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ABSTRACT

The Bitlis-Pütürge collision zone of SE Turkey is the area of maximum in-
dentation along the >2400-km-long Assyrian-Zagros suture between  Arabia and 
Eurasia. The integration of (i ) fission-track analyses on apatites, (ii ) (U-Th)/He 
analyses on zircons, (iii ) field observations on stratigraphic and structural rela-
tionships, and (iv) preexisting U-Pb and Ar-Ar age determinations on zircons, 
amphiboles, and micas provides for the first time an overall picture of the 
thermo chronometric evolution of this collisional orogen. The data set points to 
ubiquitous latest Cretaceous metamorphism of a passive margin sedimentary 
sequence and its igneous basement not only along the suture zone but across 
the entire width of the Anatolia-Tauride block north of the suture. During the 
early Paleogene the basement complex of the Bitlis and Pütürge massifs along 
the suture was rapidly exhumed due to extensional tectonics in a back-arc set-
ting and eventually overlain by Eocene shallow-marine sediments. The entire 
Oligocene is characterized by a rather flat thermochronometric evolution in 
the Bitlis orogenic wedge, contrary to the widely held belief that this epoch 
marked the inception of the Arabia-Eurasia collision and was characterized by 
widespread deformation. Deposition of a thick Oligocene sedimentary succes-
sion in the Muş-Hınıs basin occurred in a retroarc foreland setting unrelated to 
continental collision. During the Middle Miocene, the Bitlis-Pütürge orogenic 
wedge underwent a significant and discrete phase of rapid growth by both 
frontal accretion, as shown by cooling/exhumation of the foreland deposits 
on both sides of the orogenic prism, and underplating, as shown by cooling/
exhumation of the central metamorphic core of the orogenic wedge. We con-
clude that continental collision started in the mid-Miocene, as also shown by 
coeval thick syntectonic clastic wedges deposited in flexural basins along the 
Arabian plate northern margin and contractional reactivation of a number of 
preexisting structures in the European foreland.

INTRODUCTION

The >2400-km-long Bitlis-Zagros (Assyrian) suture zone in the Middle East 
(Fig. 1) marks the continental collision between Arabia and Eurasia. This is a 
major event in Earth’s history, which isolated the Mediterranean and the Indian 

ocean, and has been linked to mid-Cenozoic global cooling, Red Sea rifting, 
extension in the Aegean region, inception of the North and East Anatolian 
strike-slip fault systems, and development of the Anatolian-Iranian continental 
plateau (e.g., Şengör and Kidd, 1979; Dewey et al., 1986; Jolivet and Faccenna, 
2000; Barazangi et al., 2006; Robertson et al., 2007; Allen and Armstrong, 2008; 
Yılmaz et al., 2010). The age of the continental collision has been the topic of 
much debate, with proposed ages ranging widely from the Late Cretaceous to 
the Pliocene (Hall, 1976; Berberian and King, 1981; Şengör et al., 1985; Yılmaz, 
1993; Alavi, 1994; Jolivet and Faccenna, 2000; Agard et al., 2005; Robertson 
et al., 2007; Allen and Armstrong, 2008; Okay et al., 2010; McQuarrie and van 
Hinsbergen, 2013). Exact determination of the timing of the continental col-
lision is crucial not only for understanding the evolution of the Bitlis- Zagros 
collisional orogen but also for elucidating the chronology and causative 
mechanisms of more general syn- and post-collisional processes like (i ) the 
development of large-scale strike-slip systems accommodating plate conver-
gence and (ii ) the development of continental plateaux. In the Bitlis-Pütürge 
massifs of southeastern Turkey, i.e., the area of maximum continental inden-
tation, high-temperature radiometric systems indicate a discrete episode of 
high-pressure–low-temperature (HP-LT ) metamorphism in the latest Creta-
ceous (Hempton, 1985; Okay et al., 1985; Oberhänsli et al., 2010, 2012, 2013; 
Rolland et al., 2012; Topuz et al., 2017) which has been interpreted as the result 
of the collision between Eurasia and either Arabia or a smaller microplate. The 
only low-temperature thermochronometric data set available for the same re-
gion (Okay et al., 2010) (based on fission-track analyses on apatite in samples 
from both the basement units and the sedimentary cover) points to a discrete 
phase of rapid mid-Miocene cooling/exhumation interpreted as the onset of 
the Arabia-Eurasia hard collision. The results by Okay et al. (2010) do not rule 
out the possibility that the documented episode of Miocene cooling was only 
the last stage of a longer thermochronometric evolution and that the collision 
could have started somewhat earlier. This paper advances the state of the 
knowledge on this crucial area by integrating new apatite fission-track (AFT) 
and ZrHe data (this study) with other radiometric data from the literature (U-Pb 
on zircon and Ar-Ar on amphiboles and micas). The data ultimately provides a 
more complete picture of the thermo-tectonic evolution of selected segments 
of the Arabia-Eurasia collision zone. The results of this study indicate that the 
basement complex of the Bitlis and Pütürge massifs along the Assyrian suture 
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experienced the following thermochronometric evolution during the Ceno-
zoic: (i ) cooling/exhumation between ca. 65 and 55 Ma probably resulting from 
backarc extension; (ii ) stable temperatures during the Oligocene except for 
the Muş-Hınıs retroarc foreland basin, where the sediments being deposited 
underwent progressive burial; and (iii ) rapid cooling/exhumation during the 
Miocene, marking the collision between the Arabian and Eurasian plates.

