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mensional simulation of nine unequal-sized bubble interaction. 50
equally spaced contours are shown in the middle plane of the com-
putational box in y direction. Time progresses from left to right.
The nondimensional time, t*, is equal to 6.66, 40, 66.66, 80, 100,
114.2. The nondimensional time is scaled by a,/U,, and tempera-
ture is scaled, after subtracting a reference temperature, by a,VT,,.
Computational domain size is z/a, = 8, y/a, = 8 and z/a, = 16. . .

Temperature contours for selected frames from the fully three di-
mensional simulation of nine unequal-sized bubble interaction. 50
equally spaced contours are shown in the middle plane of the com-
putational box in z direction. Time progresses from left to right.
The nondimensional time, t*, is equal to 6.66, 40, 66.66, 80, 100,
114.2. The nondimensional time is scaled by a,/U,, and tempera-
ture is scaled, after subtracting a reference temperature, by a,VT,,.
Computational domain size is z/a, = 8, y/a, = 8 and z/a, = 16. . .

(a) Migration velocity versus time (b) z component of the centroid of
bubbles versus time, for 9 unequal-sized-bubble simulation. Velocity
is scaled by U,,, time by a,/U,, and z axis by average bubble radius,
a,. Even numbered bubbles are the larger ones. . . . . . .. .. ..

(a) x — z trajectories of the center of mass of the bubbles (left). (b)
y — z trajectories of the center of mass of the bubbles (right). Both
axis are scaled by the average bubble radius, a,. . . . .. .. .. ..
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CHAPTER I

INTRODUCTION

1.1 Motivation

Bubbles and drops in an ambient fluid with a temperature gradient will move
toward the hot region due to thermocapillary forces. Surface tension decreases with
increasing temperature and the nonuniform surface tension of the bubble surface
causes shear stresses that are transmitted to the outer fluid by viscous forces, thus
inducing a motion of the bubble in the direction of the thermal gradient. In space,
where buoyancy forces are negligible, thermocapillary forces can be dominant. For
material processing in microgravity, thermal migration can be used, for example,
to remove gas bubbles or liquid drops in melts before solidification. It has been
suggested that it is possible to produce high quality glass in space because of the
ability to process it without a container (Uhlmann (1982)). However, bubbles due to
chemical reactions have to be removed to achieve this. Thermocapillary migration
could provide a way to do this in the absence of gravity. Vapor bubbles may also
form due to evaporation in liquid-rockets which are used to power space vehicles and
space probes (Ostrach (1982)). Similarly, the cooling system of the Space Shuttle
uses liquids from which gas bubbles might form. The bubbles in these systems

should be managed in order to have a properly working systems. Thermocapillary



migration can also be important in the design of two-phase heat exchangers for space
applications. Accumulations of bubbles on heated surfaces can act like an insulator
and prevent heat transfer to the surface. To understand the interaction of many
bubbles during thermocapillary induced motion and to investigate the effect of the
various governing parameters, here we solve the full Navier-Stokes equations and the

energy equation for both fluids, computationally.

1.2 Historical Background

In this section, we review some of the previous experimental, theoretical, and
numerical investigations that have been carried out on thermocapillary migration of
bubbles and drops.

Thermal migration of gas bubbles was first examined by Young et al. (1959),
both theoretically and experimentally. Young et al. were able to hold a buoyant
gas bubble stationary by applying a downward temperature gradient, found a first
order approximation to the terminal velocity in the limit of negligible convective
transport of momentum and energy, under the assumption that the bubble maintains
a spherical shape. They also verified that the temperature gradient required to hold
a bubble stationary was proportional to the bubble radius and that this gradient is
independent of viscosity as predicted by their theoretical model.

Hardy (1979) performed experiments similar to Young et al. He reduced some of
the experimental inaccuracies in the experiments of Young et al. and also obtained
the temperature gradient needed to counter the buoyancy effect. His results were in
good agreement with the theoretical predictions of Young et al.

Thompson (1979) and Thompson et al. (1980) used a NASA zero gravity drop

tower to do experiments in 5.2 seconds of free fall. They used nitrogen bubbles in



different host fluids. The results showed that the thermocapillary motion of bub-
bles occured in each test fluid except distilled water. Thompson suggested that the
phenomena did not occur in distilled water due to surfactant contamination.

Meritt and Subramanian (1988) performed experiments on bubbles in silicon oil
in a downward temperature gradient, overcoming the buoyant rise of the bubble.
Although the bubbles in those experiments increased in size by as much as 100%
during the experiment, due to the mass transfer from the liquid, their results showed
good agreement with the work of Young et al. The surface tension, which was ex-
tracted from the experiments, was also in good agreement with earlier measurements
of Hardy (1979).

Experimental investigations of the thermocapillary migration of liquid drops is
a more recent field of research than work using gas bubbles. Wozniak and Siekman
(1989) carried out a low gravity thermocapillary migration experiment on liquid drops
in the Furopean sounding rocket program. They reported that for high Reynolds
(Re) and Marangoni (Ma) numbers, the measured migration velocities were close
to the prediction given by Subramanian (1983). For intermediate non-dimensional
numbers, however, they observed larger deviations from the theoretical model of
Subramanian (1983).

Barton and Subramanian (1989) have completed measurements of drop migration
speeds in circumstances where convective transport effects were negligible. These
results are generally in agreement with the predictions of Young et al.

Rashidna and Balasubramaniam (1991) carried out experiments on drops in sil-
icon oil using density matched systems. Drops moving towards the hot region in
a vertical temperature gradient were observed. After a long time, however, drops

began moving towards the cooler side. They attributed this surprising behavior to



mass transfer between the phases, causing the drops to become more dense than the
host-fluid.

Bratukhin (1976) derived an analytical solution for the thermocapillary flow of
bubbles and drops based on a power series expansion in terms of the Marangoni
number, and found the particle velocity, the fluid velocity, the temperature field,
and the pressure field by using an Oseen approximation. Thus, his results are valid
for small Reynolds numbers, to O(Re). In zero gravity, and in the limit of zero
Reynolds number, his formula is the same as the one found by Young et al.

Later, Subramanian (1981) obtained the migration velocity of a gas bubble for
small, but nonzero convective heat transfer by using asymptotic expansion technique.
In his analysis, it 1s assumed that the bubble is nondeformable and that the Reynolds
number is small enough to be taken as zero. The migration velocity of the bubble is
given up to O(Ma?). As the results show, the effect of convective transport of energy
is to reduce the migration velocity of bubbles. Subramanian (1983) later extended
his work to liquid drops. In the proper limit, his results give the correct value of
the migration velocity for gas bubbles. For certain physical properties, it was shown
that the drop velocity can be higher with increasing Marangoni number; in contrast,
for bubbles, the effect is always a reduction in the migration velocity.

Balasubramaniam and Chai (1987) have given an exact solution for the migration
velocity of a single drop in the limit of negligible convective transport of energy. They
also computed the shape of the droplet, when deformations from a spherical shape
are small. Their results are in agreement with previous results, such that the bubbles
tend to deform oblately, and that droplets tend to elongate in the flow direction while
droplets of the same density as the ambient fluid do not deform.

Shankar and Subramanian (1988) reconsidered the thermocapillary migration of



a gas bubble in the limit of a zero Reynolds number at values of the Marangoni
number ranging from 0 to 200, solving the energy equation by a finite difference
method. They confirmed that increasing Marangoni number decreases the migration
velocity of a gas bubble and presented a very simple formula for the bubble migration
velocity for Ma > 25, by fitting their numerical solution.

Siekman and Szymeczyk (1988) numerically solved the thermocapillary motion for
a gas bubble, accounting fully for the convective transport of energy and momentum
while assuming a nondeformable bubble. Their results show that convective energy
and momentum transport effects tend to reduce the bubble migration velocity.

Balasubramaniam and Lavery (1989), extended the work of Siekman and Szym-
czyk (1988) and, for a large range of non-dimensional numbers, numerically solved
the problem for an isolated axisymmetric spherical bubble. They found that the
scaled bubble velocity is more sensitive to the Marangoni number at a fixed Reynolds
number than to the Reynolds number at a fixed Marangoni number.

Haj-hariri et al. (1990) have examined the inertial effects on the thermocapillary
velocity of a drop. It was found that with the convective transfer of heat neglected,
droplets with densities higher /lower than the outside liquid deform to prolate/oblate
spheroidal shapes, at small values of the Capillary and Reynolds numbers. It was
shown that the migration velocity could increase, decrease, or remain unchanged
depending on the ratios of physical properties.

Chen and Lee (1992) investigated numerically the effect of surface deformation
on the terminal velocity of a single bubble and concluded that surface deformation
reduces the terminal velocity considerably.

Other investigators have examined the thermocapillary motion for two bubbles or

drops, but only for small Marangoni and Reynolds numbers. Meyyapan et al. (1983)



investigated the motion of two bubbles moving along their line of centers. They
found that each bubble moves with the same velocity that it has if it is isolated.
Their analysis also assumed that convective transport of energy and momentum is
sufficiently small so it can be neglected and that the bubbles do not deform. When
the bubbles differed in size, the smaller bubble moved faster than if isolated while
the larger bubble moved slower. However, these interaction effects generally were
small.

Meyyapan and Subramanian (1984) extended the analysis of Meyyapan et al.
(1983) to the motion of two bubbles oriented arbitrarily with respect to the tem-
perature gradient, using an approximate method. They found that a small bubble
does not affect the motion of a larger bubble to any significant degree. It was further
shown that if two bubbles are close and oriented with their line of centers perpen-
dicular to the temperature gradient, the small bubble sometimes moves opposite to
the direction of the temperature gradient.

Feuillebois (1989) has given an exact solution for the problem considered by
Meyyapan et al. (1983).

The motion of two liquid drops oriented arbitrarily with respect to a tempera-
ture gradient was examined theoretically by Anderson (1985) in zero Reynolds and
Marangoni number limit. In his analysis, where the method of reflections was used
to solve the governing equations, the convective transport of energy and momentum
as well as gravitational effects were neglected. He also utilized his two-drop theory
to find the effect of the volume fraction of the drops on the mean drop velocity in
a bounded suspension. It is shown that the mean velocity of a suspension is lower
than for a single drop.

Acrivos et al. (1990) have studied the thermocapillary motion induced in a cloud



of bubbles by a uniform temperature gradient under the assumptions that the bubbles
are all the same size, that the surface tension is high enough to keep the bubbles
spherical, and that the bubbles are non-conducting. It was shown that in a cloud of n
particles surrounded by an infinite expanse of fluid, the velocity of each sphere under
creeping flow conditions is equal to the velocity of an isolated particle, unchanged
by interactions between particles.

Keh and Chen (1990) considered the axisymmetric thermocapillary motion of
two spherical droplets in a constant applied temperature gradient along their line of
centers under creeping flow conditions. It was shown that for the thermocapillary
motion of two identical liquid droplets, both migrate faster than the velocity they
would posses if isolated. For the case of two gas bubbles with equal radii, there was
no particle interaction for all separation distance.

