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Abstract The Lower and Upper Cretaceous turbidites cover large areas in the central Pontides
(north‐central Turkey). The Lower Cretaceous turbidites are over 2 km thick and are exposed in an area
of 400 × 90 km. The Upper Cretaceous (Campanian‐Maastrichtian) forearc turbidites are up to 1,200 m thick
and crop out in NW‐SE trending elongate basins about 40 km wide, extending along the central and eastern
Pontides. We present new detrital zircon U–Pb ages, petrography, and paleocurrent measurements from
the Campanian‐Maastrichtian turbidites and compare them to those from the Lower Cretaceous turbidites.
The Campanian‐Maastrichtian sandstones are dominated by carbonate and magmatic lithic grains. The
paleocurrents indicate paleoflow directions parallel to the axis of the basin. The sandstones are dominated
by Late Cretaceous zircons indicating derivation mainly from the coeval magmatic arc. In contrast, the
Lower Cretaceous sandstones are dominated by quartz and feldspar, and paleocurrents indicate southward
transport. The detrital zircons in the Lower Cretaceous sandstones are mainly Archean and
Paleoproterozoic, indicating that in the Early Cretaceous, the source of turbidites was from the
Archean‐Paleoproterozoic Ukrainian Shield to the north. After the opening of the Black Sea in the Late
Cretaceous, the connection between the Pontides and the East European Platform was severed and the
Campanian‐Maastrichtian turbidites were sourced principally from the magmatic arc in the Pontides. Our
results indicate that the Campanian‐Maastrichtian turbidites represent the first turbiditic sequence
deposited after the opening of the Black Sea.

1. Introduction

Provenance studies have contributed to the tectonic and paleogeographical reconstruction of ancient to
modern basins in different tectonic settings (e.g., Bracciali et al., 2016; Bussien et al., 2011;
DeGraaff‐Surpless et al., 2002; Gehrels, 2014; Gehrels & Dickinson, 1995).

Forearc basins are fundamental elements of active continental margins. They are short lived, and constitute
the best archives that directly record information about the surrounding terranes (e.g., Dickinson, 1995;
Ingersoll, 2012). As a consequence, provenance analysis of ancient forearc basins has potential to provide
robust and critical constraints on the tectonic evolution of both the basin and the sediment source terrains
and provide constrains on the inception and duration of the arc activity (e.g., Cawood et al., 2007; Dong et al.,
2013; DeGraaff‐Surpless et al., 2002; Kortyna et al., 2014; Orme et al., 2015; Sharman et al., 2015).

During the Mesozoic, the Pontides constituted the southern active margin of the Laurasia and experienced
complex successive subduction‐accretion events (Okay & Nikishin, 2015). The Lower Cretaceous basinal
sequence in the central Pontides is represented by a submarine turbidite fan complex developed on the
northern active margin of the Tethys Ocean (Akdoğan et al., 2017; Aygül et al., 2015, 2016; Okay et al.,
2006, 2013). Recently, Akdoğan et al. (2017) and Okay et al. (2013) identified detrital zircons of Archean
and Paleoproterozoic ages from these turbidites. They proposed that the East European Craton north of
the Black Sea was the major source for the Lower Cretaceous turbidites, pointing out that the Black Sea
was not open during the deposition of the Lower Cretaceous turbidites. They concluded that, even though
the Lower Cretaceous sediments were deposited above an active subduction zone (Aygül et al., 2015,
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2016; Okay et al., 2006, 2013), the related magmatic arc was not developed possibly due to flat subduction.
The arc formed during the Late Cretaceous (Santonian‐Campanian). Following the arc magmatism, back
arc rifting and oceanic spreading took place leading to opening of the Black Sea as a back arc basin (e.g.,
Okay et al., 2013, 2018; Okay & Nikishin, 2015). The Upper Cretaceous (Campanian‐Maastrichtian)
turbidites of the central Pontides were deposited in a forearc setting following the oceanic opening of the
Black Sea basin.

In this study, we report new U–Pb detrital zircon ages, petrographic data, and paleocurrent measurements
from the Upper Cretaceous (Campanian‐Maastrichtian) turbidites. To highlight the differences existing
between turbidites deposited in the central Pontides before and after the oceanic opening of the Black Sea
and also to better constrain the timing of the opening of the Black Sea, we compare our new results with
those obtained by Akdoğan et al. (2017) and Okay et al. (2013) from the Lower Cretaceous turbidites.

The comparison shows a drastic change in the source–sink relation in two successive Cretaceous basin
deposits in the central Pontides due to the opening of the Black Sea (Figures 1 and 2).