GEOLOGICAL FRAMEWORK

The Bitlis-Pütürge Massif of southeastern Anatolia (Fig. 2) is a 500-km-long 
arcuate belt of allochthonous metamorphic rocks bordering the Arabian Plat-
form to the south, from which it is separated by a narrow belt of Upper Cre-
taceous to Early Miocene mélange made of flysch and ophiolitic units (Hall, 
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Figure 1. Overall tectonic sketch map of the Middle East. The box indicates the area shown in Figure 2. AT—Anatolide-Tauride terrane; IZ—Istanbul zone; SkZ—Sakarya zone; KM—Kirşehir Massif; 
NAF—North Anatolian fault; EAF—Eastern Anatolian fault; EP—Eastern Pontides; IAESZ—Izmir-Ankara-Erzincan suture zone; SASZ—Sevan-Akera suture zone; GC—Greater Caucasus; LC—Lesser 
Caucasus; DSF—Dead Sea fault. GPS vectors from Le Pichon and Kreemer (2010).

http://geosphere.gsapubs.org


Research Paper

3Cavazza et al. | The Miocene Arabia-Eurasia collision zone of southeastern TurkeyGEOSPHERE | Volume 14 | Number 5

1976; Perinçek, 1990; Yılmaz, 1993; Okay, 2008). The massif is made of a Pre-
cambrian basement and an overlying Phanerozoic sequence (Çağlayan et al., 
1984; Göncüoğlu and Turhan, 1984; Okay et al., 1985). The Precambrian base-
ment consists of polymetamorphosed gneiss, amphibolite, and mica schist. 
The overlying Phanerozoic sequence is mostly made of schist, phyllite, and 
marble and represents the Paleozoic-Mesozoic sedimentary cover of the Ana-
tolide-Tauride terrane, which underwent low-to-medium grade metamorphism 
in the latest Cretaceous (83–69 Ma; Campanian-Maastrichtian) (Hempton, 1985; 
Oberhänsli et al., 2010, 2012, 2013; Karaoğlan et al., 2013; Rolland et al., 2012). In 
their regional synthesis, Şengör and Yılmaz (1981) proposed that Bitlis-Pütürge 
Massif deformation and metamorphism occurred in the Late Cretaceous in 
conjunction with ophiolite obduction from the north.

The present-day structural configuration of the Bitlis orogenic wedge is 
largely the result of south-verging post-Eocene thrusting, as shown by per-
vasive deformation of Middle-Late Eocene sedimentary units, commonly as 
broken formations and mélanges at the sole of the Bitlis-Pütürge metamor-
phic rocks (Yazgan et al., 1983; Perinçek, 1990; Bilgic, 2002; Günay and Şenel, 
2002; Şenel and Ercan, 2002; Tarhan, 2002). Eocene thrusting was advocated 
by Hempton (1985), Yılmaz (1993), and Rolland et al. (2012). To the north, the 
imbricate structure of the Bitlis-Pütürge Massif is largely concealed by the 
Plio-Quaternary volcano-sedimentary rocks of the Anatolian Plateau, whereas 
to the south the massif overlies tectonically mélange complexes of various 
ages (e.g., Hakkäri Complex), as well as the thick sedimentary succession of 
the Arabian plate northern margin (e.g., Yılmaz, 1993).
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Figure 2. Geological sketch map of the Bitlis-Pütürge collision zone of southeastern Turkey (after Bilgic, 2002; Günay and Şenel, 2002; Şenel and Ercan, 2002; Tarhan, 2002).
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The Bitlis-Pütürge Massif is generally considered to be the southern de-
formed margin of the Anatolide-Tauride terrane, originally separated from the 
Arabian Platform by the southern branch of the Neotethys (e.g., Barrier and 
Vrielynk, 2008; Stampfli and Hochard, 2009). It marks the area of maximum 
collisional indentation between Arabia and Eurasia, with widespread expo-
sures of metamorphic rocks. In this region, the Assyrian suture is <150  km 
from the Late Cretaceous-Eocene Izmir-Ankara-Erzincan suture to the north 
(Fig. 1). These two suture zones mark the closure of the two branches of the 
western Neotethys (Barrier and Vrielynk, 2008; Stampfli and Hochard, 2009).

The area between the Izmir-Ankara-Erzincan and the Assyrian sutures is 
largely covered by the mostly Plio-Quaternary volcanic/volcaniclastic rocks 
of the Anatolian Plateau. Paleozoic sedimentary rocks metamorphosed in the 
Late Cretaceous (Santonian-Campanian; Topuz et al., 2017), crop out sparsely 
as inliers and are similar to those of the Bitlis-Pütürge Massif (both in terms 
of lithology and age of metamorphism). Metamorphism was interpreted to 
be synchronous with the emplacement of a very large body of ophiolite and 
underlying tectonic slices of ophiolitic mélange across the entire Anatolide- 
Tauride terrane (Şengör and Yılmaz, 1981; Okay and Tüysüz, 1999). Erosional 
remnants of this nappe of ophiolite and ophiolitic mélange occur in the study 
area. Cenozoic sedimentation over the narrow area between the Izmir- Ankara- 
Erzincan and the Assyrian sutures was influenced by flexural processes due to 
the load exerted on the lithosphere by the orogenic wedges associated with 
the two suture zones (e.g., Huvaz, 2009). In general terms, outcrop areas of 
 Eocene sedimentary successions tend to be concentrated to the north, i.e., 
close to the Izmir-Ankara-Erzincan suture; whereas Oligocene–Early Miocene 
successions are concentrated to the south, close to the Bitlis suture (Bilgic, 
2002; Günay and Şenel, 2002; Şenel and Ercan, 2002; Tarhan, 2002). A large 
outcrop area of latest Eocene-to-Early Miocene sedimentary rocks to the west 

of Lake Van (Fig. 2) is commonly referred to as Muş Basin (e.g., Akay et al., 
1989; Sancay et al., 2006; Hüsing et al., 2009), but in reality is an inlier of a 
much larger sedimentary basin (Muş-Hınıs Basin) spanning virtually the entire 
area shown north of the Bitlis Massif in Figure 2 and for the most part con-
cealed by the Plio-Quaternary volcano-sedimentary succession (Huvaz, 2009).

SAMPLES AND METHODS

Samples for apatite fission-track [AFT] and zircon (U-Th-Sm)/He [ZHe] 
analy ses were collected along four transects across the Bitlis and Pütürge 
massifs and the collision zone, perpendicular to the strike of the main tectonic 
structures. Lithostratigraphic units from which the samples were taken com-
prise (i ) the Bitlis and Pütürge metamorphic complexes, (ii ) the Eocene sand-
stones of the Maden and Hakkari complexes, (iii ) the Oligocene sandstones of 
the Muş-Hınıs foreland basin, and (iv) the Paleozoic sandstone units in the col-
lision-induced faulted anticlines on the Arabian Plate (Fig. 2; Table 1). Samples 
analyzed for this paper are the same as those analyzed by Okay et al. (2010) 
except for an additional sample (TU-255) from the Muş-Hınıs Basin. New, mul-
tiple mineral separations were made in order to obtain enough apatite grains 
and a statistically robust number of fission-track measurements. This paper 
includes three new determinations of fission-track length distributions on apa-
tite and seventeen new ZHe analyses on zircon. Integration of new analytical 
data with observations of stratigraphic/structural relationships and preexisting 
U-Pb and Ar-Ar age determinations on zircon, amphibole, and mica resulted in 
the definition of the thermochronological evolution of four samples.