Keh and Chen (1992) investigated the axisymmetric thermocapillary motion of
a chain of spherical droplets along their line of centers in a quasi-steady limit of
conservation of energy and momentum by a combined analytical-numerical study.
For the case of two droplets, the migration velocity of each drop were confirmed.
For the special case of multiple gas bubbles, it was demonstrated that the migration
velocity of each bubble is unaffected by the presence of the others if all the bubbles
have identical radii.

Zhang and Davis (1992) examined the pairwise collision rate of small spherical
drops undergoing thermocapillary migration in a dilute dispersion under creeping
flow conditions by using a trajectory analysis. It was found that increases in the vis-
cosity and/or thermal conductivity of the drop fluid decrease the collision efficiency,
described as the effects of the drop interaction on collision rate, due to the effects of

hydrodynamic and thermocapillary interactions.



Strape (1992) analytically examined the interaction between bubbles in the zero
Marangoni and Reynolds number case. He also assumed that the Capillary number is
negligible so that the bubbles are always spherical. He has given the trajectories for
the two-bubble case in these limits. He also found that for a statistically homogeneous
cloud of bubbles, the bubble collision rate increases with the standard deviation of
the bubble size distribution.

Wei and Subramanian (1993) theoretically investigated the quasi-static thermo-
capillary migration of a chain of two and three spherical bubbles in an unbounded
fluid with a uniform temperature gradient, at the limit of vanishing Reynolds and
Marangoni number. They explored the flow topology and identified reverse flow
wakes.

Keh and Chen (1993) considered the more general problem of droplet interactions
in thermocapillary migration. They also solved this general problem in the limit of
zero Reynolds and Marangoni numbers and showed that the terminal velocity of a
drop is not affected by the presence of other drops if they all are equal in size. They
have also examined the effect of volume fractions on the average thermocapillary
migration velocities in a bounded dilute suspension.

The interaction between bubbles and drops and plane surfaces has been the sub-
ject of other investigations. Meyyapan et al. (1981) investigated theoretically the
slow axisymmetric thermocapillary migration of a spherical gas bubble normal to a
solid plane surface and a free liquid surface. Their calculation showed that the effect
of the plane surface is to decrease the bubble’s migration velocity. They also demon-
strated that the distance at which the bubble starts to be affected by the presence of
the plane surface is much smaller than for a gravity driven motion. They explained

this behavior in terms of the decay rates of the disturbance velocity fields.



A gas bubble in a temperature gradient with an arbitrary orientation with respect
to the plane surface, was studied by Meyyapan and Subramanian (1987), extending
the work of Meyyapan et al. (1981). Their results show that the presence of the
planar surface always reduces the migration velocity of the bubble. The highest
reduction is observed when the bubble moves normal to the plane surface.

Ascoli and Leal (1990) considered the thermocapillary migration of a deformable
drop moving normal to a planar wall and found that the deformation increases with
increasing effective Capillary number.

Chen and Keh (1990) examined the migration of a drop towards a planar surface
under creeping flow conditions. It was found that for the motion of a droplet normal
to a solid plane, the effect of the plane surface is to reduce the migration velocity
of the droplet. For the case of droplet migrating toward a free surface, the droplet
velocity can be either greater or smaller than that which would exist in the absence
of the plane surface, depending on the relative thermal conductivity of the droplet
and its relative distance from the plane.

Chen et al. (1991) examined the steady, creeping, thermocapillary migration of
a spherical fluid particle in a tube owing to an imposed axial temperature gradient
under conditions of axisymmetry, negligible thermal convection and an insulated tube
wall. They studied the influence of wall-fluid particle hydrodynamic and thermal

interactions in determining the thermocapillary migration velocity.

1.3 Current Work

The literature on thermal migration is more extensive for single bubbles or drops
than for the interaction of many bubbles and drops. In most previous work, it has

been assumed that the bubbles do not deform and that convective transfer can be
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neglected. Here, we present results for both single and several bubbles and drops
by solving the full governing equations numerically in two and three dimensions. In
our computations, we do not impose any restriction on the shape of the bubbles,
although we find that the bubbles remain nearly spherical in most cases.

The full Navier-Stokes equations, as well as the energy equation for the tem-
perature distribution, are solved for the fluid inside and outside of the bubbles by
a Front Tracking/Finite Difference Method. The material properties of the bubble
fluid and the ambient fluid are different, and we assume temperature dependent sur-
face tension. We explore the dependence of the thermal migration velocity and the
deformation on the various non-dimensional parameters.

The definition of the physical problem and the mathematical formulation, as well
as the governing parameters, are covered in Chapter II. Chapter II also includes a
description of the numerical method used to solve the governing equations and the
validation of the two and three dimensional code.

In Chapter III, we start with the rise of a single bubble and present the effect
of the various governing parameters on the migration velocity and the deformation
of the bubble. Then, we move to the interaction of two, two-dimensional bubbles
and study the effect of the initial condition of bubbles on their interaction. The
interaction between two bubbles or two drops is then explored in detail by two and
three dimensional simulations in the rest of Chapter III.

We present the behavior of large numbers of bubble systems in Chapter 1V.
In the first part of Chapter 1V, we consider simulation of a cloud of equal-sized
bubbles. The evolution of six and sixteen equal-sized bubbles is explored by two-
dimensional simulation. Then, the interactions of nine bubbles is investigated by fully

three-dimensional simulations. Similar to the mono-dispersed case, the behavior of
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a polydispersed system is explored in the rest of Chapter IV. First, the interaction
of six and sixteen unequal-sized two-dimensional bubbles is presented, followed by
fully three-dimensional computation of nine, unequal-sized bubbles.

Chapter V contains the conclusions, and suggestions for future work on the ther-

mocapillary migration of bubbles and drops.



CHAPTER I1

FORMULATION AND NUMERICAL METHOD

The physical problem and the computational domain is sketched in Figure 2.1.
We have a wall bounded region in the z direction and the domain is periodic in the
x direction. The bubble has constant physical properties denoted by the subscript ¢
and the ambient fluid has properties denoted by the subscript o. The surface tension
varies along the interface. The top wall is hot and the bottom wall is cold, and

initially, the temperature is linearly increasing in the z direction.

2.1 Governing Equations

The Navier-Stokes equations are valid for both fluids, and a single set of equations
can be written for the whole domain as long as the jump in viscosity and density is
correctly accounted for and surface tension is included. The Navier-Stokes equations,

in conservative form are as follows:

ag;tu + V(puu) = —=Vp + V- u(Vu 4+ Vu’)
+/ §(x — x;)(own + 224) ds (2.1)
B Js

In the last term, we include the surface tension forces acting on the interface as a

body force by representing it as a delta function. Here, u is the velocity field, p is

12
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the density, p is the pressure, p is the viscosity, o is the surface tension, k is the
mean curvature, n is a unit normal vector, t is a unit tangent vector, ¢ is the delta
function, x; is the position of the interface and the integral is over the interface
separating the fluids.

The energy equation can be written as follows:

oT
pCy (E + V- (uT)) =V (kVT), (2.2)
where T' is the temperature and k& and ¢, are the coefficients of heat conduction and
heat capacity, respectively. Both fluids are immiscible and the physical properties

are constant in each fluid. Therefore, the equations of state for density, viscosity,

heat capacity and heat conduction can be written as follows;

Dp Dyu
2 —0: =0 2.3
Dt ’ Dt (2:3)

Dk Dc
S —_* _. 2.4
Dt ' Dt (2.4)

The incompressibility constraint gives the divergence free velocity field condition as

follows;

V.u=0. (2.5)

If we combine the momentum equation and the incompressibility condition, this leads
to a non-separable elliptic equation for the pressure. Since the physical properties
are taken to be constant, the density field is independent of temperature variation
and we have therefore excluded natural convection in this problem.

We take the surface tension to be a linearly decreasing function of the tempera-

ture:

o=o0,+op(T,—1T) (2.6)

where

or = —(do/dT) = constant
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and o, is the surface tension at a reference temperature 7T,. In many cases, o can
be assumed to be a constant and for simplicity we assumed that it is so here. or is
positive for most fluids (see Braun et al. 1993 for negative value of 7). Therefore,
increasing temperature reduces the surface tension. In a nonuniform temperature
gradient, the cold side of the bubble will have a higher surface tension than the
warm side and it will therefore pull surface from the warm side, where surface will
be generated, around the bubble to the cold end, where the surface will disappear.
This movement of the surface, with its viscous drag upon the outer fluid, will pick
up a sheet of liquid and jet it off the cold back end. By jetting liquid one way, the
bubble propels itself up the temperature gradient. Thermodynamically, such a self-
propelling bubble is a heat engine. Whenever surface is created, heat is absorbed,
and whenever surface is destroyed heat is given off. Therefore a swimming bubble

absorbs heat at its hot end and rejects heat at its cold end (Trefethen, 1963).

2.2 Non-dimensional Numbers

Following other investigators we present our results in non-dimensional variables.

The flow is governed by the following variables;

4, 0oy floy Pos Cpoy k07 Hiy Pis Cpiy kia oT, and VT.

Here a is a typical bubble or drop radius, o, is the average surface tension, p is the
viscosity, p 1s the density, ¢, is the coefficient of heat capacity, k is the coeflicient
of heat conduction, o7 is the rate of change of surface tension with temperature,
and VT, is the undisturbed temperature gradient in the ambient fluid far from
the bubble. The physical properties of the bubble are denoted by the subscript

¢ and those of the ambient fluid by the subscript o. This leads to the following
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non-dimensional numbers;

7 7 7 kz 2
p_a M_a CLa PR Ma = e VTOO,
Po Mo Cpo ko ol
2
Re = Z1P% g and Ca= 220y,
T oL
where,
k,
o, =
PoCpo

Here, Ma is the Marangoni number, Re is the Reynolds number, and Ca is the
average Capillary number. The average Capillary number is computed at the middle
of the domain in the vertical direction. These three non-dimensional numbers are
based on the properties of the outer fluid. Sometimes, the Prandtl number, Pr, =
Vo/a,, is used instead of the Re number. «, is the thermal diffusivity of the outer
fluid. As is usually done in the literature for Marangoni bubble motion, we define a
reference velocity by:
ora

U, = VT..
fo

The non-dimensional numbers can now be written in a much simpler form:

The Marangoni number is the Péclet number as it is usually used in the heat transfer
literature and is the product of the Prandtl and the Reynolds number. When we
present our results, velocities will be scaled by the reference velocity defined above
and time will be scaled by the ratio of the initial bubble radius and the reference
velocity. In the creeping flow regime, it is more appropriate to use diffusion time scale
since the convection is negligible. Either viscous time scale or thermal time scale can

be used. When the Prandt]l number is very small than unity, the thermal field attains
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its steady-state value while the fluid motion is just beginning to develop. Therefore,
the flow is governed by the viscous time scale. When the Prandtl number is very large
than unity, the fluid motion becomes quasi-static with a slowly-developing thermal
field. Hence, the thermal time scale determines when the bubble reaches a steady
state as pointed out by Dill (1988).