2. Geological Framework

The Pontides are an E‐W trending mountain chain between Balkans in the west and Lesser Caucasus in the
east (Figure 1). They consist of three distinct terranes named Rhodope‐Strandja Massif, Istanbul Zone, and
Sakarya Zone (Okay & Tüysüz, 1999; Figure 1). The Rhodope‐Strandja Massif is a large crystalline terrane
with Neoproterozoic metagranites (Yılmaz‐Şahin et al., 2014) and Variscan quartzo‐feldspathic gneissic
basement intruded by Carboniferous–early Permian granitoids. This basement is stratigraphically covered
by a Mesozoic metasedimentary cover (Okay et al., 2001; Sunal et al., 2006). The Istanbul Zone consists of
a late Neoproterozoic granitic and metamorphic basement (Chen et al., 2002), covered by a continuous sedi-
mentary succession from Ordovician to Carboniferous (Özgül, 2012). The Istanbul Zone is separated from
the Rhodope‐Strandja Massif by the dextral strike‐slip West Black Sea Fault, and from the Sakarya Zone
in the south by the Intra Pontide Suture Zone (Okay & Tüysüz, 1999). The Sakarya Zone, with its 1,500‐
km length, is the largest continental fragment of the Pontides (Figure 1). The basement of the Sakarya
Zone is made up of metamorphic basement intruded by Devonian, Carboniferous, and Permian granites
(e.g., Dokuz, 2011; Nzegge et al., 2006; Sunal, 2013; Topuz et al., 2010; Ustaömer et al., 2012, 2013). The
Pontides are separated from the Tauride‐Anatolide Platform in the south by the Izmir–Ankara‐Erzincan
suture Zone (Figure 1).

During the late Paleozoic and Mesozoic the Pontides formed the active margin of Laurasia facing the
Tethys Ocean to the south. Magmatic arcs and subduction accretion complexes of Permo‐
Carboniferous, Late Triassic, Middle‐Late Jurassic, and Early and Late Cretaceous ages document a long
history of northward subduction under Laurasia (Okay & Nikishin, 2015). Between these magmatic
events, a large submarine turbidite basin formed in the central Pontides during the Early Cretaceous.
In contrast to the presence of the Early Cretaceous subduction‐accretion complexes indicating northward
subduction of the Tethys Ocean during deposition of this turbidites (Aygül et al., 2015; Okay et al., 2006,
2013), there is no evidence for a contemporaneous arc magmatism, possibly due to flat subduction
(Akdoğan et al., 2017; Okay et al., 2013). During the Late Cretaceous an extensive submarine arc magma-
tism took place and the Black Sea back‐arc basin opened as a result of rifting of the Pontide magmatic
arcs, thereby separating the Laurasia from the Pontides (e.g., Akdoğan et al., 2017; Okay et al., 2013,
2018; Tüysüz, 1999, 2018).

In the central Pontides, the basement of the Sakarya Zone consists of Hercynian metamorphic rocks with
Permo‐Carboniferous granites (Nzegge et al., 2006; Okay et al., 2013) and Upper Triassic distal turbidites
forming part of an accretionary complex (Ustaömer & Robertson, 1994; Figure 3). These are overlain and
intruded by Middle‐Upper Jurassic acid to intermediate volcanic and subvolcanic rocks of the Jurassic arc
(Nzegge, 2008; Okay et al., 2013, 2014; Yılmaz & Boztuğ, 1986). Middle Jurassic (approximately 160 Ma)
accretionary complexes consisting of blueschist to lower greenschist facies metamorphic rocks, crop out in
the central Pontide Supercomplex (Aygül et al., 2016; Frassi et al., 2018; Marroni et al., 2014; Okay et al.,
2013, 2014) indicating an active tectonic setting. A major part of the central Pontide Supercomplex in the
southern central Pontides consists of eclogites, blueschists with oceanic protoliths and with Early
Cretaceous phengite Ar‐Ar ages of 136–102 Ma, indicating northward subduction of Tethys at this period
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Figure 1. The main tectonic units of Black Sea region showing depositional area of the Lower Cretaceous and Campanian‐Maastrichtian sequences in the Pontides
and the Upper Cretaceous magmatic arc. The red rectangle shows the study area. CPS, Central PontideMetamorphic Complex;WBS Fault, Western Black Sea Fault
(modified from Akdoğan et al., 2017 and Okay et al., 2013).
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Figure 2. Geological maps of the central Pontides showing the distribution of the Lower Cretaceous and Campanian‐Maastrichtian turbidites, the paleocurrents,
and sample locations used for U–Pb dating (modified after Akdoğan et al., 2017; Hakyemez & Papak, 2002; Uğuz et al., 2002). (a) Paleoflow directions of the
Campanian‐Maastrichtian turbidites are from this study, Leren (2003), and from Akdağ and Kırmacı (2008) and those of the Lower Cretaceous turbidites are from
Akdoğan et al. (2017). (b) All paleoflow directions were back‐rotated according to Meijers et al. (2010).
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Figure 3. Generalized chrono‐stratigraphic chart of the north‐eastern part of the central Pontides; modified from Akdoğan et al. (2017). The time scale is from
Gradstein et al. (2012). Isotopic ages are from Ballato et al. (2018), Nzegge (2008), Nzegge et al. (2006), and Okay et al. (2013, 2014). In this study detrital zircons
from the Gürsökü formation were studied.
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(Aygül et al., 2015, 2016; Okay et al., 2006, 2013; Figure 3). The Triassic and Jurassic series are
unconformably overlain by a thick sequence of Upper Jurassic‐lowermost Cretaceous (Kimmeridgian‐
Berriasian) shallow marine limestones, which extends throughout the Pontides and beyond (Okay et al.,
2018). The limestones are in turn unconformably covered by thick (>2,000 m), extensive Lower
Cretaceous (Barremian‐Aptian) siliciclastic turbidites consisting mainly of intercalated medium‐grained
sandstone and shale (Akdoğan et al., 2017; Hippolyte et al., 2010; Tüysüz, 1999).