Sample preparation and AFT analyses were carried out at the Department 
of Biological, Geological and Environmental Sciences of the University of 

TABLE 1. APATITE FISSION-TRACK ANALYTICAL DATA

Sample
Coordinates

(UTM)
Elevation

(m) Rock type
No. of 

crystals

Spontaneous Induced

P(χ)2

Dosimeter
Age

(Ma) ± 1σ

Mean confined 
track length
(μm) ± SE

Std.
dev.

No. of tracks
measuredρs Ns ρi Ni ρd Nd

TU136 38S0251160 4260508 1642 Metasandstone 20 0.72 40 0.89 496 100.0 0.90 4293 13.4 ± 2.2 14.4 ± 0.2 1.24 51
TU138 38S0241967 4249698 1285 Gneiss 16 0.46 22 0.55 264 100.0 0.90 4281 13.8 ± 3.1 – – –
TU140 37S0753971 4234870 871 Sandstone 4 5.14 43 4.84 405 91.1 0.90 4256 17.5 ± 2.8 – – –
TU142 37S0634579 4267009 1208 Gneiss – – – – – – – – – – – –
TU145 37S0630748 4277901 1175 Metagranite 20 0.55 38 0.62 425 82.5 0.89 4219 14.6 ± 2.5 – – –
TU149 37S0476619 4240707 1395 Gneiss 20 1.60 112 1.44 1006 87.0 0.88 4181 18.0 ± 1.8 14.1 ± 0.2 1.35 72
TU151 38S0340100 4221763 2025 Chlorite schist – – – – – – – – – – – –
TU155 38S0321648 4195176 1607 Sandstone 20 0.88 53 1.18 711 65.1 1.01 4818 13.9 ± 2.1 15.2 ± 0.2 1.08 51
TU159 38S0396240 4162747 1342 Sandstone 6 0.53 14 0.39 102 75.4 1.00 4771 25.2 ± 7.2 – – –
TU255 37S0750864 4293994 1339 Sandstone 17 1.98 122 0.65 481 76.4 14.30 4679 53.3 ± 1.7 13.7 ± 0.2 1.38 62

Note: Central ages were calculated using dosimeter glass CN5 and ζ-CN5 = 367.45 ± 4.35 (analyst MZ). ρs—spontaneous track densities (×105 cm–2) measured in internal mineral surfaces; Ns—total number 
of spontaneous tracks; ρi and ρd—induced and dosimeter track densities (×106 cm–2) on external mica detectors (g = 0.5); Ni and Nd—total numbers of tracks; P(χ2)—probability of obtaining χ2 value for degrees of 
freedom (where ν = number of crystals – 1); a probability >5% is indicative of a homogeneous population. Samples with a probability <5% were analyzed with the binomial peak-fitting method. SE—standard error; 
Std. Dev.—standard deviation.
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Bologna, Italy. Apatite and zircon grains were concentrated by crushing and 
sieving, followed by hydrodynamic, magnetic, and heavy-liquid separation. 
Apatite grains were embedded in epoxy resin, polished in order to expose the 
internal surfaces within the grains, and spontaneous fission tracks (FT) were 
revealed by etching with 5N HNO3 at 20 °C for 20 seconds. The mounts were 
then coupled with a low-uranium fission-track-free muscovite mica sheet (ex-
ternal detector method) and sent for irradiation with thermal neutrons (see 
Donelick et al., 2005, for details) at the Radiation Center of Oregon State Uni-
versity, USA. Nominal fluence of 9 × 1015 n cm–2 was monitored with a CN5 
uranium-doped silicate glass dosimeter. Induced fission tracks were revealed 
by etching of the mica sheets in 40% HF for 45 minutes at 20 °C. Apatite grains 
from 24 samples were sent for irradiation, however, most samples had too 
low uranium to generate enough tracks for a reliable age determination. Eight 
samples yielded apatite suitable for fission-track analysis. Spontaneous and 
induced fission tracks were counted under an optical microscope at ×1250 
magnification, using an automatic stage (FTStage system) plus a digitizing 
tablet. Central ages were calculated with the zeta calibration approach (Hur-
ford and Green, 1983), using Durango (31.3 ± 0.3 Ma) and Fish Canyon Tuff 
(27.8 ± 0.2 Ma) age standards within grains exposing c-axis-parallel crystallo-
graphic planes.

Apatite track-length distributions were calculated by measuring horizontal 
confined tracks together with the angle between the track and the c-axis. Con-
fined tracks constitute a small part of the FT population, therefore additional 
concentrates were mounted, polished, and etched for the analysis. Ultimately, 
four samples contained a statistically significant number of confined tracks. A 
quantitative evaluation of the thermal history of these four samples was carried 
out through modeling procedures, which find a range of cooling paths com-
patible with the apatite fission-track age and track-length distribution of each 
sample (Ketcham, 2005). In this work, inverse modeling of track-length data 
was performed using the HeFTy program (Ehlers et al., 2005), which generates 
the possible temperature-time (T-t ) paths by a Monte Carlo algorithm. Pre-
dicted AFT data were calculated according to the Ketcham et al. (2007) anneal-
ing model for fission tracks revealed by etching. Dpar values (i.e., the etch pit 
length) were used to define the annealing kinetic parameters of the grains and 
the original track length. All available geological constraints (intrusion ages, 
metamorphic events, depositional ages, and stratigraphic relationships) and 
the results of ZHe analyses were incorporated into the thermo chrono metric 
modeling of the four selected samples (see next section).

