Mid-Term Exam Questions

9th April 2018

1. Use stereographic projections to answer the following questions.
a) Plot the following planes as great circles (β diagram) and π poles: $27 / 18 \mathrm{NW}, 120 / 87 \mathrm{NE}$ and $138 / 65 \mathrm{SW}$.
b) Horizontal bedding has been cut by cleavage at $33 / 64 \mathrm{NW}$. Find the trend and plunge of the intersection lineation.
b) Plot the lines $28 / 68$ NE, $57 / 36$ SW, $10 / 0$, vertical line and $132 / 8$ SE .
2. Provide text and diagrams to the following questions
a) Draw a 3D diagram of a fold showing anticline/antiform, syncline/synform, fold/hinge axis, fold limbs, fold axial plane.
b) Explain pure shear and simple shear with the help of diagrams
c) What are the factors that control ductile versus brittle behaviour of the rocks, and how do they affect ductile versus brittle behaviour?
e) What are the crenulation cleavage and axial planar cleavage.
f) What is the relation between cleavage plane, mineral streching lineation and the axes of the finite strain ellipsoid. Explain your answer with the help of a diagram.
g) What is ellipticity and how is it calculated?
3) The pentagon shown below is deformed by simple shear with angular shear strain values shown.

$\psi=50$

a) Calculate the longitudinal and angular changes along the line $A B$, and $C D$ and show them on $e-\gamma$ and $\gamma-\gamma$ diagrams.
b) What are the incremental longitudinal strains along the line $A B$ between stages II and III?
c) What is the relation between the shear strain applied to the pentagon and that observed along CD. Why is there such a relationship?
d) Assuming that the line CD is deformed in 2 minutes between the stages II and IV, calculate the strain rate.

8 Bonus questions:

1. What is the average thickness of continental crust? $30-3 \mathrm{skm}$
2. What is the main geological reason for rapid changes in the sea-level?
```
glaciation
```

3. What are the two most common elements in the crust? $\mathrm{O}_{\mathrm{i}} \mathrm{Si}$
4. What happened on Earth 66 million years ago? meteor impact
3) a)

	ψ	f	$A B$	$e_{A B}$	$C D$	$e_{C D}$	$\psi_{A B} f_{A B}$	$\psi_{C D}$	$f_{C D}$
I	0	0.00	27	0.00	26	0.00	0	0	0
0									

C) shear strain along $C D$ is the some as applied shear strain because line $C D$ is perpendicular to the shear direction
d)

$$
\begin{aligned}
& e_{C D}^{\bar{I}-\bar{V}}=\frac{52-30}{30}=0.7 \overline{3} \\
& \begin{aligned}
\dot{c}=\frac{e}{t} & =\frac{0.7 \overline{3}}{2 \times 60} \mathrm{~s}^{-1} \\
& =0.0061 \mathrm{~s}^{-1} \\
& =6.1 \times 10^{-3} \mathrm{~s}^{-1}
\end{aligned}
\end{aligned}
$$