An important change in the sedimentation occurred in the Santonian with the deposition of red pelagic
limestones, which lie unconformably over the older stratigraphic units. The red pelagic limestones, possibly
represent the breakup unconformity and the initiation of the oceanic spreading in the Black Sea basins
(Görür, 1988; Görür et al., 1993), and are associated with volcanic rocks (Hippolyte et al., 2010, 2016;
Okay et al., 2013, 2018; Tüysüz et al., 2016). Arc volcanism started in the Coniacian and continued into
Campanian (Figure 3). Deep seismic reflection studies indicate that the Upper Cretaceous volcanoes exist
under the Black Sea close to the Turkish coastline (Nikishin et al., 2015). Volcaniclastic turbidite sequences
with a thickness up to 1,200 m were deposited in a forearc basin south of the Upper Cretaceous arc. These
Campanian‐Maastrichtian turbidites of the central Pontides (the Gürsökü Formation; Figure 3) comprise
graded volcaniclastic sandstones interbedded with shale, calcareous mudstones, and marlstones (Ellero
et al., 2015; Leren et al., 2007) and extend further east to the Eastern Pontides (Okay & Şahintürk, 1997;
Figures 1 and 4a–4e). These sheet‐like turbidites indicate nonchannelized low‐ to high‐density storm‐

Figure 4. Field photographs of the Campanian‐Maastrichtian turbidite sequence of the central Pontides. (a and b) Medium‐thickly bedded sandstones interbedded
with thin marl layers (Durağan and Gökçealan). (c) Flute casts indicating the paleocurrent direction from west to east (Boyabat). (d) Fine‐grained sandstone
and marl alternation showing thin graded bedding in the base level of the sandstones and flute casts at the sandstone layers (Boyabat). (e) Thin‐bedded sandstone
shale alternation showing the distal parts of turbidites (Boyabat). (f) Medium‐bedded calciturbidites of Maastrichtian to Paleocene age (Akveren formation;
Yeşiloba Village).
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generated flow and forming an upward thinning, transgressive stratigraphic succession (Leren et al., 2007;
Figures 4a–4e). Time‐equivalent calciturbiditic sequences were deposited in the Western Pontides (Özcan
et al., 2012).

Nannofossils and foraminiferal content constrain the depositional age of this volcaniclastic turbiditic
sequence to the Campanian‐Maastrichtian (Aydın et al., 1986; Gedik & Korkmaz, 1984; Hippolyte et al.,
2016; Leren et al., 2007; Okay et al., 2018; Özcan & Özkan‐Altıner, 1999; Özkan‐Altiner & Özcan, 1999; this
study). The turbidites become gradually more calcareous upward and pass into white deep‐marine marl and
calciturbidites of Akveren formation with depositional ages of Maastrichtian to Paleocene (Aydın et al.,
1986; Leren et al., 2007; Okay et al., 2018; Figures 3 and 4f).

The collision between the Pontides and the Kırşehir Massif occurred during the Paleocene–Eocene resulting
in uplift and deformation (Okay & Tüysüz, 1999) and oroclinal bending (Meijers et al., 2010) of the central
Pontides. The northern part of the central Pontides forms a north‐vergent fold‐and‐thrust belt of Eocene age.
Espurt et al. (2014) proposed approximately 28 km of shortening in a north‐south direction by the end of
Eocene, as a result of collision of the Kırşehir Massif with the Pontides. The Campanian‐Maastrichtian tur-
bidites, along with the rest of Mesozoic‐Paleocene sequence, were folded and thrust faulted. However, the
sequence maintains stratal continuity (Figure 4).

3. Materials and Methods

We document new paleoflow directions from the Campanian‐Maastrichtian turbidites that are given in
Table S1. At each locality all accessible paleocurrent indicators were recorded, and correction for tectonic
tilting was applied during the measurement for dips higher than 10°. The mean paleocurrent direction
values were obtained by using the Stereonet 9.5 software (Allmendinger et al., 2011).

