Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia)

FATIH KARAÖĞLAN1, OSMAN PARLAK1*, ALASTAIR ROBERTSON2, MARTIN THÖNI3, URS KLÖTZLI3, FRIEDRICH KOLLER3 & ARAL İ. OKAY4

1Çukurova Üniversitesi, Jeoloji Mühendisliği Bölümü, 01330 Adana, Turkey
2University of Edinburgh, School of GeoSciences, EH9 3JW Edinburgh, UK
3University of Vienna, Center for Earth Sciences, A-1090 Vienna, Austria
4İstanbul Teknik Üniversitesi, Jeoloji Mühendisliği Bölümü, TR-34469, İstanbul

*Corresponding author (e-mail: parlak@cukurova.edu.tr)

Abstract: New data for regionally important granulite facies metaophiolitic rocks and cross-cutting granitoids rocks are presented and discussed. The high-temperature/high-pressure Berit metaophiolite is cut by unmetamorphosed Eocene (51–45 Ma) granitoid rocks. The highest metamorphic grade occurs in blocks of mafic granulites. Enveloping amphibolite facies rocks reflect retrograde metamorphism related to exhumation. Sm–Nd (pyroxene–garnet–amphibole–whole rock) isochron ages of 52–50 Ma for the granulite facies rocks are interpreted to represent the time of cooling of the granulite facies rocks. The over-riding Malatya metamorphic unit to the north is also intruded by Eocene granitoid rocks. The granulite facies metamorphism of the metaophiolitic rocks is inferred to have formed in the roots of an Eocene magmatic arc, with accentuated heat flow being provided by subduction of a spreading ridge, or rupture of the subducting slab. The high-temperature/high-pressure metamorphism was followed by exhumation, as indicated by field structural relations and the evidence of retrograde metamorphism. The Eocene arc magmatism can best be explained by northward subduction of the Southern Neotethys, which persisted after the time of latest Cretaceous regional ophiolite emplacement until the collision of the Eurasian (Anatolian) and Arabian continents during the Early–Mid Miocene. Subsequent Plio-Quaternary left-lateral strike-slip strongly affected the area.

Supplementary material: Four supplementary tables giving the whole rock geochemistry of the granitoids, mineral geochemistry of the granulite facies rocks, LA-MC-ICP-MS zircon U–Pb data belonging to granitoids and Sm–Nd data belonging to granulite facies rocks and two documents giving the detailed analytical procedures and detailed petrography of the granitoids are available at www.geolsoc.org.uk

In this paper we present new evidence of Eocene high-pressure (HP)/high-temperature (HT) metaophiolitic rocks and crosscutting granitoid bodies. Our new data help to constrain the later stages of closure of the Neoethys in SE Anatolia. Metaophiolitic rocks are sandwiched between regional-scale thrust sheets in several areas; i.e., Engizek–Berit (north of Kahramanmaraş), Helete (west of Kahramanmaraş) and Doğanşehir (SW of Malatya) (Perincük & Kozlu 1984; Genç et al. 1993; Yılmaz 1993; Yılmaz et al. 1993; Robertson et al. 2006, 2007; Candan et al. 2012; Karaoğlan 2012; Parlak et al. 2012; Figs 1 & 2). Metaophiolitic rocks of granulite to eclogite facies have previously been documented in a similar structural position within the Berit Mountains c. 80 km to the SSW, where polyphase metamorphism reached eclogite/granulite facies conditions ( Genç et al. 1993). Here, we present new data for granulite facies metaophiolitic rocks that are widely exposed to the SW of Doğanşehir town (Malatya Region) (Fig. 3).

Overall, the tectonostratigraphy is northward dipping. (Fig. 4). In several areas the ophiolitic rocks and the structurally overlying Malatya–Keban metamorphic units are intruded by Late Cretaceous calcalkaline granitoid bodies; for example, Esence to the north of Kahramanmaraş and Baskil–Elazığ (Yazgan & Chessex 1991; Parlak 2006; Rizaoğlu et al. 2009; Figs 1 & 2). Previously it was assumed that the granitoid bodies that intrude the metaophiolitic rocks and the Malatya meta- morphic unit in the Doğanşehir area are also of Late Cretaceous age (Perincük & Kozlu 1984; Genç et al. 1993; Yılmaz 1993; Yılmaz et al. 1993; Parlak...
et al. 2004, 2009; Robertson et al. 2006). However, the new radiometric dating presented here shows that these granitoid bodies are in fact Eocene (Karaoğlan 2012), with some interesting tectonic implications.

We first outline the field relations and the petrography of the main lithologies. We then present Sm–Nd geochronological data for the HP/HT mafic granulites in the Dogans¸ehir area. In addition, we report new geochemical and geochronological (U–Pb) data for the granitoid rocks that cut the metaophiolite rocks and the Malatya metamorphic unit. Implications for Eocene subduction of Neotethys in the region are then discussed.

Field relations and petrography

Berit metaophiolite

The metaophiolitic rocks, together with several crosscutting granitoid intrusions, crop out in a tectonic window to the SW of Doğuşehir town (Figs 3–5 & 6c). These rocks are exposed to the north of the major neotectonic left-lateral fault (Sürgü Fault), which has an estimated offset of tens of kilometres (Herece 2008).