Seven samples taken from the Bitlis-Pütürge metamorphic complex and the 
Eocene sandstones of the Hakkäri complex were prepared for ZHe analyses. 
Handpicked zircon grains were photographed and measured for alpha-ejec-
tion correction following methods described in Reiners and Brandon (2006) 
and Hourigan et al. (2005). Helium analysis was performed at the Radiogenic 
Helium dating laboratory of the Department of Geosciences of the University 
of Arizona, USA. The packets containing the single crystals to be analyzed and 
the standard crystals were placed in a stainless steel planchet inside a laser 
cell and degassed under vacuum by heating with a Nd-YAG laser for 15 min-

utes at 1–5 W. Helium blanks (0.1–0.05 fmol 4He) were determined by heating 
empty packets with the same procedure. The gas was then spiked with 4 pmol 
3He, condensed in a cryogenic trap at 16 K, then released at 37 K into a small 
volume with an activated getter and the source of a Balzer quadrupole mass 
spectrometer with Channeltron electron multiplier. Masses of HD and H3+ were 
measured to correct the 3He/4He measured ratios. The obtained ratios were 
referenced to 4He standards measured in the same way. After 4He measure-
ment samples were retrieved from the laser cell, each packet was placed in a 
Teflon vial, spiked with calibrated 229Th, 233U, and 147Sm solution and dissolved 
by high-temperature, multi-step dissolution using high-pressure vessels and 
concentrated HF-HNO3, and HCl acid (Reiners, 2005). Isotope ratios were then 
measured at the University of Arizona on a high-resolution (single-collector) 
Element2 inductively coupled plasma–mass spectrometer.

ANALYTICAL RESULTS

Results of AFT analysis from the Bitlis-Pütürge collision zone and from the 
adjacent Muş-Hınıs Basin are reported in Table 1. AFT central ages from 
the orogenic wedge cluster tightly between 13.4 ± 2.2 and 18.0 ± 1.8 Ma. Sam-
ple TU-159 (an Eocene turbidite sandstone from the Hakkäri Complex) has a 
central age of 25.2 ± 7.2 Ma, significantly older than all other samples. Sample 
TU-255, an Oligocene turbidite sandstone from the Muş-Hınıs foreland basin, 
yielded an AFT central age of 53.3 ± 1.7 Ma, older than its depositional age. 
This implies that the sample was only partially reset because it never reached 
temperatures corresponding to the base of the partial annealing zone of apa-
tite (~120 °C), as discussed below. Analyzed samples do not show any partic-
ular age-elevation correlation. All the samples passed the χ2 test, indicating a 
single population of grains.

Table 2 provides a summary of (U-Th)/He analyses on zircon. All samples 
show a somewhat rapid cooling/exhumation through the partial retention 
zone. This is supported by (i ) reproducible results of replicate analyses and 
(ii ) no correlation of single grain ages with the equivalent sphere radius and eU 
(effective uranium). Therefore, the weighted mean of single grain ages ade-
quately constrains the closure temperature of each sample. Most of the ZHe 
ages (samples TU-136, TU-142, TU-145, TU-149) cluster coherently between 
44.2 and 37.0  Ma (Lutetian-Priabonian). The consistent results of replicate 
analyses of single samples indicate a rapid and widespread episode of cool-
ing/exhumation in the Eocene. Sample TU-151 (Precambrian chlorite schist) 
yielded an age of 60.4 Ma, in line with higher temperature radiometric systems 
employed in the same area (Oberhänsli et al., 2010, 2012, 2013), and was unaf-
fected by later heating. Sample TU-138 (Precambrian gneiss) yielded an Early 
Miocene weighted mean age (22.4 Ma). All ZHe results were incorporated into 
the thermochronometric modeling (see below).

The thermochronometric modeling of sample TU-149 (Precambrian gneiss; 
Pütürge Massif; Fig. 2) is well constrained by (i ) a 77.5 ± 0.7 Ma Ar/Ar age on 
phengites from mica schists of the overlying Paleozoic metasedimentary sec-
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tion nearby (Rolland et al., 2012), (ii ) mid-Eocene sedimentary rocks noncon-
formably overlying the Pütürge basement complex (e.g., Bilgic, 2002) (Fig. 3), 
and by our own (iii ) ZHe (Table 2) and (iv) AFT (Table 1) analyses. Following 
Late Cretaceous metamorphism, the sample underwent fairly rapid cooling 
and exhumation to near-surface conditions induced by extensional tectonics 
(Fig. 3B). This interpretation is supported by field stratigraphic relationships 
as the Precambrian gneisses in the area are nonconformably overlain by the 
Maden Complex, a thick volcano-sedimentary succession deposited in a short-
lived (Middle-Late Eocene) backarc basin (Yiğitbaş and Yılmaz, 1996). Deposi-
tion of the Maden Complex induced progressive burial heating of basement 
sample TU-149 between ca. 45 and 39 Ma. Such burial heating is constrained 
by the ZHe analyses indicating that the sample cooled below 200 °C in the Late 
Eocene (Table 2; Fig. 3B). The Oligocene thermal evolution of the sample is 
rather flat until ca. 19 Ma (Burdigalian), when the best-fit curve derived from 
the study of the apatite fission-track length distribution (Fig. 3B) shows a sud-
den increase in the cooling rate.

Thermochronometric modeling of sample TU-136 (Paleozoic metasand-
stone; central Bitlis Massif; Fig. 2) is constrained by (i ) two Late Cretaceous (Cam-
panian; 84.4–73.8 Ma) (Oberhänsli et al., 2012, 2013) metamorphic ages from 
similar rock units along tectonic strike to the southeast ( Table 3), (ii ) Middle- Late 
Eocene sedimentary rocks nonconformably overlying the Bitlis basement com-
plex (e.g., Tarhan, 2002) (Fig. 4), and by our own (iii ) ZHe analyses (Table 2) and 
(iv) AFT analysis (Table 1). The track-length frequency distribution is platikurtic—
the result of a long residence time in the partial annealing zone—with abundant 
long tracks (15–17 μm) indicating a later phase of rapid cooling (Fig. 4C). The 
thermochronometric evolution of this metasedimentary sample from the Bitlis 
Massif is similar to the one described above for the Precambrian gneisses of the 
Pütürge Massif. Again, after Late Cretaceous metamorphism, the sample was 
rapidly exhumed to the surface, as shown by the Middle-Late Eocene noncon-
formable sedimentary cover of the Kızılağaç Formation and its equivalents, in-
cluding the Maden Complex of the western Bitlis-Pütürge Massif (Şengör et al., 
2008). Results of ZHe analyses constrain further the statistical model and pre-

TABLE 2. ZIRCON (U-Th)/He ANALYTICAL DATA

Sample
Raw age ± 2σ

(Ma)
Rs

(mm)
U

(ppm)
Th

(ppm)