Campanian‐Maastrichtian turbidites were sampled for U–Pb zircon dating and petrography. Mesoscopic
features of the sampled turbidites with field photographs are given as Text S1 and Figure S1 in the supporting
information. Detailed petrographic descriptions of seven dated Campanian‐Maastrichtian sandstone sam-
ples are given in Text S2 and Figures S2–S7 in the supporting information. Framework compositions of
the dated Campanian‐Maastrichtian samples were determined by point counting (n > 500) according to
the Gazzi‐Dickinson method (Dickinson, 1970; Gazzi, 1966; Zuffa, 1985). Point counting results are shown
in Tables S2 and S3 in the supporting information. Heavy mineral separation was performed using standard
techniques (Text S3 in the supporting information).

Zircon is a heavy mineral resistant to geological processes, and a common accessory detrital mineral in
siliciclastic sediments (e.g., Fedo et al., 2003). Thus, detrital zircon U–Pb geochronology is widely used
as an important tool for deciphering the provenance of the sediments as well as for revealing the tectonic
and paleogeographical context of the basins and surrounding regions (e.g., Bussien et al., 2011;
DeGraaff‐Surpless et al., 2002; Gehrels & Dickinson, 1995). In this study, we determined the U–Pb ages
of the detrital zircons from the Campanian‐Maastrichtian samples using laser ablation ICP‐MS technique
to constrain the tectonic history of the Cretaceous basins in the Black Sea region. Analytical procedure for
U–Pb dating is given in Text S3 in the supporting information, and all analytical results are listed in Table
S4. The Campanian‐Maastrichtian sandstone samples used for U–Pb dating were collected from different
parts and levels of the >1,200‐m‐thick succession over a northwest‐southeast distance of 300 km
(Figure 2). The UTM coordinates of the samples are given in Table S4, and their locations are shown
in the geological map in Figure 2. The precise stratigraphic positions of the samples within the
Campanian‐Maastrichtian sequence are therefore not known, except R‐213b, which comes from the
upper parts of the succession and is rich in calcareous components. Sandstones are characterized by gray
color. The layer thicknesses range from 5 to 50 cm. The percentage of the sandstone‐shale is quite
variable (Figure 4).

Some of the Lower Cretaceous sandstone samples from the central Pontides, which were dated for detrital
zircons in Akdoğan et al. (2017) and Okay et al. (2013), were also point counted to compare the petrographic
features of the two different turbiditic sequences. The point counting results of the studied Lower Cretaceous
samples are shown in Tables S2 and S3 in the supporting information with petrographic descriptions in
Akdoğan et al. (2017) and Okay et al. (2013).
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4. Results
4.1. Paleocurrent Measurements

Forty‐three paleocurrent measurements were made using mainly unidirectional indicators from 38 flute
casts and bidirectional (linear) indicators from five groove casts from five locations through the
Campanian‐Maastrichtian sequence (Figure 2 and Table S1). Paleoflow direction L6 is from Leren (2003)
and L7 is from Akdağ and Kırmacı (2008).

The central Pontides form a broad arc, which was produced through oroclinal bending clockwise and coun-
terclockwise rotation with angles of up to 40°, during the Late Cretaceous to Eocene as a result of continental
collision with the Kırşehir Massif (Meijers et al., 2010). Due to the oroclinal bending of the central Pontides
the vector mean values of the measured paleocurrent directions were back rotated according to data in
Meijers et al. (2010), to establish initial directions of the paleocurrents (Figure 2 and Table S1). These back
rotated paleoflow directions are used for interpretation (Figure 2).

Paleocurrent measurement L1, L2, and L3 were not affected by rotation due to their position in the apex of
the orocline (Meijers et al., 2010). Counterclockwise back rotations of 20° were applied for locations L4 and
L5. Counterclockwise back rotations of 20° and 40° were applied to paleoflow directions from locations L6
(Leren, 2003) and L7 (Akdağ & Kırmacı, 2008), respectively. However, there is no major change between
most of the nonrotated and back rotated paleocurrent directions due to low rotation angles (Meijers et al.,
2010). Location L7 is exceptional with its high counterclockwise back rotation angle of 40°, indicating paleo-
flow direction that is semiparallel to axis of the basin (Figure 2).

Corrected paleocurrents from Campanian‐Maastrichtian turbidites are predominantly northwest to south-
east and southeast to northwest, showing that the dominant transport was axial and parallel to the axis of
the basin.

4.2. Sample Petrography

The detailed description of the individual Campanian‐Maastrichtian sandstone samples and the point
counting results are given in Texts S1 and S2; Tables S2 and S3; and Figures 5, 6, and S1–S7. According to
modal compositions Campanian‐Maastrichtian samples can be classified mainly as lithic arenite (Folk
et al., 1970). They are moderately to poorly sorted with subangular to angular grains (Figures S2–S7). The
Campanian‐Maastrichtian samples contain abundant (26–39% vol.) detrital carbonate grains of variable size
and abundant magmatic lithic grains (13–28% vol.; Figures 5, 6, and S1–S6; Text S2; and Tables S2 and S3).
Sample R‐213b is exceptional, since in that micritic limestone grains and microfossils make up 65% of the
rock volume (Figures 5, 6, and S3). Planktonic foraminiferal assemblages in this sample indicate a middle
Campanian‐early Maastrichtian age range based on the presence of Globotruncana linneiana,
Globotruncana ventricosa, Globotruncana arca, Gansserina gansseri?, and Pithonella ovalis. The lithic frag-
ments in the Campanian‐Maastrichtian sandstones consist mainly of sedimentary rock fragments (28–42%
vol.), felsic‐mafic volcanic‐plutonic clasts (13–28% vol.), and minor amounts of metamorphic clasts (<10%
vol.; Figure 6a). Fresh and altered feldspar grains are also present (up to 20% vol. in sample R‐242 and
<14% vol. in other samples). Quartz occurs both as monocrystalline and polycrystalline quartz aggregates,
ranging 6–37% vol. Notable detrital accessory minerals include epidote, muscovite, and biotite.