When the non-dimensional numbers are either small or large, several interesting
limiting cases arise. At the zero Marangoni number limit, the energy equation reduces
to the Laplace’s equation for temperature since the convective transport of energy can
be neglected in this case. Hence, the problem becomes a quasi-static problem. For a
gas bubble, when the physical properties of the gas are much smaller than those of
the ambient fluid, the energy transfer on the bubble surface can be neglected. This
implies that the isotherms should be perpendicular to the bubble surface. Small
Prandtl number results apply to liquid metals and large Prandtl number to heavy
oils. Liquids have Prandtl numbers on the order of unity. Typical values are Pr=7
for water and Pr=0.72 for air, at standard conditions. The zero Reynolds number
limit reduces the momentum equation to the steady case since inertial effects can be
neglected in this limit.

When the Marangoni number is large, the convective terms in the energy equation
are dominant. In this limit, conduction of energy can be neglected. If the Reynolds
number is of the order of unity, large Prandt]l numbers correspond to high Marangoni
numbers. Heavy oils, like silicon oil, have large Prandtl numbers, on the order of
10°.

In the limit of zero Capillary number, it can be assumed that deformation from
a spherical shape is negligible. As the Capillary number increases, however, defor-

mation of the bubble increases. If the deviation from a spherical shape is large,
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the scaled terminal velocity of the bubble/drop decreases. In the zero Capillary,
Marangoni and Reynolds number limit, the scaled migration velocity of a gas bubble
is known to be 0.5.

In order to report the deformation of a bubble in later chapters, we define the

deformation of a bubble as follows;

1—c¢
1 +e¢

where

minor axis of the bubble

‘= major axis of the bubble’

In the simulations presented in this thesis, we include all terms in the governing

equations and do not impose any restrictions inherent for these limiting cases.

2.3 Numerical Method

The numerical technique used for the simulations presented here is the Immersed
Front Tracking method for multi-fluid flows developed by Unverdi (1990) and dis-
cussed by Unverdi and Tryggvason (1992 a,b). To solve the Navier-Stokes equations
we use a fixed, regular, staggered grid and discretize the momentum equations using
a conservative, second order centered difference scheme for the spatial variables and
an explicit second order time integration method. We have used first order time
integration in other problems and generally find little differences for the relatively
short simulation times of interest here. The effect does show up in long time simu-
lations, however, and is usually accompanied by a failure to conserve mass. In the
computations discussed here, mass is always conserved within a fraction of a percent.
The interface is represented by separate computational points that are moved by in-

terpolating their velocity from the grid. These points are connected to form a front
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that i1s used to keep the density and viscosity stratification sharp and to calculate
surface tension forces. At each time step, information must be passed between the
front and the stationary grid. This is done by a method that has become known as
the Immersed Boundary Technique and is based on assigning the information car-
ried by the front to the nearest grid points. While this replaces the sharp interface
by a slightly smoother grid interface, all numerical diffusion is eliminated since the
grid-field is reconstructed at each step.

The original Immersed Boundary Technique was developed by Peskin and collab-
orators (see e.g. Peskin (1977)) for homogeneous flows. The extension to stratified
flows includes a number of additional complications. The first is that density now
depends on the position of the interface and has to be updated at each time step.
There are several ways to do this but we use a variant of the method developed by
Unverdi (1990) where the density jump at the interface is distributed onto the fixed
grid to generate a grid-density-gradient field. The divergence of this field is equal to
the Laplacian of the density field and the resulting Poisson equation can be solved
efficiently by a Fast Poisson Solver. The particular attraction of this method is that
close interfaces can interact in a very natural way, since the grid-density gradients
simply cancel. Therefore, when two interfaces come close together the full influence
of the surface tension forces from both interfaces is included in the momentum equa-
tions, but the mass of the fluids in the thin layer between the interfaces—which is
very small—is neglected. A second complication is that the pressure equation now
has a nonconstant coefficient (or is non-separable) since the density varies. This
prevents the use of Fast Poisson Solvers based on Fourier Methods, or variants there
of. We used a simple SOR for many of our early computations (in the so-called

Black and Red form for computations on a CRAY computer), but here, a multigrid
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package (MUDPACK from NCAR) was used for most of the computations.

The computation of the surface tension forces poses yet another difficulty. Gen-
erally, curvature is very sensitive to minor irregularity in the interface shape and
it is difficult to achieve accuracy and robustness at the same time. However, by

computing the surface tension forces on each element directly by
K= }f on X tds, (2.7)
elem

we explicitly enforce that the integral over any portion of the surface gives the right
value, and for closed surfaces, in particular, we enforce that the integral of surface
tension forces is zero. This is important for long time simulations since even small
errors can lead to a net force that moves the bubble in an unphysical way. Here,
n is the surface normal vector, t is the unit vector tangent to the boundary of the
surface element, o is the surface tension coefficient.

The energy equation is solved in the same way as the momentum equation. Cen-
tral differencing is used for the spatial derivatives on the staggered mesh and a second
order time stepping is used to advance the temperature in time. The temperature
on the front is interpolated from the neighboring stationary grid points by using an
interpolation function invented by Peskin (1977). Given the temperature, surface
tension can be found and the surface forces computed. The momentum and the
energy equations are coupled through this relation.

We use different platforms to compute the simulations. This includes CRAY YMP
and CRAY C90 supercomputers as well as HP, IBM RS /6000, IBM SP1 workstations.
Due to the frequent crashes and the use of backup files in order to choose the low
load times, it is hard to estimate the time to complete each run. It varies from one

day to several days on a local workstation for two-dimensional simulations. This
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goes as high as two months for three dimensional simulations on workstations.

2.4 Validation

In order to establish the correctness of the method presented here, we have done
three tests to compare our results with existing analytical results. The first test is
for the creeping flow regime. The terminal velocity of a single bubble rising in an
unbounded domain has been found by Young et al. (1959). Young et al. utilize
the solution of Hadamard and Rybczynski (1911) for flow around a fluid sphere and
assume that convective transport of momentum and energy can be neglected. In
other words, they assume that Reynolds and Marangoni numbers are very small
and that the convective terms in the governing equations can be neglected. Once
this is done, the problem becomes quasi-static. The energy equation reduces to a
form where the Laplacian of temperature vanishes over the whole domain. They
also assume that deformation from a spherical shape is negligible. This implies that
Capillary effects can be neglected. They have given the scaled rising velocity as

follows:
2
2T )@+ 37)

Wes = ( (2.8)

where k* is the ratio of the coefficient of heat conductivity of the bubble to that
of the ambient fluid and p* is the ratio of the viscosity of the bubble to that of
the ambient fluid. For a gas bubble, since the conductivity and viscosity ratios are
negligible, this formula reduces to Vy g = %

In an attempt to compare our results with the migration velocity of a bubble in
the creeping flow regime, we first conducted resolution tests using two-dimensional
simulations. The non-dimensional numbers are Re = 2.5 x 1072, Ma = 2.5 x 1073

and Ca = 107> and the ratios of the physical properties of the bubble to that of
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the outer fluid is 0.5. We have examined the sensitivity of the solution to the grid
resolution by simulating a single bubble on 32 x 32, 64 x 64 and 128 x 128 grids for a
square domain which extends four bubble radii in each direction. This corresponds
to 16, 32 and 64 mesh points per bubble, respectively. As we increase the resolution
the terminal velocities converge and the difference between the 64 x 64 grid and
128 x 128 grid is about 2%. Figure 2.2 shows the velocity versus time for these three
runs.

We then do fully three dimensional simulations of a single bubble to compare our
results with three-dimensional analytical solutions in the creeping flow regime. In
order to reduce the computational costs, and due to limited computational resources,
32 grid points per bubble diameter were used in the three dimensional simulations.
We have done these simulations for Re = 2.5x1073, Ma = 2.5x107% and Ca = 1072,
The ratios of the physical properties of the bubble to that of the outer fluid (k* and
©* in Equation (2.8)) are 0.5. The theoretical value of the rising velocity for a bubble
migrating in an unbounded domain is 0.228 from Equation (2.8). Figure 2.3 shows
the results of the fully three dimensional simulation of a single bubble migrating at
steady state for these non-dimensional numbers. The migration velocity versus the
distance, H, between the wall and the bubble centroid, scaled by bubble radius, is
plotted in Figure 2.3. Since we have walls on the top and bottom of the computational
domain as well as periodic horizontal boundaries, there are wall effects which reduce
the rise velocity of the bubble. As we increase the size of the computational box,
Figure 2.3 shows that the results approach the unbounded domain results.

For one of the cases in Figure 2.3, where the bubble is two bubble radii away
from the wall, we plot the bubble and the temperature field in the middle plane of

the computational box at steady state in Figure 2.4. The detailed structure of the
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isotherms is shown in the middle plane in Figure 2.5. Figure 2.5 shows that the
temperature field is consistent with the theoretical prediction that the temperature
gradient inside the bubble does not change and the temperature field is uniform. For
the same simulation, Figure 2.6 shows the velocity field in the middle cross sectional
plane of the bubble while Figure 2.7 shows the detailed structure of this velocity field
in the same plane.

In our second test we examine the qualitative behavior of a single bubble in the
creeping flow regime with respect to changes in the ratio of the physical properties.
Equation (2.8) indicates that the density and the heat capacity ratio do not play a
role in the migration velocity of the bubble. The migration velocity is only affected
by viscosity and heat conductivity according to Equation (2.8). Figure 2.8 shows the
scaled migration velocity with respect to time for different viscosity ratios. When
the bubble reaches steady state, it is seen clearly that beyond the viscosity ratio
p* = 1/50, the effect is negligible. This is consistent with Equation (2.8). While
the viscosity ratio changes, the ratio of other physical properties are kept constant
at unity. Similarly, the effect of the heat conductivity ratio is shown in Figure 2.9.
While we decrease the ratio, we see that once it is smaller than about &* = 1/40,
the effect is negligible. Both of these results are qualitatively consistent with the
prediction of Equation (2.8). We have also done a similar test for the density and
heat capacity ratios. Figure 2.10 shows the effect of the density ratio while the effect
of the heat capacity ratio is plotted in Figure 2.11. Both of these results show that
these ratios do not change the migration velocity of the bubble at steady state as
predicted by Equation (2.8). When the conductivity ratio is unity, the change in the
heat capacity ratio does not change the energy equation. Therefore, in Figure 2.11,

the test is done with the coefficient of heat conductivity ratio equal to 1/20. In all
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these four different tests, the time is scaled by the viscous diffusion time scale. The
other non-dimensional numbers are the same as for the three dimensional simulation,
namely, Re = 2.5 x 1073, Ma = 2.5 x 107% and Ca = 107,

Finally, we show the results of a much simpler test. A strip of one fluid is laid
down in a channel and surrounded by an ambient fluid. A schematic is shown in
Figure 2.12. The domain is wall bounded in the vertical direction and periodic in
the horizontal direction. There are two free surface at the top and the bottom of
the symmetry axis x. The density of the middle layer is equal to the outer one, but
its viscosity half of the outer one. We assume that the temperature field is fully
developed and increases linearly with z. Since the surface tension is a function of
temperature, the only force acting on each interface is the surface tension gradient

along the interface, o,. The governing equation for this flow can be written as

% (ﬂZ—Z) to.8(y) =0 (2.9)

where u is the  component of the velocity. The solution of Equation (2.9) is subject
to the no-slip boundary condition on the walls and because of symmetry zero velocity
gradient at the symmetry axis. At each interface, the jump in shear stresses is
balanced by the surface tension forces. The solution to Equation (2.9) can easily be

found as

20,d/u,(1 = lyl/d) if df2 < |y] < d

u(y) =
oxd/p, if |y| < d/2
By integrating the velocity across the channel, the total mass flux is
3 o,d?
Qe'r - Z 1o

We examine the convergence of () by computing the total mass flux at different
resolution when the flow becomes fully developed, reaching a steady state. Fig-

ure 2.13 shows the mass flux normalized by the exact mass flux for different mesh
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size. The test is done on 1 x 1 domain with 16 x 16 grid points, 32 x 32 grid points,
64 x 64 grid points and 128 x 128 grid points. As we increase the resolution, or de-
crease the mesh size, it is seen that the solution converges well to the exact solution.