To the north of the neotectonic fault zone the following units are exposed from the structural top, downwards (Figs 4–6):

(1) Mesozoic Malatya metamorphic unit, cut by large granitoid bodies (Döğüşehir Granitoids; Perincek & Kozlu 1984).

(2) Doğuşehir metaophiolitic rocks. This lithological assemblage is made up of laterally discontinuous, northward-dipping units. From the top downwards (generally) there are:

(a) metabasalts;
(b) highly sheared metagabbroic rocks (Fig. 7c, f) with trails of blocks of granulite facies rocks;
(c) metaharzburgite, locally rich in chromite (Fig. 7a, b);
(d) highly sheared amphibolite with scattered blocks of granulite facies rocks (Fig. 7d).

The metaophiolitic rocks display high-temperature metamorphic conditions as indicated by the presence of recrystallized olivine in the metaultramafic rocks, garnet in the metagabbros (Fig. 7c, e, f) and also retrogressive garnet amphibolite, enveloping granulites.

To the south of the neotectonic fault zone the exposure begins with schistose metamorphic rocks...
that are correlated with the Pütürge metamorphic rocks, as more widely exposed further east (south of Malatya city). The Pütürge metamorphic rocks are unconformably overlain by limestone, sandstone and volcanic rocks of the Eocene Maden Group. The Maden Group is, in turn, overthrust, southwards by metaophiolitic rocks and then by the Malatya metamorphic unit.

The metaophiolitic rocks are characterized by metaharzburgite, metadunite (rich in chromite), granulite, massive garnet–amphibolite, amphibolite, plagioclase–amphibole schist, metagabbro and metavolcanic rocks. The metaophiolitic rocks as a whole are intruded by calcalkaline granitoid rocks (Karaoğlan et al. 2009; Fig. 6a, b, d).

The blocks of mafic granulite exhibit poikiloblastic and granoblastic textures and comprise garnet (20–25 vol%; \( P_{49-62}G_{17-24}A_{18-26} \)), clinopyroxene (60–65 vol%; \( W_{50-52}A_{44-46}F_{53-4} \)), plagioclase (2–15 vol%; \( A_{41-60} \)), kyanite (1–7 vol%), amphibole (2–4 vol%) and opaque minerals. These minerals lack compositional zoning (Karaoğlan 2012). However, corona and symplectic textures were formed between the garnet and the pyroxene during exhumation, as shown by thin-section evidence (Karaoğlan 2012). The garnets form small to large (0.05–3.20 mm), euhedral to subhedral crystals with sharp contacts in fresh samples. Garnet crystals are mainly inclusion free. Pyroxenes exist as small to large (0.07–3.20 mm) subhedral crystals with exsolution lamellae in some grains. The pyroxene + garnet breakdown to amphibole is defined by corona texture. Clinopyroxene + plagioclase and clinopyroxene + plagioclase + kyanite symplectites were formed by the breakdown of garnet. Kyanite is observed in both the symplectites and as a primary growth mineral. The primary kyanite forms large euhedral and subhedral laths, whereas the kyanite in the symplectites occurs as small needle-like crystals. Plagioclase exists as small anhedral crystals between garnet and pyroxene, or as small thin laths within the symplectites (Karaoğlan et al. in prep.).

The garnet amphibolite mainly comprises amphibole (20–45 vol%), garnet (20–30 vol%), quartz (20–25 vol%) and clinopyroxene (10–30 vol%).
Fig. 3. Geological map of the Güneşoğlu–Begre (Doğansıhir, Malatya) region, based on Perincek & Kozlu (1984) and Karaoğlan (2012). Star symbol shows the location of the granulite facies rocks. The location of the U–Pb ages (FK13, FK14, FK15 and FK31) and the Sm–Nd ages (B5a and B5 b) are also marked on the map.

<table>
<thead>
<tr>
<th>Palaeozoic-Mesozoic</th>
<th>Palaeozoic-Mesozoic Malatya - Kebe Metamorphic unit</th>
<th>Eocene Berit Metaophiolite</th>
<th>Eocene Doğansıhir Granitoid</th>
<th>Middle Eocene Maden Group</th>
<th>Eocene</th>
<th>Quaternary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pürtürge Metamorphics</td>
<td>Malatya - Kebe metamorphics</td>
<td>started with micaschists, towards upper parts recrystallized limestones, marble and limestone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Summary log of the Berit metaophiolite and its contact relations. Some of the tectonic contacts between the main lithologies of the Berit metaophiolite are likely to be extensional faults related to exhumation.

<table>
<thead>
<tr>
<th>Palaeozoic Mesozoic</th>
<th>Malatya - Kebe metamorphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early - Middle Eocene</td>
<td>Early Eocene - Berit Metaophiolite (Age of peak metamorphism)</td>
</tr>
<tr>
<td></td>
<td>Middle Eocene - Doğansıhir granitoid</td>
</tr>
<tr>
<td></td>
<td>Middle Eocene Maden Group</td>
</tr>
</tbody>
</table>

### Meta-volcanics
- garnet bearing metamorphosed basalts

### Meta-gabbro
- garnet, chlorite, and epidote bearing metamorphosed cumulate gabbro
- at the bottom epidote-chlorite schists metamorphosed at amphibolite, amphibolite schist and granulite facies

### Meta-ultramafic cumulates
- garnet bearing harzburgite including recrystallized olivine rare epidote schist

### Metamorphosed mantle tectonites
- garnet bearing dunite, harzburgite serpentinite including recrystallized olivine rare epidote schist

### Tectonic contact
- spilitic basic volcanics including blocks of red-purple colored micritic and nummulitic limestone and marble
Accessory phases are plagioclase (3–4 vol%), sphene (1–2 vol%) and rutile (1–2 vol%). Grano-blastic and poikiloblastic textures are typically present. The primary amphiboles form small to large (0.10–5.6 mm) anhedral to subhedral crystals and are also seen as secondary enveloping pyroxene. The garnets take the form of medium to large (0.10–5.6 mm) anhedral to subhedral crystals. Corundum also occurs in the form of anhedral crystals.