4 He
(nmol/g)

eU
(ppm)

FT
238U

FT
235U

FT
232Th

Fully FT corrected age ± σ
(Ma)

TU136

TU136_Zr2 29.1 ± 2.2 68 436 109 73 461.41 0.82 0.79 0.79 35.6 ± 1.3
TU136_Zr3 32.3 ± 2.4 43 482 47 86 493.00 0.72 0.68 0.68 44.7 ± 1.6

TU138

TU138_Zr1 18.5 ± 0.4 48 125 100 15 148.07 0.75 0.71 0.71 25.0 ± 0.3
TU138_Zr2 14.6 ± 0.4 50 165 94 15 187.12 0.76 0.72 0.72 19.5 ± 0.3
TU138_Zr4 16.4 ± 1.2 44 180 129 19 210.18 0.73 0.69 0.69 22.7 ± 0.8

TU142

TU142_Zr2 34.3 ± 1.0 46 290 166 61 329.27 0.74 0.70 0.70 46.7 ± 0.7
TU142_Zr3 31.0 ± 0.8 39 242 104 45 266.80 0.70 0.66 0.66 44.8 ± 0.6
TU142_Zr4 27.7 ± 0.8 37 848 1087 165 1103.95 0.68 0.64 0.64 41.1 ± 0.5

TU145

TU145_Zr1 27.9 ± 0.8 48 2168 1339 374 2482.57 0.75 0.71 0.71 37.6 ± 0.5
TU145_Zr2 25.8 ± 0.6 47 2572 1405 404 2901.92 0.74 0.71 0.71 34.9 ± 0.4
TU145_Zr3 26.7 ± 0.8 39 1763 1101 292 2022.16 0.70 0.66 0.66 38.6 ± 0.5

TU149

TU149_Zr1 22.7 ± 0.6 31 1266 153 160 1302.21 0.63 0.58 0.58 36.3 ± 0.5
TU149_Zr2 26.0 ± 0.8 35 958 162 140 995.75 0.67 0.62 0.62 39.0 ± 0.6

TU151

TU151_Zr1 53.3 ± 1.4 58 188 63 58 202.21 0.790 0.759 0.759 67.7 ± 0.9
TU151_Zr2 37.9 ± 1.2 36 301 49 64 312.14 0.675 0.630 0.630 56.4 ± 0.8
TU151_Zr3 46.8 ± 1.4 68 572 109 151 597.02 0.820 0.794 0.794 57.2 ± 0.8

TU155

TU155_Zr3 17.5 ± 0.4 36 327 263 37 389.14 0.672 0.628 0.628 26.3 ± 0.3

Note: FT—retentivity of alpha particle in a sphere of varying radius; Rs—equivalent sphere radius.
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scribe a phase of burial heating during the Middle Eocene (Fig. 4B). The entire 
duration of the Oligocene (and Early Miocene) is characterized by the residence 
of the sample at stable temperatures, corresponding to the base of the partial 
annealing zone of apatite (~120 °C). A sudden increase in the rate of cooling 
occurred at 15–12 Ma (Middle Miocene) depending on whether we consider the 
mean or best-fit curve (Fig. 4B).

An Early Oligocene sandstone sample (TU-255) from the lower portion of 
the Muş foreland basin fill (Yazledere Formation, Figs. 2 and 3) yielded a broad 
single-grain age distribution (Fig. 4E) and a bimodal track-length distribution 
(Fig. 4G), indicating a complex thermal history. AFT central age for this sam-
ple is 53.2 Ma (Table 1), i.e., older than its depositional age. This implies that 
the sample has not been completely reset, thus partially retaining the original 
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Figure 3. Summary of analytical results for sample TU-149 (Precambrian gneiss; Pütürge Massif) and geological cross-section A–A′ (see Fig. 2 for location). For details on radiometric ages reported in the figure, see Table 3. EAF—East Anatolian fault. 
(A) Radial plots of single-grain apatite fission-track (AFT) ages. (B) Time-temperature paths obtained from integrated inverse modeling of AFT data (this study), (U-Th)/He analyses on zircons (this study), Ar-Ar analysis on biotites, and U/Pb on zir-
cons (Kiliç and Ateş, 2015). Green areas mark envelopes of statistically acceptable fit, and the thicker lines correspond to the most probable thermal histories: red line is the mean of all statistically acceptable paths; blue line is the best-fit T-t path. 
Parameters related to inverse modeling are reported: GOF, goodness-of-fit gives an indication about the fit between observed and predicted data (values closer to 1 are best). (C) Histogram showing the confined-track length distributions of apatite 
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TABLE 3. COMPILATION OF PREEXISTING RADIOMETRIC DATA

Sample Rock type
Coordinates

(UTM) Dated mineral Method
Age
(Ma)

±σ
(Ma)

Bitlis Massif

VAN 26a metapelite – muscovite 40Ar/39Ar 69.8 0.4
VAN 27a metapelite – muscovite 40Ar/39Ar 69.2 0.7
VAN 29a metapelite – muscovite 40Ar/39Ar 68.8 2.2
VAN 36a metapelite – muscovite 40Ar/39Ar 68.0 0.7
VAN 75a metapelite – muscovite 40Ar/39Ar 73.8 7.7
VAN 75Aa metapelite – muscovite 40Ar/39Ar 73.8 7.7
VAN 76a metapelite – muscovite 40Ar/39Ar 76.0 0.7
VAN 77a metapelite – muscovite 40Ar/39Ar 78.8 0.6
VAN 75b metapelite – phengite 40Ar/39Ar 73.8 7.7
VAN 75Ab metapelite – phengite 40Ar/39Ar 73.6 4.4
B157-1g eclogite – zircon U–Pb 82.4 0.9
B157-2g eclogite – zircon U–Pb 84.4 0.9

Pütürge Massif

Loc28c micaschist 37N 477060.9 4217244.7 phengite 40Ar/39Ar 77.5 0.7
Loc59c amphibolites 37N 431046.1 4230447.3 amphibole 40Ar/39Ar 47.1 1.2
13TK51d augen gneiss – zircon U–Pb 551 6
13TK54d augen gneiss – zircon U–Pb 544 4
Samplef micaschist – whole–rock K–Ar 71.2 3.6
dk704h metagranitic gneiss – zircon U–Pb 84.2 1.1
dk173.8h metapelitic schist – biotite 40Ar/39Ar 83.21 0.07