This further establishes the correctness and the accuracy of the method.
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Figure 2.1: The computational setup. The top and bottom wall are no-slip bound-
aries with constant temperature 7%, and 7.,,5. The horizontal bound-
aries are periodic
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Figure 2.2: Velocity versus time. Convergent test for a single two-dimensional bubble
on a computational domain which is 4 bubble radii in each direction.
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Figure 2.3: Velocity versus box size for a single bubble in 3d. The resolution is 48°
grid points, 64° grid points and 80% x 96 grid points, respectively.
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Figure 2.4: The temperature field in the middle plane of the computational domain.
The domain is four bubble radii in each direction. The bottom wall is
cold and the top wall is hot.

Figure 2.5: Temperature contours in the middle plane of the computational domain.
50 equally spaced contours are shown.
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in the middle plane of the computational domain.

Figure 2.6: The velocity field

Figure 2.7: Details of the velocity field in the middle plane of the computational

domain.
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Figure 2.8: Effect of the viscosity ratio on the migration velocity.
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Figure 2.12: Schematic of the third test problem.
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Figure 2.13: Resolution test for the problem in Figure 2.12. Total mass flux scaled
by the exact mass flux versus grid resolution.



CHAPTER III

THERMOCAPILLARY INTERACTION OF
TWO BUBBLES OR DROPS

3.1 Introduction

In this chapter, we study the interactions between a pair of bubbles or drops, using
both two- and three-dimensional simulations. Before discussing these simulations,
a convergence test on a single bubble is done, followed by a study of the effect of
the various governing parameters on the migration velocity and the deformation of a
single bubble. While most of these effects are already known, we nevertheless report
them here to gain insight and to prepare the reader for the discussion of more complex
results, such as the two-bubble and the multi-bubble simulations. To understand the
behavior of a bubble cloud, it is essential to know the basic mechanisms acting
between a few bubbles. The two-bubble interaction is the simplest case and has

attracted considerable attention in the past as a result.

3.2 Resolution test

Here, we do a resolution test in the region where the non-dimensional numbers
are high. We have computed the migration velocity of a single bubble until it reaches

a steady state. We have explored the sensitivity of the solution to the grid resolution

32
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by simulating a single bubble on a 32 x 64, 64 x 128 and 128 x 256 grid for a domain
which extends 4 bubble radii in the = direction and 8 bubble radii in the z direction.
This corresponds to 16, 32 and 64 grid points per bubble, respectively. The non-
dimensional numbers for this resolution test are: Re = 5, Ma = 20,Ca = 0.01666,
while the ratio of the physical properties is 0.5 Figure 3.1 shows the velocity field in
the top row, isotherms in the middle row and streamlines in a frame moving with
the bubble in the bottom row. The resolution increases from left to right. Careful
inspection of the last two columns indicates that the differences between these are
small. As seen in Figure 3.2(a) and Figure 3.2(b), as the resolution is increased,
the terminal velocities and the trajectories converge and we observed that beyond
the 64 x 128 grid the change is negligible, amounts to about 0.6%. The difference
between 16 grid points per bubble and 32 grid points per bubble resolution is about
2.1%. Therefore, the 32 grid points per bubble resolution was chosen for most of
the simulations presented here in order to save computational resources. Where only
qualitative information is required, we can use as few as 16 grid points per bubble,

with an error of approximately 3%.

3.3 Thermocapillary migration of a single bubble

Here, we examine the effect of the various controlling parameters on the motion
of a single bubble, specifically the rise velocity and the deformation.

To show the effect of the various non-dimensional parameters, the temperature
and stream function contours for several different Marangoni numbers are plotted
in Figure 3.3. The Marangoni numbers for each column, from left to right, are
1,10,20,40, and 60. The Reynolds number, Re = 1, and the Capillary number,

C'a = 0.0666, for all these calculations. The ratio of the physical properties, bubble
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to host fluid, is 0.5. The size of the domain in the horizontal direction is 5 times
the bubble radius and the vertical size of the domain is 10 times the bubble radius.
Here, we plot the stream function contours in a laboratory fixed frame since the
contours in a frame which is moving with the bubble do not show any interesting
behavior. In all frames, the bubble has reached an essentially steady state. The
major difference is the shape of the temperature contours and the structure of the
wake. As the bubbles rise they carry cold fluid from the bottom. This fluid heats
up as the bubble moves into warmer fluid and the disturbance in the temperature
contours is a reflection of the relative importance of advection over conduction. The
disturbance is smallest for the low Marangoni number computation on the left and
largest for the high Marangoni number computation on the right. Although the
wake is similar in the four last frames, the stagnation point is further away from the
bubble in the run on the left. Although we plot 20 equally spaced streamlines close
to the bubble, two more streamlines have been added in order to capture the wake
region below the dividing streamline. In the first frame, no dividing streamline exists
since the Marangoni number in this case is small enough. As a result, convection
of energy is negligible and the rise of the bubble is similar to a bubble rising in an
unbounded domain, where no dividing streamline exists in the creeping flow regime.
The streamlines shown here are nearly identical to those found by Subramanian
(1992) for axisymmetric bubbles. Figure 3.4(a) shows the migration velocity versus
time. As we increase the Marangoni number, the migration velocity decreases. As
a consequence of an increase in the convective transport of energy, the isotherms
wrap around the bubble and this causes a reduction in the thermocapillary driving
force and hence migration velocity. The bubble remains nearly cylindrical for the

computations shown here. Figure 3.4(b) shows that the deformation is decreasing
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with increasing Marangoni number. However, the magnitude of the deformation is
very small. Since the temperature distribution around the bubble is more uniform
for higher Marangoni numbers, the change in thermocapillary driving force around
the bubble is small. This results in a small deformation of the bubble. Although we
terminate these computations before the bubble reaches the top of the domain, we
have conducted other calculations where the bubble interacts with the wall and have
observed deformations similar to those computed by Ascoli and Leal (1990).

To show the effect of the Reynolds number, we present, in Figure 3.5, the temper-
ature and stream function contours for three different cases. The Reynolds number
for each column, from left to right, is 1,5, and 10. The Marangoni number, Ma, is 1
and the Capillary number and the ratios of the physical properties are the same as in
the previous case. In all three frames, the bubble has reached steady state. Since the
Marangoni number is unity, the conduction and convection of energy are equal. As a
result, the isotherms are identical. The major difference is the structure of the wake.
The streamlines in the high Reynolds number run on the right show that the stagna-
tion point is close to the bubble compared to the run in the middle frame. As in the
previous case, two more streamlines are added in order to capture the wake region
below the dividing streamline. The first column is the same as the first column in the
previous case and was discussed there. The bubble remains nearly cylindrical in this
case, as well. The migration velocity decreases with increasing Reynolds number as
seen in Figure 3.6(a) although the reduction is small. An inspection of Figure 3.6(b)
indicates that the bubble deforms much more, compared to the previous variable
Marangoni case in Figure 3.3. This is an interesting result since previous results in
the literature indicate that the migration velocity of a bubble increases with increas-

ing Reynolds number for spherical shape bubbles. Therefore, the assumption of a
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non-deformable bubble is not valid and can cause unphysical predictions. It is the
deformed shape of the bubble that leads to a reduction in the migration velocity.

The effect of the Capillary number on the migration velocity and the deformation
of the bubble is plotted in Figure 3.7(a) and (). For these different Capillary number
runs, the other non-dimensional numbers are: Reynolds number, Re = 1; Marangoni
number, Ma = 10; and p* = k* = p* = ¢, = 0.5. As noted earlier, zero Capillary
number corresponds to a spherical bubble and as the Capillary number increases,
the deformation of the bubble increases, as well. Figure 3.7(b) shows that this is
indeed the case although the magnitude of the deformation is not big. Figure 3.7(a)
shows that the migration velocity of the bubble decreases with increasing Capillary
number. This is consistent with the results of Chen and Lee (1992) who also reach
similar conclusions.

When the viscosity of the ambient fluid is lower than the bubble viscosity, the
viscous shear stresses in the ambient fluid are smaller and most of the work of surface
tension forces is done on the fluid inside the bubble. As a result, less fluid flows down
around the bubble. Since the motion of the bubble is a reaction to the motion of the
ambient fluid, the bubble will migrate with a smaller migration velocity. Figure 3.8(a)
shows this behavior clearly. As the viscosity ratio increases, the migration velocity
decreases. Here, the other non-dimensional numbers are, Re = 1, Ma = 10, Ca =
0.0666 and £~ = p* = ¢; = 0.5.

Figure 3.8(b) shows the effect of the ratio of the heat conductivity coefficients
on the migration velocity. The migration velocity of the bubble is higher when
the temperature gradient across the bubble is high. As a bubble in a temperature
gradient moves toward the hot region, the north pole of the bubble absorbs heat and

the south pole gives off heat to the cold ambient fluid. When the heat conductivity
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of the bubble is negligible, heat cannot enter at north pole of the bubble, nor leave
to the ambient fluid at the south pole. This results in a temperature field where
the isotherms are perpendicular to the bubble surface, showing no heat transfer to
the bubble. As a result, the temperature gradient across the bubble’s south and
north poles is high, and consequently the migration velocity is high. Here the non-
dimensional numbers are, Re = 1, Ma = 10, C'a = 0.0666 and p* = p* = ¢ = 0.5.
Since the density of a drop is higher than that of the ambient fluid it should be
expected that the drop will accelerate more slowly than a gas bubble. Figure 3.9(a)
shows this slower acceleration when the density ratio is 10. Furthermore, with in-
creasing density of the bubble phase, the heat convection inside the drop will increase.
The isotherms will be more curved toward the hot portion of the drop surface. Be-
cause of this, a more uniform temperature field will be present inside the drop. Con-
sequently, the migration velocity of the drop decreases with increasing drop density.
This behavior is seen in Figure 3.9(a). The same argument also holds for the heat
capacity ratio. The reduction of the drop migration velocity with increasing heat
capacity is shown in Figure 3.9(b). Here the non-dimensional numbers are, Re = 1,

Ma =10, Ca = 0.0666 and for the density ratio effect p* = k* = ¢; = 0.5 and for

the heat capacity p* = p* = k* = 0.5.
3.4 Effect of initial position on the interaction of two bubbles

After obtaining some insight about the thermocapillary migration of a single
bubble, we move to the interaction of two bubbles. To understand the effect of
the initial orientation of the bubbles on the evolution, we vary the gap between the
bubbles and their angular position with respect to the initial temperature gradient.