The garnet-bearing metagabbro with grano-blastic and cumulate textures, and rarely poikiloblastic textures, is mainly made up of pyroxene, plagioclase, amphibole and garnet. Titanite and corundum minerals occur as accessory phases. The pyroxenes form small to large (0.14–2.10 mm) subhedral to anhedral crystals. Plagioclases are small (0.1–2.50 mm) prismatic laths and exhibit polysynthetic and carlsbad twinning. Garnets are present as small rounded subhedral to euhedral crystals.

The amphibolites exhibit a nematoblastic texture and are represented by amphibole (75–85%) of grain size 0.05–1 cm, corundum (c. 10%) of grain size 0.46–4.8 mm, garnet (2–5%) of grain size of 0.15–0.2 mm, epidote (c. 2%) of grain size of 0.07–0.21 mm, together with plagioclase, sphene, zoisite and opaque minerals.

The epidote amphibolites, which also exhibit nematoblastic texture, are characterized by amphibole (60–70%) with a grain size of 0.14–2.14 mm, zoisite (30–40%) of grain size of 0.21–1.28 mm and also opaque minerals.

The plagioclase amphibole schist shows a gran-nematoblastic texture and is characterized by amphibole (40–50%) of grain size of 1.24–2.67 mm, plagioclase (40–50%) of grain size of 0.01–1.25 mm, quartz (5–10%) of grain size of 0.01–0.99 mm, epidote and also zoisite minerals.

The mafic granulites are characterized by garnett + clinopyroxene + plagioclase + kyanite. The absence of chemical zonation in these phases and the existence of kyanite are indicative of HT/HP conditions. The granulite rocks are estimated to have attained their thermal peak at >900 °C and 13–15 kbar (c. 40–45 km depth), based on garnet–clinopyroxene geothermobarameters (Karaoğlan et al. in preparation). Subsequent near-isothermal decompression is documented by the formation of amphibole coronas around garnet and symplectites of clinopyroxene + plagioclase and clinopyroxene + plagioclase + kyanite (Karaoğlan 2012; Karaoğlan et al. in preparation).

**Doğanşehir granitoid**

The Doğanşehir granitoid crops out widely where it intrudes the Malatya metamorphic unit (i.e. Gövdeli, Toyasin Tepe, Beğre, Pınarbaşı, Medolar and Sardere; Fig. 3). In addition, two small intrusive bodies cut the Berit metaophiolite, SW of Doğanşehir (i.e. Mamağa and Eriklı Tepe; Fig. 3). The granitoid rocks are characterized by mafic to felsic plutonic (amphibole gabbro, diorite, quartz diorite, tonalite and tonalite porphyry) rocks (Fig. 8a, b, d, f, h). Mafic to felsic dykes intrude various levels of the main granitoid body (Fig. 8c, e, g). Amphibole-bearing mafic microgranular enclaves are also present, ranging from 5 to 40 cm (Fig. 6e).

Intermediate to mafic-composition plutonic rocks (amphibole gabbro, diorite and quartz diorite) occur in different parts of the granitoid bodies, as indicated by their dark colour and abundance of mafic minerals. These rocks display granular to
microlitic porphyric textures and contain subhedral to anhedral plagioclase (60–80 vol%), anhedral to euhedral amphibole (20–30 vol%), elongate to prismatic biotite (5–10 vol%), K-feldspar (1–3 vol%), anhedral quartz, filling interstitial gaps (5–10 vol%), accessory sphene, zircon and opaque minerals. The felsic plutonic rocks (granodiorite and tonalite) exhibit granular texture and are composed of plagioclase (40–80 vol%), anhedral quartz (10–20 vol%), K-feldspar (10–15 vol%), prismatic biotite (3–5 vol%), subhedral to euhedral amphibole (3–5 vol%), accessory sphene, apatite, zircon and also opaque minerals (Fig. 8d, f).

The intermediate to felsic rocks within the granitoids (i.e. quartz diorite porphyry and tonalite porphyry) exhibit arenitization owing to strong alteration. They display microgranular porphyritic texture and are composed of large phenocrysts of subhedral to anhedral plagioclase (60–80 vol%), medium- to fine-grained anhedral quartz (20–25 vol%), prismatic K-feldspar (1–3 vol%), fine- to medium-grained biotite (3–5 vol%), anhedral to
euhedral amphibole (3–5 vol%), accessoryapatite, zircon and opaque minerals (Fig. 8c, e).