Baskil granitoids

FK08-33i granodiorite N38°37′46.7″ E038°49′10.5″ apatite fission track 48.39 8.92
FK08-36i granodiorite N38°38′11.1″ E038°49′46.1″ apatite fission track 50.29 9.09
FK-06i granite N38°29′43.9″ E038°46′38.1″ apatite fission track 40.17 5.14
FK08-38i granodiorite apatite fission track 50.55 5.64

Maden Complex

Loc46c gabbro 37N 484693.9 4254696.6 amphibole 40Ar/39Ar 79.9 0.4
Loc46(duplicate)c gabbro 37N 484693.9 4254696.7 amphibole 40Ar/39Ar 77.5 0.7

Keban-Malatya

Loc49c marble 37N 476355.5 4296643.1 muscovite 40Ar/39Ar 73.0 0.5

Ophiolite

FK10e rhyolite – zircon U–Pb 74.6 4.4
FK48e rhyolite – zircon U–Pb 83.1 2.2

aOberhänsli et al. (2012)
bOberhänsli et al. (2010)
cRolland et al. (2012)
dBeyarslan et al. (2016)
eKaraoğlan et al. (2013)
fHempton (1985)
gOberhänsli et al. (2013)
hKiliç and Ateş (2015)
iKaraoğlan et al. (2016)
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Figure 4. Summary of analytical results for samples TU-136 (Precambrian gneiss; Bitlis Massif) and TU-255 (Oligocene sandstone; Muş-Hınıs Basin). See Figure 2 for location. (A and E) Radial plots of single-grain apatite 
fission-track (AFT) ages. (B and F) Time-temperature paths obtained from integrated inverse modeling of AFT data (this study), (U-Th)/He analyses on zircons (this study), Ar-Ar analysis on biotites, and U/Pb on zircons (Kiliç 
and Ateş, 2015). Green areas mark envelopes of statistically acceptable fit, and the thicker lines correspond to the most probable thermal histories: red line is the mean of all statistically acceptable paths; blue line is the 
best-fit T-t path. Parameters related to inverse modeling are reported: GOF, goodness-of-fit gives an indication about the fit between observed and predicted data (values closer to 1 are best). (C and G) Histogram showing 
the confined-track length distributions of apatite grains. (D) Geological cross-section of the central Bitlis Massif (redrawn from Yazgan et al., 1983). See Figure 2 for location of trace of section.
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thermal signature of the sediment source rocks contributing detritus to the 
Muş-Hınıs Basin. In such cases, central ages are hardly significant and only 
the statistical modeling of FT length distributions can constrain the T-t path. 
Inverse modeling (Fig. 4F) depicts clearly a phase of post-depositional heating 
(ca. 28–16 Ma; Late Oligocene–Early Miocene), likely resulting from progres-
sive sedimentary burial, followed by mid-Miocene rapid cooling/exhumation 
starting at ca. 15 Ma.

Sample TU-155 (Eocene sandstone from the Hakkäri Complex mélange; 
Fig. 2) shows a fairly tight single-grain age distribution and a leptokurtic and 

unimodal track-length distribution (Figs. 5A, 5C). This translates in a simple 
thermochronometric evolution (Fig. 5B). The best-fit curve (Fig. 5B) shows (i ) a 
phase of progressive heating ranging from deposition to ca. 29 Ma (latest Early 
Oligocene), followed by a phase of rather stable temperatures (29–13 Ma), in 
turn followed by rapid uplift starting in the mid-Miocene at ca. 12 Ma.

In summary, modeled samples come from a variety of rock types and 
tectonostratigraphic units, ranging from (i ) polymetamorphosed Precam-
brian basement and (ii ) its Paleozoic metasedimentary cover, to (iii ) Eocene 
sedi ments incorporated in the frontal part of the Bitlis orogenic wedge and 
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(iv) Early Oligocene foreland deposits from the Muş-Hınıs Basin north of the 
Bitlis-Pütürge Massif. Despite such heterogeneity, all analyzed samples point 
to a coherent thermochronometric history. Most remarkably, they show rather 
flat T-t paths during the Oligocene in the orogenic wedge and a sudden in-
crease in the cooling/exhumation rate in the mid-Miocene, both in the oro-
genic wedge and the adjacent foreland.

DISCUSSION

The areal distribution of radiometric ages (Fig. 6) in the Bitlis collision zone 
and its European foreland provides important clues as to the strain distribution 
pattern through time. Lower temperature radiometric systems (AFT and ZHe) 
yielded younger ages along a narrow belt coincident with the Bitlis-Pütürge 
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Figure 6. Areal distribution of radiometric ages along the Bitlis-Pütürge collision zone and the Anatolian foreland in southeastern Turkey. Apatite fission-track (AFT) ages are from Table 1; ZrHe ages are from Table 2; all other radiometric 
ages are from Table 3. Dashed orange line includes all AFT ages younger than 20 Ma; dashed red line includes all AFT ages younger than 15 Ma. Sources of data: aOkay et al., 2010; bAlbino et al., 2013; cthis paper; dOberhänsli et al., 2012; 
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collision zone. In the central portion of the belt, AFT central ages cluster tightly 
between 13.4 ± 2.2 and 14.6 ± 2.5 Ma, i.e., in the mid-Miocene. This cluster 
resulted from the rapid passage of the samples across the apatite partial an-
nealing zone (~120–60 °C) and registered the last significant cooling/exhuma-
tion event suffered by the analyzed rock units. Integrated statistical modeling 
of all available thermochronological constraints (Ar/Ar, Rb/Sr, U/Pb, ZHe, AFT, 
stratigraphic relationships) confirm the importance of this sharp and discrete 
mid-Miocene cooling episode (Figs. 3–5).