In Figure 3.10(a), (b) and (c), the angle between the z axis and a line connecting the
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center of the bubbles is 7 /8, 7/4 and 37 /8, respectively. The angular orientation of
the bubbles in the other frames, (d), (e), (f) is the same. In the first three frames,
the gap between the bubbles, center to center, is 2.5 times the bubble radius. In the
last three frames, this distance is three bubble radii. The computations was done
on a domain which is 8 bubble radii wide in z and 16 bubble radii high in z. The
resolution used here is 128 x 256 grid points. The non-dimensional numbers for all
the cases are: Re = 10, Ma = 10,Ca = 0.041666 while the ratio of the physical
properties is equal to 0.5.

We report the results of these simulations in Figure 3.11 and Figure 3.12. An
inspection of Figure 3.11(a) and (b) shows that the bubbles close the gap between
themselves in the vertical direction while placing themselves side by side, almost
equispaced across the channel. The last case is, however, an exception. Since the
gap is large and the bubbles are almost oriented in tandem in that case, it takes a
larger distance to close the gap vertically and the bubbles reach to the top wall before
lining up across the channel. Nevertheless, the trends suggest that they will behave
similar to the other cases, if given a longer box. Figure 3.12 shows the migration
velocity difference between the bubble on the right and the bubble on left. This
figure also shows that as the bubbles migrate in the vertical direction, they catch
up with each other. When the bubbles reach a steady state, they migrate with the

same velocity, side by side.

3.5 Two dimensional simulations of two bubbles or drops

While the primary goal of this study is to understand the basic physics involving
bubble pairs in a real physical situation, much information can be gained by two di-

mensional simulations, even though they must be regarded as only a step toward fully
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three dimensional simulations. In this section, we discuss the interactions between
two-dimensional bubbles and drops.

First, we explore the motion of gas bubbles. The physical properties of a gas
bubble are small compared to the ambient fluid. Thus, the viscosity, the density,
the coefficients of heat conductivity and the heat capacity are much smaller in the
gas than in the fluid phase. In view of the findings of Chapter II, and the earlier
sections of this chapter, where we examined the effect of the physical parameters on
the bubble’s migration velocity, we choose the ratio of physical properties to be 1/25,
which is low enough to simulate the motion of a gas bubble. We take the Capillary
number as fixed at C'a = 0.04166 in all simulations done in this section, but use
various Reynolds and Marangoni numbers. The resolution for these runs is 128 x 256
grid points and the computational domain is 8 bubble radii wide in  and 16 bubble
radii high in the z direction. The bubbles are released close to each other and the
bubble on the right is ahead of the other bubble initially. The bubble on the left is
at x/a = 2.9 and z/a = 4, and the one on the right is at /a = 5.1 and z/a = 5.8.
Here, both the Reynolds and the Marangoni numbers are 40; therefore convective
transport of energy and momentum are higher than viscous and thermal diffusion.
Figure 3.13 shows the velocity field, and the corresponding isotherms are plotted in
Figure 3.14 at different times, showing the evolution.

As the bubbles rise, the bubble on the left first catches up with the bubble on
the right. It draws hot fluid down its side and as the bubble on the right rises,
some of this fluid is drawn into its wake, thereby reducing slightly the temperature
increase across the bubble on the right and hence its velocity. After the bubbles
move slightly closer together, the fluid in the narrow gap between the bubbles is

pushed down more than in the wider gap, since the contribution of each bubble to
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the velocity field adds in this region. This is seen in the second frame of the velocity
field. Hence, more hot fluid is drawn into the narrow gap between the bubbles than
into the wide one. As a result, the bubbles attract each other. After they collide,
they bounce back and the bubble on the left pushes the bubble on the right to the
right. Since it catches up with a large velocity, it hits the bubble on the right and
causes it to rotate clockwise. As seen in Figure 3.15(a), the bubble on the left has a
higher migration velocity. After the collision, this bubble still moves faster upward
than the other one and the bubble on the right is caught in the wake of the left
one which is now ahead of it. Because of this, we see an interesting phenomena
here, as well as in Figure 3.16; namely, that the bubble being caught in the wake
of the other one migrates against the temperature gradient. From the temperature
field in Figure 3.14, it is seen that when the bubbles are close, the hot ambient fluid
flows down in the wide gap, satisfying the conservation of mass. Since the bubbles
migrate toward the hot region, the bubbles move apart. This is seen in the fourth
frame of Figure 3.14. Later, the bubble on the right moves far away from the bubble
on the left and crosses into the next periodic box while still accelerating to reach
its steady state migration velocity. Since the boundary conditions are periodic in z,
we see the bubble reentering from the left side of the computational box. This time
the bubbles collide horizontally and bounce back. The collision is not as strong as
the previous one, as is seen from the trajectories in Figure 3.16. After the second
collision, the bubbles move away from each other and migrate toward the hot wall.
We have stopped the simulation before the bubbles hit the wall. If the periodic box
is wide enough, it can be easily concluded that after the first collision, the bubbles
would separate and migrate toward the hot wall almost independent of each other,

similar to a single bubble migration. It should also be noted that the temperature
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field is disturbed much more by the circulating flow in the wake region of the bubbles
than in the field ahead of them.

In the last frame of Figure 3.14, the temperature gradient across each bubble
clearly shows its direction of motion. Figure 3.15(d) shows that the bubbles, by
closing the gap in vertical direction, eventually move side by side. The internal
circulation plot in Figure 3.15(b) indicates that the direction of motion of the bubbles
is consistent with the sign of the internal circulation. From the elementary theory
of lift, the bubble would move to the left in the configuration presented when the
internal circulation is positive and it is in a uniform incoming velocity field. The
internal circulation is calculated by § u, - ds along the interface. When the bubbles
collide, Figure 3.15(¢) shows that the deformation increases with each collision.

We have repeated these computations for various Re and Ma numbers and stud-
ied the effect of these numbers on the separation distance and the migration velocity
difference between the bubbles. We show these quantities in Figure 3.17. Although
we attempted to simulate the Re = 60, Ma = 20 case, this was not possible be-
cause the pressure solution did not converge. The different Re and Ma number
cases in Figure 3.17 indicate that the vertical alignment of the bubbles is unstable
and bubbles eventually come side by side to form a more stable layer. When the
bubbles migrate, they overtake each other but eventually the oscillation in the ver-
tical gap dies out. The bubbles try to space themselves equally across the channel
(note that the computational box is periodic in horizontal direction). The first case,
Re = 10, Ma = 10 exhibits different behavior from the rest. In this case, the bub-
bles close the vertical gap much faster and reach to the same migration velocity in
a shorter time. The most significant difference is seen in the horizontal spacing of

the bubbles in Figure 3.17. The bubbles come side by side, migrate together for a
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long time and move apart only very slightly, retaining the initial separation. It is
likely that these bubbles would coalescence if the interface were allowed to rupture
but here we do not allow that to happen.

We then move to the interactions of two drops. The density of a drop is higher
than that of the ambient fluid and we choose a density ratio of 10. Other ratios of the
physical properties are the same as for the gas bubbles, namely y* = k* = ¢; = 1/25.
The Capillary number, the resolution, as well as the computational domain size are
also the same as in the previous case. The drops are released close to each other
with an arbitrary orientation with respect to the temperature gradient. The initial
positions of the drops are the same as in the previous case in Figure 3.13. We also do
these simulations for various Reynolds and Marangoni numbers. Similar to the gas
bubbles, we report one of these cases where both the Reynolds and the Marangoni
numbers are 40.

Figure 3.18 and Figure 3.19 show the velocity field and the isotherms, respectively,
at different times. Some differences are easily seen in the interaction of drops as
compared with the gas bubbles. Inspection of the velocity field shows that the
interaction takes place from the beginning to the end in the computational box
considered. The drops, also, do not cross the periodic boundaries. The velocity
field plot shows strong velocities inside and outside of the drops. Especially, strong
recirculating zones in the wake of the drops at later times are visible. It is also seen
that the drops deform much more than the gas bubbles. The deformation occurs in
such a way that the drops elongate in the flow direction. The isotherms show another
major difference, inside the drops. Due to the convective transport of energy inside
the drops, the temperature field inside the drops is very contorted. The isotherms

wrap along the inside surface of the drop, causing it to slow down. The high velocity
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in the wake of the drops disturbs the temperature field considerably in this region.
While the thermal wake region extends all the way to the bottom wall, the velocity
and temperature field ahead of the drops remain almost unaffected due to small effect
of conduction.

As seen in the velocity and the isotherm plots, the hot ambient fluid flows through
the narrow gap between the drops, since each drop pushes the ambient fluid in the
same direction in this region. As a result of this behavior, the drops move closer to
each other. Similar behavior is also seen in the trajectories in Figure 3.21. When the
drops collide, the drop on the left bounces back and slows down. This collision causes
the drop on the right to speed up sharply, although it was initially moving slower
than the drop on the left. The drop on the left feels the effect of the impact and slows
down quickly. After the collision, both drops accelerate and migrate upward as seen
in frames four to six of the velocity field. However, the drop on the left accelerates
faster and catches up with the other drop in the sixth frame. Until then, unlike the
interactions between gas bubbles, the drops do not come side by side, but migrate
to a position such that the drop on the right is ahead of the drop on the left, but
slightly on the left side, similar to their initial position. This is the major difference
between the behavior of drops and the gas bubbles. Right before hitting the upper
wall, the drops collide once more. The collision at this time is weak, causing small
acceleration of the drop on the right and deceleration of the drop on the left. In the
last time frame of the plot of the temperature field, since the drop on the right is very
close to the wall, the drop on the left slides to the left so that it reaches the upper
wall. Figure 3.20 shows a more quantitative description of this simulation where
the migration velocity, internal circulation, deformation and separation distance are

plotted. After each collision, the change in internal circulation and deformation is
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obvious. The vertical and the horizontal separation distance between the drops is
clear in Figure 3.20(d). Although the vertical distance decreases in the early stages
of the interaction, where the drops attract each other, later on this gap increases,
showing the trend explained above. Because of this orientation of the drops, the
horizontal gap obviously get smaller.