Petrographic descriptions of the Lower Cretaceous sandstone samples, on which point counting performed
during this study (Tables S2 and S3 and Figure 6), were documented by Akdoğan et al. (2017) and Okay et al.
(2013). On the conventional QFL ternary discrimination diagram (Dickinson et al., 1983), the Campanian‐
Maastrichtian samples overlap the dissected to undissected arc provenance fields, whereas the Lower
Cretaceous samples lie in the recycled orogenic provenance field (Figure 6b and Table S3).

4.3. U–Pb Ages of Detrital Zircons

A total of 779 U–Pb ages were determined on detrital zircon grains from seven Campanian‐Maastrichtian
turbiditic sandstone samples of the central Pontides (Figure 2, Text S3, and Table S4). Most of the zircons
are euhedral and exhibit well‐developed crystal faces and well‐preserved oscillatory growth zoning in CL
images (Corfu, 2003). Their sizes range between 60 and 250 μm with length/width ratio approximately
2:1. Representative CL images of the detrital zircon grains for each sample are given in Figure 7. 632 zircon
grains (81% of the total population) provided concordant U–Pb ages (at 90–110% level) and are used in this
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study. The Th/U values of the detrital zircons range from 0.01 to 2.26 (Figure 8 and Table S4). In particular,
93% are in range of 0.1–1.5, 3% are <0.1, and 3% are in range of 1.5–2.0 and only a few zircons (<1%) have
Th/U values >2 (Figure 8). The detrital zircon ages are mainly Mesozoic (49%) and Paleozoic (35%), with
minor Neoproterozoic zircons (10%; see Figures 8 and 9). Mesoproterozoic‐Archean zircons are rare (6%
of the cumulative age population).

Based on the age results, the samples can be subdivided into three groups in terms of detrital zircon ages.
Samples R200, R213b, and R216a yielded similar Campanian age components (Figures 10 and 11). Sample
R212 shows a prominent component at 180–160 Ma (Middle Jurassic; 48%). Zircons from samples R180,
R238, and R242 show a more dispersed age distribution, with two major clusters of Carboniferous (approxi-
mately 330 Ma) and Permian (approximately 255 Ma) ages, corresponding to the 49%, 37%, and 41% of the

Figure 5. Photomicrographs of the Campanian‐Maastrichtian samples in plane‐polarized light. (a) Volcanic lithic fragments with euhedral plagioclase grain and
elongate muscovite surrounded by calcite fragments showing short transport distance. (b) Large metamorphic rock fragment with volcanic rock clast, quartz
grains, and calcite fragments indicate crystalline rock sources. (c) Mainly calcite fragments with minor volcanic and metamorphic lithic clast and plagioclase grain
replaced by calcite indicating the upper part of the succession passing into the claciturbidites of Akveren formation. (d) Large mono‐crystalline quartz and feldspar
with euhedral fresh plagioclase, volcanic lithic fragments, and calcite fragments indicating granitic sources and short transport distance from the source rocks.
(e) Metamorphic rock fragments, volcanic rock clasts, and polycrystalline quartz and epidote grains with high relief indicate crystalline basement sources.
(f) Fine‐grained sandstone with monocrystalline quartz and epidote grains surrounded by calcite clasts suggest crystalline basement as the source rocks.
Monocrystalline quartz (Qm), polycrystalline quartz (Qp), feldspar (F), plagioclase (Plg), volcanic rock fragment (Lv), metamorphic rock fragment (Lm), sedi-
mentary rock fragment (Ls), epidote (Ep), muscovite (Ms), and calcite (Cc).
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cumulative age population, respectively (Figure 10). Two of these samples include major Triassic (250–
220 Ma) age components.