Mafic dykes cutting the granitoids have a thickness ranging from a few centimetres to c. 1 m and intrude all of the magmatic units of the granitoid body except the felsic dykes. The mafic dykes show a fine-grained microgranular porphyric texture and are composed of small to large phenocrysts (1–2 mm) of plagioclase (60–80 vol%), fine-grained quartz (5–10 vol%), K-feldspar (1–3 vol%), amphibole (20–25 vol%), biotite (3–5 vol%) and also accessory sphene, apatite and opaque minerals (Fig. 8g). Felsic dykes, ranging in thickness from a few centimetres to 2–3 m, intrude all of the units of the granitoid body. The felsic dykes are characterized by a fine-grained microgranular porphyric texture and include small to large phenocrysts of plagioclase (30–50 vol%), fine- to medium-grained, anhedral quartz (20–30 vol%), perthitic K-feldspar (20–30 vol%), biotite (c. 1 vol%) and opaque minerals. The mafic microgranular enclaves in different sizes display fine-grained microgranular porphyric texture and comprise prismatic to tabular plagioclase (60–80 vol%), fine to large phenocrysts of anhedral quartz (5–15 vol%), biotite (2–3 vol%), K-Feldspar (c. 1 vol%), subhedral to anhedral amphibole (5–10 vol%).

**Cover units**

Eocene shallow-marine clastic and carbonate sediments (Suludere Formation) accumulated in the study area (Fig. 3). The Malatya metamorphic unit was later overthrust southwards during syn- to post-Late Eocene to pre-Mid-Miocene time, based on available dating constraints (Perinçek & Közlu 1984; Yılmaz et al. 1993; Robertson et al. 1996).

The individual granitoid bodies cut both the Malatya metamorphic rocks and the Berit metaophiolite, but are not observed to cut the thrust that

![Fig. 7. Field views of the Berit metaophiolite: (a) ultramafic rocks; (b) banded chromite within ultramafic rocks; (c) Garnet-bearing cumulate gabbro; (d) Garnet-amphibolite; (e) close-up view of garnet amphibolite; and (f) folded cumulate gabbro.](image-url)
separates these two units. This suggests that the final thrust emplacement post-dated the granite intrusion.

The area was, in turn, dissected by Plio-Quaternary left-lateral strike-slip faults. As a result, the thrust contact between the Berit metaophiolite and the Malatya metamorphic unit was re-activated by high-angle shearing. Also, in the south, the Pütürge metamorphics and overlying terrigenous–carbonate sediments and volcanics of the Eocene Maden Group were transported into the area by several tens of kilometres of left-lateral strike-slip during the Plio-Quaternary (Herece 2008; Fig. 3).

**Whole-rock geochemistry**

**Doğanşehir granitoid**

Major, trace and rare earth element compositions of the Doğanşehir granitoids are given in the accompanying Supplementary Data. The granitoid
rocks define generally coherent trends from mafic to felsic on Harker (1909) variation diagrams, which can be explained by simple fractional crystallization (Karaoğlan 2005; Fig. 9). Al₂O₃, TiO₂, FeO, MgO, CaO, MnO and P₂O₅ contents decrease with increasing SiO₂ content, whereas K₂O and Na₂O increase with increasing SiO₂. The variation indicates that plagioclase, hornblende and magnetite played an important role in crystallization. As a whole, the granitoid rocks exhibit a weakly defined tholeiitic trend for the mafic facies of the intrusions but a typically calc-alkaline trend for the intermediate to felsic parts, utilizing Irvine & Baragars’ (1971) classification (Fig. 10a). The mafic to felsic facies, as distinguished by petrography, appear to be the products of two different magma compositions.

Fig. 9. Harker-type (Harker 1909) variation diagrams for the rocks from the Doğanşehir granitoid.
The molecular \(\text{Al}_2\text{O}_3/\text{CaO} + \text{Na}_2\text{O} + \text{K}_2\text{O} (\text{A}/\text{CNK})\) ratio ranges from 0.31 to 1.14 for the granitoid rocks, indicating both metaluminous and mildly peraluminous compositions (Fig. 10b; Shand 1943).

The granitoid rocks show I-type characteristics on the basis of the Chappel & White (1974) and Raymond (1995) classifications. Chondrite-normalized rare earth element (REE) patterns indicate light rare earth element (LREE) enrichment for the mafic to felsic facies (Fig. 11). Negative Eu anomalies, especially in the granodiorites and felsic dykes, are indicative of feldspar involvement during fractionation and/or melting (Rollinson 1993). The REE patterns are similar to those of modern arc settings (Pearce et al. 1984). The ocean ridge granite-normalized multi-element diagram of the granitoid rocks displays selective enrichment in large ion lithophile (LIL) elements (e.g. Rb, Ba, Th), coupled with depletion in high field strength elements (e.g. Ta, Nb, Zr, Hf, Sm, Y, Yb; Fig. 12). The multi-element patterns of the granitoid rocks are similar to those of volcanic arc granites (Pearce et al. 1984). In particular, the distinctly negative Ta/Nb anomalies are typical of magmas derived from subduction-metasomatized mantle (Wilson 1989).

A ternary plot of Hf–Rb–Ta for the granitoid rocks can be used to separate pre-collisional calc-alkaline arc-related intrusions from syn- to post-collisional intrusions and within-plate intrusions (Harris et al. 1986; Fig. 13a). The Doğanşehir granitoid rocks plot in the calc-alkaline volcanic arc field. On the Nb v. Ta diagram the granitoid rocks (Fig. 13b) are characterized by low Ta/Nb ratios that differ from within-plate granites and synorogenic granites.