We have done simulations of drops for various Re and Ma numbers and have
studied the effect of these numbers on the vertical and horizontal separation distance
between them as a function of time. We show these quantities in Figure 3.22. The
different Re and Ma number cases in Figure 3.22 clearly show that the behavior
seen in the gas bubbles simulations does not apply to drops. When Re = 60 and
Ma = 20, it seen that the drops close the vertical gap and move away from each
other in the horizontal direction. Since they separate in the horizontal direction,
their influence on each other becomes minimal. The other cases behave differently.
When the Reynolds and the Marangoni numbers increase equally, there is a transient
behavior seen in that plot. When both Re and Ma are 10, the drop on the left takes
over and moves ahead of the drop on the right in the late stages of the simulations.
The drops also separate horizontally. When Re and Ma are increased to 20, the drop
on the left catches up with the drop on the right, but eventually the drop on the left
takes over, just before both drops hit the top wall. They also separate horizontally
but less than in the previous case. Further increase of Re and Ma to 40 shows a
different picture. The drop on the right always stays ahead of the other drop and,
most importantly, the vertical gap between them increases while the horizontal gap
decreases. This is the case that we discussed earlier. In the final case, where Re and
Ma are increased to 60, this behavior continues. This time, the drop on the right

is well ahead of the other one while the horizontal gap is reduced significantly and
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these drops are almost in tandem when they reach the upper wall.

Next, we examine an intermediate case with bubbles where the physical properties
of the bubble phase are half those of the ambient fluid. We also conduct these
simulations for different Re and Ma numbers. The Capillary number, the initial
position of the bubbles, the domain size and the resolution is the same as for the
gas bubbles case in Figures 3.13 - 3.16. The velocity field, Figure 3.23, is similar to
the velocity field of the gas bubbles in Figure 3.13, showing the recirculation zones
in the wake of the bubbles. Figure 3.24 shows the temperature contours at different
times. As the bubbles rise, the bubble on the left first catches up with the bubble
on the right. As seen for the gas bubbles, it draws hot fluid down its side and as the
bubble on the right rises, some of this fluid is drawn into its wake, thereby reducing
slightly the temperature increase across it and hence its velocity. While the bubbles
are moving side by side, close to each other, they migrate like one big bubble. Since
the ambient fluid can no longer flow between them, it flows down near the side of the
periodic box. Bubbles move toward the hot regions and separate as they continue
to migrate to the upper wall. Since the bubble on the left pushes the bubble on the
right to the side, and also due to the temperature gradient, the bubble on the right
slides to the side, reappearing from the left side of the periodic box. From then on,
the bubbles migrate side by side, almost equispaced across the channel. This is due
to the fact that once the bubbles are side by side, and moving upward, the outer fluid
has to flow down between them to satisfy continuity and when the spacing between
the bubbles is uneven there is greater flow through the larger spacings. Since the
downward moving fluid is hotter, the isotherms are pushed farther down where there
is a large space between the bubbles than when the space is small. This is very clear

in the second frame. Since the bubbles move from colder parts of the domain to the
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hotter ones, this leads to a lateral motion (in addition to the upward motion) where
the small spaces become larger and the large spaces become smaller until the bubbles
have arranged themselves in a horizontal array with equal spaces between them.

Figure 3.25 shows the migration velocity, the internal circulation, the deforma-
tion and the separation distance for the run in Figures 3.23 and 3.23. The initial
acceleration is similar to the one bubble case, both bubbles accelerate rapidly, reach
a large velocity and then slow down. The bubble on the left, that is closer to the
bottom of the box, reaches a higher initial velocity and slows down more slowly than
the one on the right. It is seen from this plot that the bubble on the left migrates
at an almost steady state velocity in the last half of the interaction process. The
deformation decreases in that period, too. The trajectories of the bubbles are plotted
in Figure 3.26.

Investigations for different Re and Ma numbers shown in Figure 3.27 exhibit
similar behavior as the gas bubbles considered in Figure 3.13. In all cases the bubbles
close the vertical gap between them. As the non-dimensional numbers increase, the
interaction becomes stronger and the bubble on the right crosses over to the next
periodic box. Since the system is periodic horizontally, the bubble reenters through
the other side of the box. Therefore, while the horizontal separation is calculated
between the bubble on the right and the bubble on the left, it should actually be
measured between the bubble on the left and the bubble which reenters from the
left side of the domain once the one on the right crosses to the next periodic box.
Thus, the results in Figure 3.27(b) show that two bubbles space themselves across
the channel as equispaced as they can.

We have also investigated another case where the density and the heat capac-

ity ratio of the bubble phase is half that of ambient fluid, but viscosity and heat
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conductivity ratio is 1/25, similar to Figure 3.13. Although we also explored sev-
eral Reynolds and Marangoni numbers, the only qualitative difference we found is
the structure of the temperature field inside the bubbles. The convection of energy
inside the bubble is high and the isotherms are similar to the isotherms inside the

drops while the temperature field in the ambient fluid is not much different from

Figure 3.24.

3.6 Three-dimensional simulations of two bubbles

After gaining some insight into the interactions of two bubbles from two-dimensional
simulations, we explore the interaction of two bubbles by fully three-dimensional sim-
ulations in this section.

The ratios of the physical properties are 0.5, same as for the two dimensional
cases discussed at the end of Section 3.5. The Capillary number is also the same.
The resolution for these runs is 64 x 32 x 128 grid points in a x/a = 5.71, y/a =
2.86, z/a = 11.43 computational box. The bubbles are close to each other and are
perturbed so that the bubble on the right is ahead of the other one. The location of
the left bubble is z;/a = 1.71, z;/a = 2.85 and that of the right bubble is z,/a = 4,
z,/a = 3.43. They are placed in the middle cross sectional plane in the y direction.
The thermal gradient is such that temperature increases toward the top hot wall.

We report two different cases. For the first one, Re = 20 and Ma = 60. The
bubbles are shown in Figure 3.28, along with the velocity and the temperature field
in the middle cross sectional plane. A more detail description of the velocity field
and isotherms in that plane are plotted at different times in Figure 3.29 and Fig-
ure 3.30, respectively. The first frame in Figure 3.28 shows the starting motion of

the bubbles where the velocity field is weak. In the second frame the velocity is much
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stronger than in the other frames. This is the time when the bubbles attain their
highest migration velocity. The interaction follows a similar pattern as was seen in
the two dimensional simulations. Since the ambient fluid between the bubbles is
pushed down, as is seen from the velocity field, the bubble on the left is attracted
to the bubble on the right. The curved isotherms in Figure 3.30 show the relative
effect of the convective transport of energy. Since the Marangoni number is high,
the convection of energy is large. Both bubbles accelerate very fast, attain a high
migration velocity and then slow down. When the bubble on the left moves to the
right, it pushes the other bubble to the side. As the bubbles get close to each other,
the hot ambient fluid flows down along the sides of the computational box, thereby
increasing the temperature in that region. This is clearly seen in the third frame of
the isotherms in Figure 3.30. This shape of the isotherms is also determined by the
fact that the bubbles carry cold fluid with them. As a result, they move apart. Since
the bubble on the left has a higher velocity, it catches up with the other one. As they
slow down to a steady migration velocity, the velocity difference between them de-
creases, as is seen in Figure 3.31(d). Figure 3.31 gives a more quantitative description
of this simulation. The migration velocity, vertical position, separation distance, and
velocity difference are plotted versus time. Figure 3.31 as well as Figure 3.32, where
the trajectories are shown, show that when the bubbles reach a steady state, they
are almost side by side and equispaced horizontally. The behavior of the bubbles
presented here confirms the predictions of the two-dimensional simulations discussed
in Section 3.5.

Comparison of two- and three-dimensional simulations reveals that the distur-
bances of the velocity and the temperature field decay in the three-dimensional sim-

ulations at a much faster rate than in the two dimensional simulations as we go
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away from the bubbles. See, for example, the isotherms in Figure 3.30. Although
weak, recirculating zones seen in two-dimensional simulations are also observed in
the three-dimensional simulations and are visible in the middle frames of the velocity
field.

After examining the interactions between two bubbles in a parameter range where
convective transport of energy is higher than convective transport of momentum, we
move to the second case where Re = 60 and Ma = 20. All other parameters are the
same as in the previous case. Here, we place the bubbles in such a way that they
are disturbed more in the vertical direction than in the previous case. Specifically,
the left bubble is at x;/a = 2.14 and z;/a = 2 and the right bubble is at z,/a = 3.57
and z,/a = 3.85. Both are placed in the middle cross sectional plane in the y
direction. Figure 3.33 shows the evolution of this case. Both the velocity field and
the temperature field are plotted in the middle cross sectional plane. The velocity
field in that plane is also while in Figure 3.34 and Figure 3.35 shows the isotherms
in the same plane. It is easily seen that there are some differences in the velocity
field compared with the previous case. Although the first frame of both Figure 3.28
and Figure 3.33 are similar, the rest of the evolution is different and the velocity
does not decrease here. An inspection of Figure 3.36, where a more quantitative
description of this simulation is presented, shows that although the bubbles slow
down, the rate of decrease is small. After reaching an initial high velocity, they
migrate at this high velocity until they reach the upper wall. Although the velocity
decreases slightly at the end of the simulations, the bubbles do not have enough
distance to slow down to a steady migration velocity. This behavior is due to the
higher Reynolds number and is similar to what was seen in the two-dimensional,

two-bubble interaction. Nevertheless, Figure 3.36 shows that as in the previous case,
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the bubbles strive to close the vertical gap while moving apart in the horizontal
direction. From the trajectories in Figure 3.37 it is seen that the bubble on the left
is ahead and moves straight up while the other one slides to the side. This is due
to the temperature field which is different than the previous case, see Figure 3.37.
The bubble on the left does not feel the effect of the other bubble to any significant
degree. But, since the bubble on the left migrates straight ahead faster, it pushes
the other bubble to the side which is actually blocking the way of the other bubble.
The forth and the fifth frames of Figure 3.35 show that the ambient fluid on the
right side of the bubble on the right is hotter than on the other side. Therefore, the
bubble should move to the right as it does, because bubbles move in the direction of
a higher temperature.

Since the convective transport of energy is not as high as in the previous case,
the isotherms do not curve as much. While the disturbances of the temperature field
decay as fast as the previous case, the velocity fields differ. Once the recirculation
zones form, they are present until the end of the simulation, as seen in Figure 3.34.

We have also computed similar simulations for different Reynolds and Marangoni
numbers. Figure 3.38, where the vertical and the horizontal separation distance
between the bubbles are shown, summarizes the results of these simulations. In all
these different Re and Ma number cases, it is seen that the bubbles strive to close

the vertical gap while moving apart horizontally.