5. Discussion
5.1. Provenance of the Upper Cretaceous (Campanian‐Maastrichtian) Turbidites of the
Central Pontides

Detrital zircon ages of the Campanian–Maastrichtian turbidites of the central Pontides (the Gürsökü forma-
tion) cluster around Paleozoic to Mesozoic (84% of all concordant data) and to a minor extent in the
Neoproterozoic (10%; Figure 9). Mesoproterozoic–Archean zircons make up only 6% of the total zircon
population without any significant peak. The Late Cretaceous zircons with a Campanian age cluster
(approximately 79 Ma; Figure 11) make up 63% of all Mesozoic zircons. The Th/U values as a proxy is used
to discriminate igneous and metamorphic zircons, with a ratio of 0.1 forming the boundary between zircons
from igneous origin (higher values) and metamorphic origin (lesser values; Hoskin & Schaltegger, 2003;
Rubatto, 2002). The 97% of the detrital zircons fromCampanian‐Maastrichtian sandstones have Th/U values
>0.1 (Figure 8 and Table S4). CL images of the internal structures of the detrital zircons also provide impor-
tant clues about their origin (e.g., Corfu, 2003). Most of zircons from the Campanian‐Maastrichtian turbi-
dites are remarkably euhedral and show clear oscillatory zonation in CL images (Figure 7): this, together
with their Th/U values >0.1 (Figure 8 and Table S4), suggests magmatic origin for most of the detrital zir-
cons. These zircons were, thus, derived from the coeval Upper Cretaceous magmatic arc, which is generally
represented by submarine volcanic and volcaniclastic rocks and can be traced continuously along the
Pontides (e.g., Keskin & Tüysüz, 2018; Okay & Nikishin, 2015; Tüysüz, 2018). This interpretation is sup-
ported also by the sandstone framework compositions. The proportion of volcanic‐plutonic clasts reaches
27% vol. and single feldspar grains up to 13% vol. in Campanian‐Maastrichtian sandstone samples (Tables
S2 and S3). The petrographic compositions of the Campanian‐Maastrichtian turbiditic sandstone samples
along with the abundance of Coniacian‐Campanian detrital zircon ages (30%; Figure 11 and Table S4) indi-
cate sediment derivation chiefly from local volcanic and plutonic sources; the lithic grains can be counted
mainly as neovolcanic clasts (according to the criteria of Critelli & Ingersoll (1995)). The nearest dated parts
of the Upper Cretaceous volcanic arc are in the Sinop area, with Ar‐Ar ages on biotite grains of 79 to 72 Ma
(Aydınçakır, 2016; Figure 2). Zircons from felsic tuffs layers in the Campanian‐Maastrichtian volcaniclastic
turbidites from the Eastern Pontides yielded U–Pb zircon ages in the range of 84–71 Ma (Eyüboğlu, 2015)
similar to the detrital zircons reported here. Arc‐related plutons in the Eastern Pontides have U–Pb zircon
ages of 86–70 Ma (e.g., Delibaş et al., 2016; Karsli et al., 2010, 2012; Kaygusuz et al., 2008, 2014; Kaygusuz
& Şen, 2011; Özdamar, 2016) and with the K‐Ar mica ages of 84–71 Ma in the Strandja Zone in the west
(Moore et al., 1980; Ohta et al., 1988).

The Jurassic detrital zircons, clustering around 165 Ma, make 10% of total concordant ages. It is most pro-
nounced in sample R212 (Figure 10), indicating that the Jurassic granitoids and acid volcanic rocks in the

Figure 6. Sandstone samples from Lower Cretaceous and Campanian–Maastrichtian turbidites plotted on the (a) lithic and quartz component and (b) tectonic dis-
crimination ternary diagrams (Dickinson et al., 1983). Qt, mono and polycrystalline quartz; F, feldspars (K‐feldspar and plagioclase); L, total lithic grains; Lv,
volcanic lithic grains.
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Figure 7. CL images, spot locations, and the U–Pb ages of the representative detrital zircons of the Campanian‐Maastrichtian sandstone samples.
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central Pontides (Nzegge, 2008; Okay et al., 2013, 2014; Yılmaz & Boztuğ, 1986) were locally feeding the
Campanian‐Maastrichtian turbidites.

Triassic detrital zircons constitute 8% of the total detrital zircon population of the Campanian‐Maastrichtian
turbidites (Figure 10). Triassic magmatic rocks are not known in the Pontides, except for a newly reported
small intrusion of approximately 240 Ma from the central Pontides (Ballato et al., 2018). An E‐W trending
subsurface Triassic magmatic arc is thought to exist in the Scythian Platform beneath the Tertiary sediments
(Okay et al., 2013; Okay & Nikishin, 2015). However, derivation of the Triassic zircons from the Triassic
magmatic arc to the north is unlikely since during the deposition of Campanian‐Maastrichtian turbidites,
the Black Sea was already open hindering the connection between the Pontides and the Scythian
Platform. Possibly the Triassic zircons were recycled from the Paleo‐Tethyan subduction accretion com-
plexes of the Pontides which are dominated by the Triassic zircons (Karslıoğlu et al., 2012; Ustaömer
et al., 2016).

