboniferous clastic rocks of the Istanbul
Zone. High pressure metamorphic rocks related to the Carboniferous accretion are not known along the In-
tra-Pontide suture and are only documented along the fore-range in the Greater Caucasus (Okay & Topuz, 2017,
and references therein).
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There are a few petrological and provenance studies reporting initial eHf values of the igneous zircons from both
the Istanbul and Sakarya zones. As pointed out above, the Carboniferous igneous and metamorphic events are
confined to the Sakarya Zone. The initial eHf values of the granitic to gabbroic rocks in the Sakarya Zone range
from +1.7 to —15 (Karsh et al., 2016; Liu et al., 2018; Sengiin et al., 2020; Ustadmer et al., 2016). Likewise,
initial eNd values of gabbroic to granitic rocks are characterized by negative values ranging from —1 to —8.4
(Dokuz, 2011; Karsl et al., 2016; Kaygusuz et al., 2012, 2016; Nzegge et al., 2006; Topuz et al., 2010, 2020).
Despite the continental crust-like eHf and eNd isotopy, inherited zircons are non-existent to minimal among the
dated zircons from the igneous rocks of Carboniferous age. This situation implies that the Sakarya Zone during
the Carboniferous was underlain to a large extent by a lithospheric mantle with continental-crust like isotopic
compositions, as discussed by Topuz et al. (submitted). The initial eHf values of the Carboniferous detrital zir-
cons from the Permian and Upper Triassic sandstones from the Istanbul Zone are characterized by 65% negative
values. Similar eHf(t) distribution has been reported from the detrital zircons from the Triassic sandstones of the
Istanbul Zone by Ulgen et al. (2018) (Figure 7). The source of the detrital Carboniferous zircons with positive eH-
f(t) values is unclear. The eHf{(t) values show a isotopic pull-up (eHf(t) increase in over time) from 360 to 290 Ma
(Figure 7). Detrital Carboniferous zircons from the Upper Triassic Karakaya Complex of the Sakarya Zone
are also characterized by predominantly negative eHf(t) zircon values (Campbell, 2017; Ustaomer et al., 2016)
(Figure 7). A pull-up from 360 to 300 Ma is recognizable in the dataset of Campbell (2017). The reason of this
isotopic pull-up in the zircon initial eHf values is unclear. All the detrital zircons with Silurian and Devonian crys-
tallization ages from the clastic rocks of the Istanbul Zone are characterized by negative eHf(t) values (Figures 5
and 7). This is also consistent with the detrital zircon data in Ustadmer et al. (2016). Devonian (meta-)granitic
rocks in the Sakarya Zone demonstrate negative initial eNd (—5.3 to —9.4) and eHf zircon values (—7.1 to —8.5),
suggesting derivation from crustal melts (Aysal et al., 2012; Sunal, 2012; Ustadmer et al., 2016). In case of the
Silurian magmatism, the documented granitic rocks display negative initial eHf values, and basic/gabbroic rocks,
on the other hand, display positive initial eHf values, indicating the presence of both crustal and mantle-derived
melts (Karsl et al., 2020; Topuz et al., 2020).

5.3. The Nature of the Contact Between the Istanbul and Sakarya Zones, the Intra-Pontide Suture

The tectonic boundary between the Istanbul and the Sakarya zones is represented by the Intra-Pontide Suture
(Figures 1 and 2). Existence of an oceanic domain between the Istanbul and Sakarya zones has been suggested
due to striking stratigraphical differences. There are Upper Cretaceous ophiolitic mélanges cropping out at the
eastern part of the Intra-Pontide suture (Figure 1). In terms of rock types and ages of the tectonic blocks involved
in mélange, these ophiolitic mélanges hardly differ from the ophiolitic mélanges along the Izmir-Ankara-Er-
zincan suture (e.g., Gonciioglu et al., 2012, 2014; Marroni et al., 2014, 2020). Toward the eastern end of the
Intra-Pontide-Suture, the width of the Sakarya Zone becomes narrow, and the Intra-Pontide and Izmir-Ankara-Er-
zincan suture approaches each other (Figure 1). The currently active right-lateral North Anatolian Fault locally
runs along the Intra-Pontide suture (Figure 2). The North Anatolian Fault is thought to be active since Middle
Miocene and has a total offset of 60—85 km (Akbayram, Sorlien, & Okay, 2016; Armijo et al., 1999; Sengor
et al., 2005). All these features complicate the deduction of the primary geological relationships among the dif-
ferent rock associations along the suture.