### Berit metaophiolite

The granulites and garnet amphibolites of the Berit metaophiolite exhibit overall low SiO\(_2\)/Al\(_2\)O\(_3\) values, suggesting a cumulus origin for their protoliths. The granulitic rocks are characterized by relatively high contents of Ni, Cr, MgO and CaO v. low contents of TiO\(_2\), FeO, Zr, Nb, Y, Hf and REE, compared with garnet amphibolites. Chondrite-normalized REE patterns of the granulites and the garnet amphibolites are shown in Figure 14a. The REE contents of the garnet amphibolites are high compared with the granulites (i.e. 12.2–35.9 v. chondritic abundance). Light rare earth element patterns range from relatively enriched (La\(_N\)/Sm\(_N\) = 1.55) to depleted (La\(_N\)/Sm\(_N\) = 0.55), whereas HREE exhibit flat trends (Sm\(_N\)/Yb\(_N\) = 1.11–1.18; Fig. 14a).

The garnet amphibolites are compositionally similar to enriched mid ocean ridge basalts (E-MORB) and normalized mid ocean ridge basalts (N-MORB) (Sun & McDonough 1989). The N-MORB normalized multi-element diagram of the garnet amphibolites displays relatively smooth patterns with slight enrichment or depletion of LIL elements (Fig. 14b), similar to E- and N-MORB.

---

**Fig. 10.** Geochemical plots for different petrofacies within the Doğanşehir granitoid: (a) AFM diagram (after Irvine & Baragar 1971); (b) A/CNK v. A/NK diagram (after Maniar & Piccoli 1989).
In contrast, the granulitic rocks are highly depleted compared with N-MORB (Fig. 14b). They are characterized by an enrichment of LIL and Ta, K, Pb, Sr, suggesting element mobility during metamorphism.

**U–Pb geochronological data**

Zircons were extracted from the Doğanşehir granitoid rocks and analysed for U–Pb isotopic compositions using the laser ablation–multi-collector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS) method. Photomicrographs of the samples used in the analysis are shown in Fig. 8a–d. In most silicic intrusions, zircon and apatite represent the main U carrier phases and are the main accessory mineral phases in the Doğanşehir granitoid rocks.

Zircons that were analysed from sample FK13 take the form of 150–200 μm-long prismatic,
rounded or euhedral, colourless, transparent crystals. The CL images reveal that all of these zircons exhibit only one type of domain, which is characterized by well-developed oscillatory zoning; this implies co-magmatic crystallization of zircon (sample FK13a–m; Fig. 15). Thirteen prismatic and/or rounded zircons were dated by LA-MC-ICP-MS. The zircons yielded a concordia age of 45.7 ± 1.0 Ma, within analytical uncertainties (Fig. 16a). The remainder of the measurements could not be used owing to data reduction problems (i.e. high error, excess Pb, U or Pb loss). A summary of the analytical results is given in Table 1.

The zircons that were analysed from another sample (FK14) are 150–200 μm-long, prismatic to rounded, euhedral to subhedral, colourless transparent crystals. The CL images reveal that most of these zircons exhibit only one type of domain with well-developed oscillatory zoning, again implying co-magmatic crystallization of zircon (Fig. 15;
sample FK14a–j). One grain exhibits a rim surrounding an eroded core, while two crystals show sector zoning (sample FK14c; Fig. 15). Some of the edges of the grains have broken off. Nine prismatic and/or rounded zircons were dated by LA-MC-ICP-MS. These zircons yielded a concordia age of 46.9 ± 1.5 Ma (Fig. 16b). The remainder of the measurements could not be used owing to high error, excess Pb, U or Pb loss. A summary of the analytical results is given in Table 1.

The zircons analysed from a further granite sample (FK-15) are 200–300 μm-long prismatic, euhedral, colourless, transparent crystals. The CL images reveal that all of these zircons exhibit one type of domain with well-developed oscillatory zoning, again implying co-magmatic crystallization of zircon (sample FK15a–q; Fig. 15). Seventeen of the prismatic zircons were dated by LA-MC-ICP-MS, yielding a concordia age of 48.72 ± 0.68 Ma (Fig. 16c). The remainder of the measurements could not be used owing to high error, excess Pb, U or Pb loss (Table 1).

A sample of diorite (FK-31) contains zircons that are 200–300 μm-long, prismatic and rounded to euhedral, colourless and transparent. The CL images reveal that these zircons all exhibit one type of domain with well-developed oscillatory zoning (sample FK31a–g; Fig. 15). Seven of the prismatic zircons were dated by LA-MC-ICP-MS. These zircons yielded a concordia age of 50.8 ± 1.1 Ma (Fig. 16d; Table 1). Some of the analyses were again unusable owing to high error, excess Pb, U or Pb loss.

**Sm–Nd geochronological data**

Garnet, clinopyroxene, plagioclase and amphibole were separated and analysed for Sm and Nd in three samples. Sample B5b is a kyanite-rich granulite, which contains little kyanite. Sample FK17 is a garnet-rich rock with amphibole and plagioclase that experienced HT overprinting late in its metamorphic evolution. The analytical data are plotted as isochron diagrams (Fig. 17).