AFT central ages from samples taken north of the Bitlis collision zone range 
consistently between 48.8 and 35.9 Ma (Middle-Late Eocene), not only in the 
study area but across a wide area comprising most of the eastern Anatolian 
plateau (Albino et al., 2014), and were not affected by later cooling/exhuma-
tion. Middle-Late Eocene cooling is coeval with final closure of the northern 
Neotethyan branch and the development of the Izmir-Ankara-Erzincan suture 
zone (Okay and Tüysüz, 1999; Stampfli and Hochard, 2009). In southern Ana-
tolia there is evidence of Eocene extensional tectonics, including the opening 
of a backarc basin and deposition of a thick volcanosedimentary succession, 
the Maden Complex (e.g., Yiğitbaş and Yılmaz, 1996; Robertson et al., 2006; 
Karaoğlan et al., 2016). The relative chronology of these two contrasting tec-
tonic regimes during the Eocene (shortening in central eastern Anatolia and 
extension in southern eastern Anatolia) has not yet been resolved and requires 
much additional work.

Results yielded by radiometric systems characterized by a higher closure 
temperature are age coherent and do not show any areal variation (Fig. 6). 
In fact, metamorphic rocks of the Bitlis-Pütürge Massif, as well as the other 
scattered outcrops of metamorphic rocks farther to the north all yielded Late 
Cretaceous (Campanian-Maastrichtian) metamorphic ages (Hempton, 1985; 
Oberhänsli et al., 2010, 2012, 2013; Karaoğlan et al., 2013; Rolland et al., 2012). 
Recent radiometric data by Topuz et al. (2017) indicate that the entire width of 
the eastern Anatolian Plateau, from the Erzincan-Sevan-Akera suture zone to 
the north to the Bitlis suture zone to the south, bears the marks of such Late 
Cretaceous metamorphic event. This implies that the cause of such metamor-
phism is not to be searched along the Bitlis collision zone.

The stratigraphy of the northernmost sector of the Arabian platform pro-
vides a compelling record of the tectonic evolution of the adjacent Bitlis- 
Pütürge orogenic prism as it has been the lower plate of the Arabia-Eurasia 
subduction/collision zone during the entire Cenozoic. Two coarse-grained 
clastic inputs punctuate the stratigraphy of the northern Arabian platform 
south of the collision zone. The first one occurred in the Late Cretaceous (Late 
Campanian-Maastrichtian: Antak Formation, Tanjero Formation, and equiva-
lents) and was related to the creation of structural relief, lithospheric flexure, 
and creation of accommodation resulting from widespread ophiolite obduc-
tion over the Arabian platform and related crustal shortening. Such a discrete 
and important episode of ophiolite obduction along the Anatolide-Tauride 
and Arabian northern continental margins has been described from western 
Anatolia to Oman (e.g., Coleman, 1981; Okay et  al., 2001; Robertson, 2002) 
and is discussed further below. The second influx of coarse-grained clastics 

occurred in the Late Miocene (Şelmo Formation and its lateral equivalents) 
and is commonly interpreted as marking the onset of hard collision. These 
two clastic intervals are separated by Paleogene carbonate sediments and no 
coherent collision-related foreland basin stratigraphy for the Oligocene can be 
outlined (Fig. 7). If the Arabia-Eurasia collision took place in the Oligocene one 
would expect the presence of large volumes of orogen-derived sediments on 
the flexured lower (Arabian) plate, whereas the Oligocene succession south 
of the Bitlis- Pütürge orogenic prism lacks any evidence of synorogenic sedi-
mentation (see also Robertson et al., 2016). The Oligocene stratigraphic hiatus 
(considered by some as evidence of collision-related tectonic deformation) 
may well be explained by the Oligocene eustatic sea level lowstand, one of 
the largest in Earth’s history. Miller et al. (2008) concluded that a glacioeustatic 
sea level lowering of 55  m occurred in the Early Oligocene (35.7–33.5  Ma). 
Such sea level fall produced dramatic paleoenvironmental and stratigraphic 
changes in the Arabian flatlands (Nairn and Alsharhan, 1997; Jassim and Goff, 
2006) and can account for the widespread Oligocene nondepositional hiatus. 
Therefore, we conclude that there is no stratigraphic evidence on the Arabian 
margin for an Oligocene collision with the Anatolide-Tauride terrane to the 
north. The thermochronometric reconstructions presented here (Figs. 3–5) 
underline the absence of significant Oligocene cooling/exhumation along the 
southern margin of the Anatolide-Tauride terrane and point instead to rapid 
cooling/exhumation in the Miocene, in agreement with field stratigraphic and 
structural relationships. A subsidence curve from the portion of the Muş-Hınıs 
retroarc foreland basin north of Lake Van also show a discrete episode of uplift 
in the mid-Miocene within the overall context of protracted subsidence typical 
of upper-plate (retroarc) foreland basins (Fig. 8).

Geological field evidence indicates that a large area south of the Erzincan- 
Sevan suture was covered by a series of large obducted ophiolites by 
mid-Campanian time. These took the form of either large, relatively coher-
ent slabs now cropping out as klippen or widespread mélange bodies (Bilgic, 
2002; Günay and Şenel, 2002; Şenel and Ercan, 2002; Tarhan, 2002). At the 
same time, the same area experienced HP-LT metamorphism (Hempton, 1985; 
Okay et al., 1985, Oberhänsli et al., 2010, 2012, 2013; Rolland et al., 2012; Topuz 
et al., 2017). For example, across the Pütürge Massif the basement complex 
and the metamorphic sole of the overlying ophiolitic nappes yielded virtu-
ally the same Late Cretaceous metamorphic ages [77.5  ± 0.7  Ma (Ar/Ar on 
phengites) and 78.7  ± 1.0  Ma (Ar/Ar on amphibole), respectively] (Fig. 3D; 
 Table 3). North of the Pütürge Massif, other scattered inliers of metasedimen-
tary rocks interspersed within the widespread volcano-sedimentary cover of 
the Anatolian Plateau yielded consistent Late Cretaceous metamorphic ages 
(Topuz et al., 2017). The radiometric data set is far from being complete, but 
the picture emerging in eastern Anatolia is one of a coherent metamorphic 
event across the entire area located between the Erzincan-Sevan suture to 
the north and the Assyrian suture to the south. This metamorphism is coeval 
with massive southward ophiolite obduction from the northern branch of the 
Neotethys onto the Anatolide-Tauride terrane (Stampfli and Hochard, 2009) 
(Fig. 9A).
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In the past, the pre-Neogene basement of the Eastern Anatolia plateau 
has been interpreted as consisting largely of an accretionary prism spanning 
(north to south) the distance from the eastern Pontides to the Bitlis collision 
zone (Eastern Anatolia accretionary complex [EAAC]; Şengör and Yılmaz, 
1981; Şengör et al., 2003). The EAAC concept has had wide resonance and 
is now ingrained in the scientific literature. However, recent field and labora-