The evolution of the Intra Pontide Suture is highly contentious. Suggested times for the closure range from
Triassic to Early Eocene (e.g., Akbayram, Okay, & Satir, 2013; Akbayram, Sengor, & Ozcan, 2016; Bozkurt
et al., 2012; Elmas & Yigitbas, 2001, 2005; Gonciioglu et al., 2008; Goriir & Okay, 1996; Okay et al., 1994;
Robertson & Ustadmer, 2004; Sengor & Yilmaz, 1981; Sengor et al., 2019; Tiiysiiz, 1999; Yilmaz et al., 1995).
Researches who suggest Late Mesozoic-Early Cenozoic closure proposed that the Intra-Pontide oceanic domain
first opened during the Triassic (e.g., Marroni et al., 2020). To summarize, there are highly divergent ideas on the
evolution of the Intra-Pontide Ocean. The detrital zircon record of Paleozoic to Mesozoic rocks in the Istanbul
Zone (this study, Akdogan et al., 2017; Okay & Topuz, 2017; Okay et al., 2011; Ustadmer et al., 2016; Ulgen
et al., 2018) clearly demonstrate that the provenance of the sedimentary rocks abruptly changes during the Early
Carboniferous. The pre-Carboniferous sedimentary rocks display an Avalonian-type affinity, while detrital zircon
record of the Carboniferous and post-Carboniferous sedimentary rocks display an Armorican-type signature simi-
lar to those of the Sakarya and Rhodope-Strandja zones. This situation can be best explained by the juxtaposition
of the Istanbul and Sakarya zones during Early Carboniferous, thus closure of the Intra-Pontide suture (Figure 8).
In turn, Intra-Pontide suture can be considered as the eastward extension of the Rheic Suture in Turkey. There
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was no other adjacent continental domain, which could have provided the Carboniferous detrital zircons into the
sedimentary rocks of the Istanbul Zone. Northerly areas, such as Ukrainian shield, is made up of Archean and
Paleoproterozoic crystalline rocks (Bogdanova et al., 2008; 2010; Claesson et al., 2006). The second important
implication of the detrital zircon record is that there is no significant change during Late Paleozoic and Mesozoic
time. Detailed geological, petrological, and geochronological studies are necessary along the Intra-Pontide Suture
to understand whether the Intra-Pontide Suture was reworked during Mesozoic and Early Cenozoic time.

6. Conclusion

Detrital zircon age pattern from the Paleozoic clastic rocks of the Istanbul Zone displays a drastic change in
the Carboniferous, and this new age pattern continues up to the Late Mesozoic. The detrital zircons in the
pre-Carboniferous clastic rocks are characterized by major populations of Mesoproterozoic and Late Neopro-
terozoic—Cambrian zircons, which is common in the Avalonian-type terranes. However, the Carboniferous and
post-Carboniferous clastic rocks have major population of Carboniferous detrital zircons in addition to Late
Neoproterozoic—Cambrian zircons, while the Mesoproterozoic zircons drastically diminish. This has important
implications, because the Istanbul Zone is devoid of any Carboniferous igneous and metamorphic events. This
can be best accounted by the accretion with an Armorican-type continental block, which lacks Mesoproterozoic
igneous and metamorphic rocks, and where Carboniferous igneous and metamorphic events are dominant. The
only candidate for such terranes is the neighboring Sakarya and Rhodope-Strandja zones. Therefore, we suggest
that the source for the Carboniferous detrital zircons in the Istanbul Zone lies in the Sakarya-the Rhodope-Strand-
ja zones. The suture between these continental blocks represents a Carboniferous suture, probably the eastward
extension of the Rheic Suture in Turkey. Later reworking of this suture during the Alpine Orogeny did not influ-
ence the detrital zircon age pattern.
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All new data presented in this article are available in Supporting Information File (SI, Tables S1 and S2). The data
can also be found at Akdogan et al., 2021 (doi: 10.17632/zhycjy7p5Sp.1).
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