Carboniferous‐Permian zircons (359–252 Ma) make up 25% of the analyzed zircons. Most of them cluster in
the range of 330–290 Ma (late Carboniferous‐early Permian; 57%). This age range is similar to the ages of the
magmatic bodies from the Sakarya Zone and the Lesser Caucasus (e.g., Nzegge, 2008; Nzegge et al., 2006;

Figure 8. Th/U ratio versus U–Pb ages of the detrital zircons from Campanian‐Maastrichtian (this study) and Lower
Cretaceous sandstone samples (Akdoğan et al., 2017; Okay et al., 2013). Discrimination line is from Rubatto (2002).

Figure 9. Cumulative distribution of concordant U–Pb ages of detrital zircons from the Campanian‐Maastrichtian turbi-
dites. The pie chart shows distribution of all detrital zircon ages to the geological eras.
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Mayringer et al., 2011; Topuz et al., 2007, 2010; Ustaömer et al., 2012, 2013). The closest outcrops are the
Deliktaş and Sivrikaya granites in the central Pontides, with U–Pb zircon ages of 303–275 Ma (Nzegge et al.,
2006). Late Carboniferous to Permian granitoids are also common in the Strandja Massif and in the
Balkanides with U–Pb zircon age range of 315–250 Ma (e.g., Carrigan et al., 2005; Sunal et al., 2006,
2008). Although Early Carboniferous granites of 359–330‐Ma ages are not known in the Pontides or in the
Black Sea region, detrital zircons of this range make 30% of the Carboniferous zircons in the Campanian‐
Maastrichtian turbidites. Detrital zircons of Early Carboniferous age are also common in the
Carboniferous turbidites (Okay et al., 2011), in the Lower Cretaceous shelf clastics and in the turbidites in
the western part of the Lower Cretaceous basin (Akdoğan et al., 2017). Consequently, they may have been

Figure 10. Age histogram with probability density curves of seven samples from the Campanian‐Maastrichtian turbidites of the central Pontides. Only ages below
700 Ma are shown. The gray columns show the main clusters.
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recycled into the Campanian‐Maastrichtian sandstones. This constitutes
supportive data that the Istanbul and Sakarya Zones were amalgamated
before the Cretaceous, most probably before the Late Jurassic (e.g.,
Akdoğan et al., 2017; Cavazza et al., 2012; Okay et al., 2013, 2018).
Variscan and Jurassic metamorphic rocks (e.g., Gücer et al., 2016; Okay
et al., 2013; Topuz et al., 2007) were likely the sources of the metamorphic
rock fragments and epidote grains found in the Campanian‐
Maastrichtian sandstones.

In summary, abundant volcanic‐plutonic fragments (up to 27%) and
single‐feldspar grains (mainly plagioclase; up to 13%) from neovolcanic
sources (Critelli & Ingersoll, 1995), the U–Pb detrital zircon age distribu-
tion, and paleocurrent directions imply that the Late Cretaceous forearc
basin was sourced mainly from the penecontemporaneous Upper
Cretaceous magmatic arc.

5.2. Opening of the Black Sea and Provenance of the
Cretaceous Turbidites

Provenance analysis on the Lower Cretaceous turbidites indicates that the
eastern, central, and western parts of the basin were fed from different
source rocks (Akdoğan et al., 2017). The majority of the U–Pb detrital zir-
con ages in the central and eastern parts of the Lower Cretaceous basin
are Archean and Paleoproterozoic (Akdoğan et al., 2017; Okay et al.,
2013). In contrast, the western part of the Lower Cretaceous basin is domi-
nated by Carboniferous and Neoproterozoic zircons (Akdoğan et al.,
2017). To make comparison with Campanian‐Maastrichtian turbidites
deposited in the eastern part of the central Pontides, we focused on the
detrital zircon data from the eastern and central parts of the Lower
Cretaceous basin, where our Campanian‐Maastrichtian samples were col-
lected (Figures 1 and 2). Petrographic compositions, paleoflow directions,
and detrital zircon ages of these two Cretaceous turbiditic successions of
the central Pontides are markedly different. Here we compare all the
available data from these two turbiditic successions.

According to petrographic observations, the Campanian‐Maastrichtian
turbidites are rich in calcite (>30% vol. in general and 65% vol. in sample
R‐213b) and magmatic rock fragments (up to 27% vol.; Text S2, Tables S2
and S3, and Figures S2–S7) in contrast to those of Lower Cretaceous tur-
bidites, which are dominated by quartz (>47% vol.) and fresh microcline
grains in some samples (Figures 5 and 6 and Tables S2 and S3; see also
Akdoğan et al., 2017). Abundant volcanic‐plutonic rock fragments, plagi-
oclase grains, and Coniacian‐Campanian detrital zircons (30%; Table S4
and Figures 5, 10, 11, and S1–S6) in the Campanian‐Maastrichtian sand-
stones suggest coeval or slightly older magmatic sources for the
Campanian‐Maastrichtian turbidites. The Lower Cretaceous turbidites
have relatively lesser amounts of carbonate fragments (<15% vol.) and
are enriched in quartz (>45% vol.) and K‐feldspar (mainly microcline,
up to 7% vol. in some samples; Figure 6 and Tables S2 and S3) and contain
abundant Archean‐Mesoproterozoic zircons (57%; Figure 12; Akdoğan
et al., 2017; Okay et al., 2013). In the QtFL tectonic discrimination dia-
gram of Dickinson et al. (1983), the Lower Cretaceous turbidites plot in

the recycled orogenic field and the Campanian‐Maastrichtian turbidites in the magmatic arc
field (Figure 6b).