**Sample B5b.** This sample underwent strong depletion of LREE, as shown by the low Nd concentration of 0.367 ppm, at high Sm/Nd in the bulk (147Sm/144Nd = 0.387). The Sm–Nd isotope characteristics are comparable to, for example, oceanic Mg-rich cumulate gabbro. Hand-picked fractions of clinopyroxene and garnet and one whole-rock split were analysed. The garnet has an extremely low Nd concentration of 21 ppb. Despite having a nominally high 147Sm/144Nd ratio of 2.81, its Nd isotopic composition could not be determined precisely enough for geochronological purposes. For this reason the data points for clinopyroxene and the whole rock data for this sample are plotted together with those of sample B5 h (see Fig. 17a).

**Sample B5h.** One clinopyroxene fraction, one garnet fraction, and one whole rock-sample were analysed. Overall, the Sm–Nd systematics are similar to sample B5b but with less pronounced depletion of LREE (147Sm/144Nd = 0.286 in the whole rock). The element concentrations and the inter-mineral fractionation between the analysed garnet and the clinopyroxene (with respect to the Sm–Nd parent/daughter ratio) typically follow the trend of LILE-depleted mafic rocks, with low Nd (LREE) concentrations in garnet (0.11 ppm Nd). The spread of 147Sm/144Nd between these two phases ranges from 0.25 to 1.08, allowing the calculation of a viable internal mineral isochron age. A two-point Sm–Nd isochron regression of a Grt-Cpx pair by itself yields an age of 50.3 ± 3.2 Ma (2σ) (εNd = +8.1). Inclusion of the data point for the whole rock indicates Nd isotope equilibration in
the system, resulting in a best-fit isochron (mean square weighted deviation (MSWD) = 0.72; n = 3), with \( t = 50.6 \pm 3.1 \text{ Ma} \) and an identical initial Nd isotope composition of \( \varepsilon\text{Nd} = +8.0 \) (Fig. 17a). Combining all of the five data points from both samples (B5 h and B5b; see Fig. 17a) as a single regression results in an identical age and initial ratio, but with higher statistical uncertainty \( (t = 50.5 \pm 5.9 \text{ Ma}; \varepsilon\text{Nd} = +8.1; \text{MSWD} = 3.2 \) for \( n = 5 \)).

**Sample FK-17.** Two garnet splits from two different fractions were analysed (MF, Grt1, Grt2); that is, one amphibole fraction (Am), one plagioclase fraction (Pl) and the whole rock (wr). The REEs in the bulk rock are enriched by 1-2 orders of magnitude compared with samples B5a and B5h. Utilizing the whole rock alone, the individual regression calculations for each of the two garnet fractions resulted in identical two-point isochrons of \( 52.6 \pm 5.1 \text{ Ma} \) \( (\varepsilon\text{Nd} = +7.7; \text{wr–Grt1}) \) and \( 51.9 \pm 1.8 \text{ Ma} \) \( (\varepsilon\text{Nd} = +7.7; \text{wr–Grt2}) \). Inclusion of all of the three data points (Grt1–Grt2–wr) within a single regression calculation yielded a best-fit \( (\text{MSWD} = 0.06; n = 3) \) isochron age of \( 52.0 \pm 1.7 \text{ Ma} \), and an initial Nd isotopic composition of \( 0.512963 \pm 0.000005 \) \( (\varepsilon\text{Nd}(t) = +7.7) \).

As evident from the isochron plot (Fig. 17b), the data points both for amphibole and plagioclase are somewhat off the 52 Ma Grt–Grt–wr best-fit
Fig. 15. Cathodoluminescence images of the zircons from the Dogançehir granitoid. Lines show the laser paths with widths.
line, indicating some isotopic disequilibrium in the system. If included in the regression calculation, these phases produce a somewhat imprecise result ($MSWD = 3.0$ for $n = 5$) of $t = 53.0 \pm 4.5$ Ma, $\delta Nd(t) = 0.512960 \pm 0.000013$ ($\delta Nd(t) = +7.6$). Am–wr yields an imprecise two-point isochron age of $45.2 \pm 7.0$ Ma.

**Discussion and interpretation**

We consider several issues, including the formation and Eocene exhumation of the metaophiolitic rocks, the genesis and regional significance of the crosscutting Eocene calc-alkaline granitoids and the regional tectonic development.

**Table 1. Selected LA-MC-ICP-MS zircon U–Pb ages of the Doğansıheir granitoid rocks.**

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{207}Pb–^{235}U$ RSE (%)</th>
<th>$^{206}Pb–^{238}U$ RSE (%)</th>
<th>$\rho$</th>
<th>Age (Ma)</th>
<th>$2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK13</td>
<td>0.0459</td>
<td>0</td>
<td>0</td>
<td>+0.22</td>
<td>45.7</td>
</tr>
<tr>
<td>FK14a</td>
<td>0.0447</td>
<td>0.01</td>
<td>0</td>
<td>+0.11</td>
<td>47.1</td>
</tr>
<tr>
<td>FK14b</td>
<td>0.0552</td>
<td>0</td>
<td>0</td>
<td>+0.19</td>
<td>53.5</td>
</tr>
<tr>
<td>FK15</td>
<td>0.04870</td>
<td>0</td>
<td>0</td>
<td>+0.35</td>
<td>48.72</td>
</tr>
<tr>
<td>FK31</td>
<td>0.0523</td>
<td>0</td>
<td>0</td>
<td>+0.29</td>
<td>50.8</td>
</tr>
</tbody>
</table>

RSE, relative standard error.
The metaophiolitic rocks are divisible into two different components: first, the outcrop as a whole is dominated by a dismembered metaophiolite. The main protoliths of an originally intact ophiolite are present, that is, mantle harzburgite, cumulate gabbro, massive gabbro and extrusive rocks. However, metamorphosed sheeted dykes have not been observed (Fig. 7). The original stratigraphic order of a typical ophiolite units is generally maintained, although the contacts between the main lithological...
strongly elevated heat-flow in a slab window beneath an active magmatic arc. In the third interpretation, a slab broke off, or fragmented in a deep subduction setting, allowing hot asthenosphere to rise and metamorphose part of the overlying mantle wedge.