3.7 Conclusion

The major finding reported here is the tendency of the bubbles to line up, side
by side, perpendicular to the temperature gradient. While this behavior appears to

be similar to what is found for spheres and cylinders in fluidized beds, where rows
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of spheres align themselves into a string perpendicular to the flow, the mechanism
here is different. For solid spheres the reason is the low pressure region at the
“waist” which attracts other particles. In the simulations carried out here the bubbles
actually repel each other, since cold fluid is more easily carried with the bubbles in
the narrow gaps between them than in bigger gaps, and the bubbles generally move
away from cold regions. Thus, while the bubbles line up across the channel they tend
to maximize the distance between adjacent bubbles. This formation of bubble layers
could be of considerable significance for material processing in microgravity where
layers like these might affect the bulk properties of solidified material. Drops, on
the other hand, behave somewhat differently. In the low Re and Ma number region
they behave similar to bubbles, but they tend to line up in tandem in most of the
simulations presented here when both Re and Ma are high. Drops also deform much

more than bubbles along the direction of the temperature gradient.
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Figure 3.1: Velocity field (top), isotherms (middle) and streamlines (bottom) of a
single bubble rising at steady state. 32 x 64 grid points of the velocity
field, 50 equally spaced isotherms and 21 equally spaced streamlines in a
frame moving with the bubble are shown. First column is a 32 x 64 grid,
second column is for a 64 x 128 grid and third column is for a 128 x 256
grid.
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Figure 3.2: Resolution test for a single bubble. (a) Migration velocity versus time
(b) z component of the trajectories versus time.
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Figure 3.4: Effect of Marangoni number on the migration velocity and the deforma-
tion of a single bubble.(a) Migration velocity versus time (b) Deformation
versus time.
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and 20 equally spaced streamlines are shown. Reynolds number for each
column from left to right is 1,5,10. Here, Ma = 1 and C'a = 0.06666
and the resolution is 64 x 128 grid points.
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Figure 3.6: Effect of Reynolds number on the migration velocity and the deformation
of a single bubble. (a) Migration velocity (b) Deformation versus time.

Here, Ma =1 and C'a = 0.06666.
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Figure 3.10: 6 different initial position for two-bubble interaction. Computational
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Figure 3.11: The scaled (a) vertical (b) horizontal separation between the bubble on
the right and the left versus time. The distance is scaled by bubble
radius, a and time is scaled by a/U,.
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Velocity field for selected frames from the computation of two bubble

Figure 3.13:

interaction. Only one third of the velocity field is shown. Time pro-

The nondimensional time, t*, is equal to
3.8,11.4,25.3,56.9,69.5,88.5,107.5. The nondimensional time is scaled

by a/U, and velocity is scaled by reference velocity, U,. Computational

gresses from left to right.
domain size is z/a = 8 and z/a = 16.
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Figure 3.14: Temperature contours for selected frames from the computation of two
bubble interaction. 50 equally spaced contours are shown. Time pro-
gresses from left to right. The nondimensional time, t*, is equal to
3.8,11.4,25.3,56.9,69.5,88.5,107.5. The nondimensional time is scaled
by a/U, and temperature is scaled, after subtracting a reference temper-
ature, by aVT,,. Computational domain size is /a = 8 and z/a = 16.

Here, Re = Ma = 40 and C'a = 0.04166.
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Figure 3.15: Quantitative description of the two bubble interaction in Figure 3.13
and 3.14. (a) Migration velocity versus time. (b) Internal circulation
versus time. (¢) Deformation versus time. (d) Seperation distance ver-
sus time. Velocity is scaled by U,, separation distance by a, time by
a/U,, and the internal circulation by 27al,.
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Figure 3.17: Quantitative information about two-bubble interaction for different
Reynolds and Marangoni numbers.

(a) The vertical separation dis-

tance versus time. (b) The horizontal separation distance versus time.
(¢) The migration velocity difference versus time. Time is scaled by
a/U,, separation difference, A, by, a, and the velocity difference by U..

The differences are between the bubble on the right and the left.



69

Figure 3.18: Velocity field for selected frames from the computation of two drop

interaction. The velocity field is shown at every third grid point. Time

The nondimensional time, t*, is equal

to 12.65,50.60,75.89,101.19,126.49,151.79,170.0. The nondimensional

progresses from left to right.

time is scaled by a/U, and velocity is scaled by reference velocity, U, .

Computational domain size is /a = 8 and z/a = 16. Here, Re = Ma

40 and Ca = 0.04166.
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Figure 3.19: Temperature contours for selected frames from the computation of two
drop interaction in Figure 3.18. 50 equally spaced contours are shown.
Time progresses from left to right. The nondimensional time, t*, is equal
to 12.65,50.60,75.89,101.19,126.49,151.79,170.0. The nondimensional
time is scaled by a/U, and temperature is scaled, after subtracting a
reference temperature, by aVT,,. Computational domain size is z/a =

8 and z/a = 16.
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Figure 3.20: Quantitative description of the two drop interaction in Figures 3.18 and

3.19. (a) Migration velocity versus time. (b) Internal circulation versus
time. (¢) Deformation versus time. (d) Separation distance versus time.
Velocity is scaled by U,, separation distance by a, time by a/U,, and
the internal circulation by 27al,.
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Figure 3.21: Trajectories of the center of mass of drops in Figures 3.18 and 3.19.

Both axis are scaled by the drop radius a.
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Figure 3.22: Quantitative information for two-drop interactions for different Rey-
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Velocity field for selected frames from the computation of two bubble

Figure 3.23:

interaction. The velocity field is shown at every third grid point. Time

4,20,40,80,100,120. The nondimensional time is scaled by a/U, and
velocity is scaled by reference velocity, U,. Computational domain size
is #/a = 8 and z/a = 16. Here, Re = Ma = 40 and C'a = 0.04166.

progresses from left to right. The nondimensional time, t*, is equal to
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Figure 3.24: Temperature contours for selected frames from the computation of two
bubble interaction in Figure 3.23. 50 equally spaced contours are shown.
Time progresses from left to right. The nondimensional time, t*, is equal
to 4,20,40,80,100,120. The nondimensional time is scaled by a/U,
and temperature is scaled, after subtracting a reference temperature,
by aVT,. Computational domain size is x/a = 8 and z/a = 16.
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Figure 3.25: Quantitative description of the two bubble interaction in Figures 3.23
and 3.24. (a) Migration velocity versus time. (b) Internal circulation
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sus time. Velocity is scaled by U,, separation distance by a, time by

a/U,, and the internal circulation by 27al,.
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Figure 3.27: Quantitative information for two-bubble interactions for different
Reynolds and Marangoni numbers. (a) The vertical separation distance
versus time. (b) The horizontal separation distance versus time. Time
is scaled by a/U,, separation difference, D, by, a. The differences are
between the bubble on the right and the left.
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Figure 3.28: Velocity and temperature field for selected frames from the fully three-
dimensional simulation of two-bubble interaction. The velocity field is
shown at every other grid point in the middle plane of the computational
box in y direction. Time progresses from left to right, top to bottom.
The nondimensional time, ¢*; is equal to 0.57,5.71,22.85, 57.14,85.71.
The nondimensional time is scaled by a/U, and velocity is scaled by
reference velocity, U,. Computational domain size is z/a = 5.71, y/a =

2.86 and z/a = 11.43. Here, Re = 20, Ma = 60 and Ca = 0.04166.
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Velocity field for selected frames from the fully three dimensional com-

Figure 3.29:

putation of two bubble interaction in Figure 3.28. The velocity field

is shown at every other grid point in the middle plane of the compu-

The

nondimensional time, t*, is equal to 0.57,5.71,22.85,57.14,85.71. The
nondimensional time is scaled by a/U, and velocity by U,. Computa-

tational box in y direction. Time progresses from left to right.
tional domain size is x/a = 5.71, y/a = 2.86 and z/a = 11.43.
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Figure 3.30: Temperature contours for selected frames from the fully three dimen-
sional computation of two bubble interaction in Figure 3.28. 50 equally
spaced contours are shown in the middle plane of the computational
box in y direction. Time progresses from left to right. The nondimen-
sional time, t*, is equal to 0.57,5.71,22.85,57.14,85.71. The nondimen-
sional time is scaled by a/U, and temperature is scaled, after subtract-
ing a reference temperature, by aVT,,. Computational domain size is

z/a=5.71,y/a =2.86 and z/a = 11.43.
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Figure 3.31: Quantitative description of the two-bubble interaction in Figures 3.28,

3.29 and 3.30. (a) Migration velocity versus time. (b) z component of
the centroid of bubbles versus time. (¢) The separation distance versus
time and (d) The velocity difference versus time between the bubble
on the right and the left. Velocity is scaled by reference velocity U,,
seperation distance and z axis by a, and time by a/U,.
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Figure 3.32: Trajectories of the center of mass of the bubbles. Both axis are scaled

by the bubble radius a.
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Figure 3.33: Velocity and temperature field for selected frames from the fully three-
dimensional simulation of two-bubble interaction. The velocity field is
shown at every other grid point in the middle plane of the computational
box in y direction. Time progresses from left to right, top to bottom.
The nondimensional time, t*, is equal to 3.5,7.0,14.0,35.0, 52.5,63.0.
The nondimensional time is scaled by a/U, and velocity is scaled by
reference velocity, U,. Computational domain size is z/a = 5.71, y/a =

2.86 and z/a = 11.43. Here, Re = 60, Ma = 20 and Ca = 0.04166.



85

Figure 3.34: Velocity field for selected frames from the fully three dimensional com-

putation of two bubble interaction. The velocity field is shown at every

other grid point in the middle plane of the computational box in y di-

rection. Time progresses from left to right. The nondimensional time,
t*, 1s equal to 3.5,7.0,14.0,35.0, 52.5,63.0. The nondimensional time

is scaled by a/U, and velocity by U,. Computational domain size is

z/a=5.71,y/a=2.86 and z/a = 11.43.
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Figure 3.35: Temperature contours for selected frames from the fully three dimen-
sional computation of two bubble interaction. 50 equally spaced con-
tours are shown in the middle plane of the computational box in y di-
rection. Time progresses from left to right. The nondimensional time,
t*, is equal to 3.5,7.0,14.0,35.0,52.5,63.0. The nondimensional time
is scaled by a/U, and temperature is scaled, after subtracting a refer-
ence temperature, by aVT,,. Computational domain size is z/a = 5.71,

y/a=12.86 and z/a = 11.43.
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Figure 3.36: Quantitative description of the two-bubble interaction in Figures 3.33,
3.34 and 3.35. (a) Migration velocity versus time. (b) z component of
the centroid of bubbles versus time. (¢) The separation distance versus

time and (d) The velocity difference versus time between the bubble
on the right and the left. Velocity is scaled by reference velocity U,,
separation distance and z axis by a, and time by a/U,.
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Figure 3.37: Trajectories of the center of mass of the bubbles. Both axis are scaled

by the bubble radius a.
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Figure 3.38: Quantitative information for two-bubble interaction for different Rey-
nolds and Marangoni numbers. (a) The vertical separation distance
versus time. (b) The horizontal separation distance versus time. Time
is scaled by a/U,, separation difference, A, by, a. The differences are
between the bubble on the right and the bubble on the left.
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Figure 4.10: A fully three-dimensional simulation of the interaction of nine equal
sized bubbles. Time progresses from left to right, top to bottom. The
nondimensional time, t*, is equal to 0.66, 6.66, 40, 66.66, 80, 86.66. The
nondimensional time is scaled by /U, and velocity is scaled by reference
velocity, U.. Computational domain size is x/a = 6.66, y/a = 6.66 and
z/a = 13.33.
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Figure 4.11: Velocity field for selected frames from the fully three dimensional sim-
ulation of nine-bubble interaction. The velocity field is shown at every
other grid point in the middle plane of the computational box in y di-
rection. Time progresses from left to right. The nondimensional time,
t*, is equal to 0.66, 6.66, 40, 66.66, 80, 86.66. The nondimensional
time is scaled by a/U, and velocity is scaled by reference velocity, U, .
Computational domain size is ©/a = 6.66, y/a = 6.66 and z/a = 13.33.
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Figure 4.12: Velocity field for selected frames from the fully three dimensional sim-

ulation of nine-bubble interaction. The velocity field is shown at every

other grid point in the middle plane of the computational box in = di-

rection. Time progresses from left to right. The nondimensional time,

is equal to 0.66, 6.66, 40, 66.66, 80, 86.66. The nondimensional

time is scaled by a/U, and velocity is scaled by reference velocity, U, .