The detrital zircon age distributions of the Lower and Upper Cretaceous (Campanian‐Maastrichtian) sand-
stones of the central Pontides are also significantly different (Figure 12). The detrital zircon age distribution

Figure 11. (a) Age histogram showing the Late Cretaceous zircon distribu-
tions combined from three Campanian‐Maastrichtian sandstone samples of
R200, R213b, and R216a. (b–d) The Late Cretaceous zircon distributions
from the individual samples of R200, R213b, and R216a, respectively.
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of the Lower Cretaceous turbidites from the eastern part of the central Pontides is dominated by Archean,
Paleoproterozoic, and Mesoproterozoic zircons (57%; Akdoğan et al., 2017; Okay et al., 2013), whereas
zircons from the Campanian‐Maastrichtian turbidites exhibit prominent peaks at Late Cretaceous (mainly
Campanian) and at Late Carboniferous with a very small percentage (6%) of Archean, Paleoproterozoic,
and Mesoproterozoic zircons. The absence of exposed Archean–Paleoproterozoic rocks in the Pontides
and their presence north of the Black Sea indicate that the Lower Cretaceous turbidites of the eastern part
of the central Pontides were mainly sourced from the Ukrainian Shield (Akdoğan et al., 2017; Okay et al.,
2013; Figure 13a), where Archean and Paleoproterozoic basement rocks crop out widely (e.g., Bibikova
et al., 2008, 2015; Bogdanova et al., 2008, 2010; Claesson et al., 2006; Shchipansky & Bogdanova, 1996;
Figure 1). This is supported by the predominant southward paleocurrent directions recently documented
by Akdoğan et al. (2017) in the eastern and central parts of the Lower Cretaceous turbidites. Although the
Early Cretaceous basin occupied a forearc position (Akdoğan et al., 2017) above the subduction zone
(Aygül et al., 2015, 2016; Okay et al., 2006, 2013), the arc did not develop, probably due to flat subduction
which is also reflected by the lack of Early Cretaceous zircons in the Lower Cretaceous turbidites
(Akdoğan et al., 2017). The scarcity of the Early Cretaceous detrital zircons (<%1) in the Campanian‐
Maastrichtian sandstones provides further data for the absence of magmatism during Early Cretaceous
subduction (Akdoğan et al., 2017; Aygül et al., 2015, 2016; Okay et al., 2006, 2013). In contrast, a broad
arc magmatism took place in the Pontides during the Late Cretaceous leading to opening of the Black Sea
basin as a back‐arc basin (Görür, 1988; Okay & Nikishin, 2015; Tüysüz, 1999). With the opening of the
Black Sea, the Ukrainian Shield was separated from the Pontides, and the Campanian‐Maastrichtian
forearc turbidites were sourced from the magmatic arc and from other local sources located in the
southern margin of the Black Sea (Figures 12 and 13b). Paleoflows in the Campanian‐Maastrichtian

Figure 12. Age histograms and pie charts showing the U–Pb detrital zircon ages from the Campanian‐Maastrichtian tur-
bidites (this study) and Lower Cretaceous turbidites (Akdoğan et al., 2017; Okay et al., 2013) emphasizing the significant
differences.
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turbidites are mainly axial with some northerly and easterly directions, indicating that the sediment
dispersal was also different than those in the Lower Cretaceous turbidites (Figure 2 and Table S1). Such
an abrupt change in the tectonic setting triggered by the opening of the Black Sea has influenced the
source area and provides an example for the tectonic control on the sedimentation revealed by U–Pb
detrital zircon ages.

6. Conclusion

Our new U–Pb detrital zircon ages, paleocurrent directions, and petrographic analysis from the Campanian‐
Maastrichtian turbidites and their comparison with those from the Lower Cretaceous turbidites of the east-
ern part of the central Pontides (Akdoğan et al., 2017; Okay et al., 2013) lead us the following conclusions:

i) The Campanian‐Maastrichtian turbidites were mainly sourced from the coeval Upper Cretaceous mag-
matic arc and from the basement rocks of the Pontides. On the contrary, the Lower Cretaceous turbi-
dites were sourced mainly from the Archean‐Paleoproterozoic basement rocks of the East European
Platform (Akdoğan et al., 2017; Okay et al., 2013).

ii) The paleocurrent directions, the petrographic characteristics, and the detrital zircon age pattern of the
Lower Cretaceous and Campanian‐Maastrichtian turbidites of the eastern part of the central Pontides
are different.

iii) The differences in the source areas of these two turbidite sequences are strictly controlled by the opening
of the Black Sea, which cut off the sediment input from the East European Platform to the Pontides.
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