The Doğanşehir granulite facies rocks can be compared with the granulite facies rocks of the Jijal complex, northern Pakistan, which forms the lowest unit of the mid-Cretaceous (c. 110 Ma) Kohistan island arc (Peterson & Windley 1995; Burg et al. 1998; Garrido et al. 2006; Rehman et al. 2011). These granulites are inferred to have formed by intrusion of arc-related magmatic rocks into the core of an intra-oceanic magmatic arc (Tahirkheli et al. 1979; Bard et al. 1980; Bard 1983; Yamamoto 1993). In contrast, the Doğanşehir granulite facies rocks appear to have formed associated with a smaller magmatic arc in a near-continental margin setting.

Slab break-off is expected to be accompanied by cessation of steady-state subduction and a switch to thermally controlled uplift (e.g. Göğüş & Pysklywec 2008). However, the Early Eocene (52–50 Ma) cooling age of the granulate facies metamorphism corresponds to the timing of crustal extension, tectonic subsidence and back-arc related magmatism, as documented by the mainly Mid-Eocene Maden Group (see below).

Ridge subduction would require the existence of a Paleogene spreading centre after the regional Late Cretaceous ophiolite emplacement, for which there is presently no independent evidence. We consider that ridge subduction is the most likely explanation of the HT/HP metamorphism. Incipient slab break-off could also be a viable explanation, whereas genesis in an arc-backarc setting is unlikely, by itself, to have produced sufficiently high heat flow to generate eclogite/granulite facies metamorphism.

Granitoids and related rocks

Taken as a whole, the field relations, petrography and the geochemical data suggest that the Doğanşehir granulite rocks formed in an extensional setting above a subduction zone. Similar granitoid bodies of Eocene age are reported from the eastern continuation of the tectonic belt into the Bitlis–Zagros suture within the Sanandaj–Sirjan zone in Iran (Ramezani & Tucker 2003; Ghasemi & Talbot 2006; Badr et al. 2012).

Granitoid rocks have been reported elsewhere in Turkey, namely south-central Anatolia (Kadoğlu et al. 2006) and east-central Anatolia (Önal et al. 2005), where they are interpreted to have formed following the collision of the Tauride-Anatolide platform with the Kırşehir Massif (equivalent to
the central Anatolian crystalline complex) during Late Cretaceous–Early Cenozoic time (Görür et al. 1984; Dilek et al. 1999; Andrew & Robertson 2002; Clark & Robertson 2002; Robertson et al. 2009; Pourteau et al. 2010). Continent–continent collision in SE Anatolia is considered to have been complete by Mid-Miocene time (Şengör & Yılmaz 1981; Robertson & Dixon 1984; Robertson et al. 2007, 2012; Okay et al. 2010). The Doğanşehir granitoid rocks are, therefore, expected to pre-date final continental collision in SE Turkey.

In addition, the Middle Eocene Maden Group is widely interpreted to have formed behind a magmatic arc (Helete arc) related to subduction of the Southern Neotethys (Yigıtbaş & Yılmaz 1996; Robertson et al. 2006, 2007, 2012). The Maden Group unconformably overlies the Bitlis and Pütürge metamorphics and also the Berit metaporphite in the Berit Mountain area (Uludere window, Sülüklügöl; Perinçek & Kozlu 1984; Yazgan & Chessex 1991; Genç et al. 1993; Robertson et al. 2006, 2007). The Maden Group formed during Early–Middle Eocene time, after exhumation of the underlying Berit metaporphite. The driving force has been interpreted as rollback of the subducting Southern Neotethys (Robertson et al. 2006). The inferred regional extension could have triggered the exhumation of the Berit metaporphite, which was subsequently intruded by granitoid rocks as subduction continued.

Regional tectonic development

On the scale of SE Turkey there are two main alternative palaeogeographical interpretations (see Robertson et al. 2012, 2013). The first is that the Bitlis and Pütürge continental units represent part of the northern margin of the Arabian continent, while the Malatya–Keban microcontinent rifted away northwards to open a single Southern Neotethyan Ocean (Yazgan & Chessex 1991; Yılmaz 1993; Yılmaz et al. 1993). In this case, the Berit metaporphite formed within the Southern Neotethys Ocean, probably during the Late Cretaceous, and was later emplaced northwards beneath the southern margin of the Malatya–Keban microcontinent, from where it was exhumed and intruded by granites during the Eocene. In this interpretation the ophiolitic rocks and melange exposed beneath the Eocene (early Mesozoic?) meta-sedimentary and metavolcanic rocks is exposed at the base of the thrust stack in the Uludere window of the Berit Mountain area, to the west of our study area (Fig. 2). This unit could be genetically related to the Pütürge metamorphic rocks (Perinçek & Kozlu 1984), possibly as a rift-related unit or an accretionary complex (Robertson et al. 2006).