tory data indicate that eastern Anatolia is instead characterized by continen-
tal assemblages that underwent high-temperature and medium-pressure 
metamorphism at middle- to lower-crustal depths during the Late Cretaceous 
(Yılmaz et al., 2010; Topuz et al., 2017), as discussed above. These continental 
assemblages are tectonically overlain by disrupted ophiolites or ophiolitic 
mélange obducted in the Late Cretaceous and then pushed southward during 
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the closure of the northern branch of the Neotethys and the ensuing devel-
opment of the Izmir-Ankara-Erzincan suture zone (e.g., Okay and Tüysüz, 
1999). The synchronicity of obduction and widespread metamorphism as 
well as the structural relationship between the ophiolites and the underly-
ing continental basement support the hypothesis that the emplacement of 
a large ophiolitic nappe complex was responsible for diffuse deformation 
and metamorphism of the underlying Paleozoic sedimentary cover of the 
Proterozoic basement complex of the Anatolide-Tauride terrane. According 
to Topuz et al. (2017), there is no indication of major strike-slip faults which 
might have interposed the continental fragments within the ophiolites and 
hence the scattered metamorphic inliers are interpreted to be the evidence 
of a more or less continuous continental substrate overthrust by the ophio-
litic nappe complex. Ophiolite obduction took place in the Campanian (Fig. 
9A), but southward tectonic transport of ophiolitic nappes (possibly includ-
ing also sections of the underlying metamorphosed Paleozoic sedimentary 
cover of the Anatolide-Tauride terrane) continued during the Maastrichtian 
and the Paleocene (Fig. 9B) as the collision between the Anatolide-Tauride 
and Sakarya terranes was progressing. By the Middle Eocene (Fig. 9C) col-

lision along the Izmir-Ankara-Erzincan suture zone was complete and sub-
duction jumped to the southern margin of the Anatolide-Tauride terrane. 
The convergence rate between Africa and the southern margin of Eurasia 
(actually a collage of Gondwana-derived exotic terranes) had decreased, the 
subducting slab was affected by roll-back, and the upper plate underwent 
extension. Such extension is recorded by the Maden Complex, a mid-Eocene 
volcano-sedimentary succession developed in a back-arc basin (Yiğitbaş and 
Yılmaz, 1996) and presently occurring as intensely deformed tectonostrati-
graphic units within the Bitlis-Pütürge orogenic wedge. Widespread exten-
sion along the southern margin of the Anatolide-Tauride terrane as recorded 
by the Maden basin(s) is hardly compatible with the notion of an Eocene 
Arabia-Eurasia collision.

Low-temperature thermochronological data for the Eurasian foreland north 
of the Bitlis- Pütürge suture zone suggest that the tectonic stresses related to 
the Arabian collision were transmitted efficiently over large distances, focus-
ing preferentially at rheological discontinuities located as far as the Eastern 
Pontides and the Lesser Caucasus (Albino et al., 2014; Cavazza et al., 2017). 
Stress focused either (i ) along the marked rheological difference between the 
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polydeformed continental lithosphere of the Eastern Pontides and the rela-
tively pristine quasi-oceanic lithosphere of the eastern Black Sea or (ii ) along 
properly oriented segments of the Erzincan-Sevan-Akera suture zone. Since 
the late Middle Miocene, a new tectonic regime has been active. The westward 
translation of Anatolia currently accommodates most of the Arabia-Eurasia 
convergence, thus decoupling the foreland from the orogenic wedge and pre-
cluding efficient northward stress transfer. As soon as the two plates were me-
chanically coupled, the inception of the Northern and Eastern Anatolian fault 
systems absorbed much of the plate convergence. Tectonic escape of Anatolia 
was preconditioned and facilitated by slab rollback along the Aegean subduc-
tion zone (Jolivet and Brun, 2010).

CONCLUSIONS

Noble gas and fission-track thermochronometric data—integrated with 
radio metric data from the literature and the analysis of field stratigraphic and 
structural relationships—constrain the overall thermal history of the Bitlis- 
Pütürge metamorphic complex, i.e., the area of maximum indentation along 
the Assyrian-Zagros continental collision zone. The data set indicates wide-
spread latest Cretaceous metamorphism of a passive margin sedimentary se-
quence and its igneous basement along the suture zone and across the entire 
width of the Anatolia-Tauride block north of the suture. This metamorphism is 
likely related to extensive southward obduction of oceanic lithosphere from the 
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northern branch of the Neotethys onto the northern continental margin of the 
Anatolide-Tauride block. Evidence for this interpretation lies in the occurrence 
of Late Cretaceous metamorphic rocks extending from the Izmir-Ankara-Erzin-
can suture to the north to the Bitlis-Pütürge metamorphic complex to the south. 
The basement complex of the Bitlis and Pütürge massifs along the suture was 
then rapidly exhumed between ca. 65 and 55 Ma and eventually overlain by Eo-
cene shallow marine sediments. Integrated statistical modeling shows that the 
Oligocene thermochronometric evolution of the orogen was rather featureless, 
contrary to the widely held belief that this epoch marked the beginning of the 
Arabia-Eurasia collision and was thus characterized by widespread deforma-
tion. Conversely, during the Middle Miocene, the Bitlis- Pütürge orogenic wedge 
was rapidly and significantly deformed both by (i ) frontal accretion, as shown 
by cooling/exhumation of the foreland deposits on both sides of the orogenic 
prism, and (ii ) underplating, as shown by cooling/exhuma tion of the central 
metamorphic core of the orogenic wedge. Orogenic growth is also substanti-
ated by the stratigraphy of the lower (Arabian) plate, which shows the presence 
of a coarse-grained clastic wedge in the Middle Miocene as well as evidence of 
growth structures.

Taking into consideration that colliding continental margins are morpho-
logically irregular and strain sequences are commonly diachronous along the 
strike of suture zones (Dewey et al., 1986), we emphasize that the results of this 
study applies only to the Bitlis-Pütürge sector of the Arabia-Eurasia collision 
zone and should not be necessarily applied also to the Zagros collision front 
to the southeast.
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