An alternative interpretation, which we favour, is that the Pütürge metamorphics represent a continental fragment that did not originally extend as far west as our study area (Fig. 18). If correct, the lithologies exposed beneath the Malatya metamorphic unit thrust sheet, both to the north (e.g. Doğanşehir area) and the south (e.g. Helete area) rifted from the Arabian continent during the Triassic. As a result, oceanic crust was formed to the north of this continental crust, termed the Berit ocean (Robertson et al. 2012, 2013) and also to the south, namely the Southern Neotethys.

On a more local scale-one interpretation is that the Pütürge metamorphic rocks originally extended westwards through our study area. The Pütürge metamorphic rocks are mainly exposed to the east of our study area. However, a small sliver of Pütürge metamorphic rocks is exposed in the south of our study area (Fig. 3). In addition, a slice of undated (early Mesozoic?) meta-sedimentary and metavolcanic rocks is exposed at the base of the thrust stack in the Uludere window of the Berit Mountain area, to the west of our study area (Fig. 2). This unit could be genetically related to the Pütürge metamorphic rocks (Perinçek & Kozlu 1984), possibly as a rift-related unit or an accretionary complex (Robertson et al. 2006).

An alternative interpretation, which we favour, is that the Pütürge metamorphics represent a continental fragment that did not originally extend as far west as our study area (Fig. 18). If correct, the lithologies exposed beneath the Malatya metamorphic unit thrust sheet, both to the north (e.g. Doğanşehir area) and the south (e.g. Helete area)
of the intervening mountainous exposure of Malatya metamorphic rocks (Fig. 2) can be interpreted as different parts of a single tectonic unit that was finally over-ridden by the Malatya metamorphic thrust sheet. In this context, we note that the Pütürge metamorphic rocks to the south of the Sürgü Fault were displaced tens of kilometres westwards related to left-lateral neotectonic faulting. However, the age and tectonic affinities of the sedimentary and metavolcanic rocks exposed at the base of the thrust stack in the Uludere window remain unknown and it cannot be excluded that they represent a fragment of the Pütürge massif.

In one interpretation, Neotethys in the easternmost Mediterranean region as a whole was completely closed during latest Cretaceous time (Hall 1976, Berberian & King 1981; Yazgan & Chessex 1991; Alavi 1994; Beyarslan & Bingöl 2000). This model can now be excluded because subduction-related calc-alkaline magmatism was still taking place during the Eocene. However, the age data could be consistent with two other interpretations. First, the ocean closed by latest Eocene time soon after the Eocene magmatism (e.g. Jolivet & Faccena 2000; Agard et al. 2005; Rolland et al. 2012). Second, the ocean closed during the Early–Mid Miocene, the time of the final emplacement of the Tauride allochthon onto the Arabian foreland, which is our preferred interpretation (Aktaş & Robertson 1990; Yılmaz
Any tectonic–magmatic interpretation also needs to take account of the Eocene andesitic, arc-type volcanic rocks that structurally underlie the Malatya metamorphic unit to the south of the area studied (i.e. Helete arc, see Figs 2 & 9). Calc-alkaline tuffaceous volcanic rocks there (Helete unit) are stratigraphically over lain by Early Eocene Nummulites-rich carbonates (Robertson et al. 2006). These Eocene volcanics are interpreted to reflect arc-type magmatism related to the later stages of subduction of the Southern Neotethys (Yıldırım & Yılmaz 1991; Yılmaz 1993; Yılmaz et al. 1993; Yiğitbaş & Yılmaz 1996; Robertson et al. 2006, 2007, 2012).

In our proposed interpretation the Southern Neotethys continued to subduct northwards after the Late Cretaceous, giving rise to the Eocene Helete arc-type magmatism. If a spreading ridge formed in the Late Cretaceous, giving rise to the Eocene Nummulites-rich carbonates (Robertson et al. 2006). These Eocene volcanics are interpreted to reflect arc-type magmatism related to the later stages of subduction of the Southern Neotethys (Yıldırım & Yılmaz 1991; Yılmaz 1993; Yılmaz et al. 1993; Yiğitbaş & Yılmaz 1996; Robertson et al. 2006, 2007, 2012).

(5) The Eocene granitoids were emplaced in an extensional setting that is likely to reflect southward subduction zone roll-back.

(6) The Eocene granitoid magmatic rocks could have been emplaced in an area where little, if any, rifted continental crust (i.e. Pütürge metamorphic unit) intervened between the Arabian and Tauride continents.

This paper results from several related research activities; that is, the first author’s MSc and PhD theses, the latter aided by an International Research Fellowship Programme, supported by TUBITAK–BİDEB. Funding to the second author was provided by TÜBA (Turkish Academy of Sciences) in the frame of the Young Scientist Award Programme TÜBA-GEBIP (2003-111) coupled, more recently, with funding from a TUBITAK research project (no. 106Y231). In addition, we would like to thank Monika Horschinik (University of Vienna) for performing the Rb–Sr and Sm–Nd analyses and Volker Höck (Salzburg University) for discussion. Related field work by Alastair Robertson and Osman Parlak was aided by the DARIUS Programme.

References


Faculty of Mines (ITU) on Earth Sciences and Engineering, 16–18 May 2002, Abstract 133.


Şengör, A. M. C., Ozeren, S., Genç, T. & Zor, E. 2003. East Anatolian high plateau as a mantle-supported,