tr,

Computational domain size is #/a = 6.66, y/a = 6.66 and z/a = 13.33.
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Figure 4.13: Temperature contours for selected frames from the fully three dimen-
sional simulation of nine-bubble interaction. 50 equally spaced contours
are shown in the middle plane of the computational box in y direction.
Time progresses from left to right. The nondimensional time, ¢*, is
equal to 0.66, 6.66, 40, 66.66, 80, 86.66. The nondimensional time is
scaled by a/U, and temperature is scaled, after subtracting a reference
temperature, by aVT,. Computational domain size is z/a = 6.665

y/a = 6.66 and z/a = 13.33.
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Figure 4.14: Temperature contours for selected frames from the fully three dimen-
sional simulation of nine-bubble interaction. 50 equally spaced contours
are shown in the middle plane of the computational box in x direction.
Time progresses from left to right. The nondimensional time, t*, is equal
t0 0.66, 6.66, 40, 66.66, 80, 86.66. The nondimensional time is scaled by
a/U, and temperature is scaled, after subtracting a reference tempera-
ture, by aVT,,. Computational domain size is x/a = 6.66, y/a = 6.66
and z/a = 13.33.
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Figure 4.15: (a) Migration velocity versus time (b) z component of the centroid of
bubbles versus time, for nine-bubble simulation in Figure 4.10. Velocity
is scaled by U,, time by a/U, and z axis by a.
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Figure 4.16: (a) x — z trajectories of the center of mass of the bubbles (left). (b)

y — z trajectories of the center of mass of the bubbles (right). Both axis
are scaled by the bubble radius a.
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Figure 4.17: Velocity field for selected frames from the computation of six unequal-

sized-bubble interaction. Third of the velocity field is shown at every

third grid point.

The nondimen-

Time progresses from left to right.

sional time, t*, is equal to 2.5,12.5,25,40,62.5,87.5,112.5,137.5. The
nondimensional time is scaled by a,/U,, and velocity is scaled by ref-

erence velocity, U, .

z/a, = 20.

Computational domain size is z/a, = 10 and
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Figure 4.18: Temperature contours for selected frames from the computation of six
unequal-sized-bubble interaction. 50 equally spaced contours are shown.
Time progresses from left to right. The nondimensional time, t*, is equal
to 2.5,12.5,25,40,62.5,87.5,112.5,137.5. The nondimensional time is
scaled by a, /U,, and temperature is scaled, after subtracting a reference
temperature, by a,VT,,. Computational domain size is z/a, = 10 and

z/a, = 20.
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Figure 4.19: Quantitative description of the six unequal-sized-bubble interaction in
Figures 4.17 and 4.18. (a) Migration velocity versus time. (b) z com-
ponent of the centroid of bubbles versus time. (¢) Internal circulation
versus time. (d) Deformation versus time. Velocity is scaled by U,,, z
axis by the averaged bubble radius, a,, time by a,/U,,, and the internal
circulation by 27a,U,,. Bubbles marked 1 to 6 from left to right in the
domain. Com is the velocity of the center of mass.
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Figure 4.20: Trajectories of the center of mass of the bubbles. Both axis are scaled
by the average bubble radius a,.
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Figure 4.21:

Velocity field for selected frames from the simulation of 16 unequal-
sized bubble interaction. The velocity field is shown at every third
grid point. Time progresses from left to right, top to bottom. The
nondimensional time, t*, is equal to 4, 40.5, 64.7, 89, 113.3, 137.6, 161.9,
182, 202.4. The nondimensional time is scaled by a,/U,, and velocity
by U,,. Computational domain size is z/a, = 13.33 and z/a, = 13.33.
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Figure 4.23: (a) Migration velocity versus time (b) z component of the centroid of
bubbles versus time for 16 unequal-sized bubble interaction in Fig-
ures 4.21 and 4.22. Velocity is scaled by U,,, time by a,/U,, and z
axis by a,.
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Figure 4.24: Trajectories of the center of mass of the bubbles. Both axis are scaled
by the average bubble radius a,.
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Figure 4.25: A fully three-dimensional simulation of the interaction of nine unequal-
sized bubbles. Time progresses from left to right, top to bottom. The
nondimensional time, t*, is equal to 6.66, 40, 66.66, 80, 100, 114.2.
The nondimensional time is scaled by a,/U,, and velocity is scaled by
average reference velocity, U,,. Computational domain size is z/a, = 8,

y/a, =8 and z/a, = 16.
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nondimensional time, t*; is equal to 6.66, 40, 66.66, 80, 100, 114.2. The

sized bubble interaction. The velocity field is
nondimensional time is scaled by a,/U,, and velocity is scaled by av-

shown at every other grid point in the middle plane of the compu-
erage reference velocity, U,,. Computational domain size is z/a, = 8,

Velocity field for selected frames from the fully three dimensional sim-
y/a, =8 and z/a, = 16.

ulation of nine unequal
tational box in y direction. Time progresses from left to right.

Figure 4.26:
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shown at every other grid point in the middle plane of the compu-
nondimensional time, t*; is equal to 6.66, 40, 66.66, 80, 100, 114.2. The
nondimensional time is scaled by a,/U,, and velocity is scaled by av-
erage reference velocity, U,,. Computational domain size is z/a, = 8,

tational box in x direction. Time progresses from left to right.
y/a, =8 and z/a, = 16.

ulation of nine unequal

Figure 4.27: Velocity field for selected frames from the fully three dimensional sim-
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Figure 4.28: Temperature contours for selected frames from the fully three dimen-
sional simulation of nine unequal-sized bubble interaction. 50 equally
spaced contours are shown in the middle plane of the computational box
in y direction. Time progresses from left to right. The nondimensional
time, t*, is equal to 6.66, 40, 66.66, 80, 100, 114.2. The nondimensional
time is scaled by a,/U,, and temperature is scaled, after subtracting
a reference temperature, by a,VT,. Computational domain size is

z/a, =8, y/a, =8 and z/a, = 16.
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Figure 4.29: Temperature contours for selected frames from the fully three dimen-
sional simulation of nine unequal-sized bubble interaction. 50 equally
spaced contours are shown in the middle plane of the computational box
in z direction. Time progresses from left to right. The nondimensional
time, t*, is equal to 6.66, 40, 66.66, 80, 100, 114.2. The nondimensional
time is scaled by a,/U,, and temperature is scaled, after subtracting
a reference temperature, by a,VT,. Computational domain size is

z/a, =8, y/a, =8 and z/a, = 16.
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Figure 4.30: (a) Migration velocity versus time (b) z component of the centroid of
bubbles versus time, for 9 unequal-sized-bubble simulation. Velocity is
scaled by U,,, time by a,/U,, and z axis by average bubble radius, a,.
Even numbered bubbles are the larger ones.
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Figure 4.31: (a) = — z trajectories of the center of mass of the bubbles (left). (b)
y — z trajectories of the center of mass of the bubbles (right). Both axis
are scaled by the average bubble radius, a,.



CHAPTER V

CONCLUSIONS

5.1 Conclusions

In this thesis, we have examined thermocapillary migration of bubbles and drops
in zero gravity by full numerical simulations. We have extended the front tracking
method developed by Unverdi and Tryggvason (1992) to include the energy equation
as well as temperature dependent surface tension. The results have been verified to
be quantitatively and qualitatively reliable by comparison with theoretical results.

We studied the thermocapillary migration of a single bubble in Chapter 11 and
confirmed the effect of the governing parameters on the migration velocity, by show-
ing that the migration velocity of the bubble decreases with an increasing Reynolds
and Capillary number. Then, we studied the interaction of two bubbles and drops
in detail. The major finding of the two-bubble study, reported in Chapter III, is the
tendency of the bubbles to line up, side by side, perpendicular to the temperature
gradient. This tendency to form bubble layers could be of considerable significance
for, for example, material processing in microgravity where layers like these might
affect the bulk properties of solidified materials. Drops, on the other hand, behaved
somewhat differently. In the low Re and Ma number region, they act similar to

bubbles; however, they tend to line up in tandem when both the Re and the Ma
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are high. Drops also deform more than bubbles, along the direction of temperature
gradient.

In Chapter IV, we examined the behavior of a bubble cloud, for both mono-
dispersed and polydispersed cases. The numerical simulations of mono-dispersed
systems show that the bubbles form horizontal layers. As soon as the bubbles form
one layer that fills the channel horizontally, the rest of the bubbles form another
layer. Although we saw, in the two-dimensional sixteen bubble simulation, that this
layer can break up by instability waves, the layer is eventually regenerated. Three
dimensional simulations confirm the formation of layers while simulation of bubbles
in polydispersed systems show the same behavior. In contrast to two dimensional
simulations of polydisperse systems, where bubbles of different size form a horizontal
layer, a three dimensional simulation of a polydisperse system shows that different
sizes of bubbles form different layers. Each layer moves with a different velocity
and the larger the bubbles, the higher the migration velocity of each layer. This
results in a layer of large bubbles that moves ahead of a layer of small bubbles.
While the prominent feature of layer formation is a persistent characteristic in these
simulations, only bubbly flows are explored here. In the light of Chapter III, where
two dimensional drops were examined, we do not expect drops to form layers at high
Re and Ma.

The thermocapillary interactions of two bubbles and drops as well as many
bubbles reported in this thesis are the first full simulations calculated at non-zero
Reynolds and Marangoni numbers, allowing for full deformations. The computata-
tions presented here represent a significant advance in the state of the art of nu-
merical modeling of thermal migration of bubbles and drops. Previously, no fully

three-dimensional simulations have been reported, and only axisymmetric and asym-
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metric calculations of spherical two-bubble or two-drop interactions have been done
by Wei and Subramanian (1993), and Keh and Chen (1993) at zero Reynolds and
Marangoni numbers. In additon to advances on the computational side, our results
show a previously unknown behaviour for multi bubble systems. No experimental
evidence exists yet, but Balasubramaniam (personal communication) and collabora-
tors expect to investigate two bubble behavior on future Space Shuttle flights. The
observed layer formation appears to be very robust, and could have important con-
sequenses for both material processing in space as well as thermal management in

gas-liquid systems.
5.2 Suggestions for future work

The surface tension between two fluids depends on the properties of both fluids
as well as the temperature. In addition, it also depends on adsorbed surface active
materials and the electrical charge on the surface. For bubbles where the temperature
is not the only factor determining the surface tension, these effects should be included
also.

Although it 1s a good assumption that the surface tension decreases linearly with
increasing temperature, the relation is not linear when the temperature varies over
a large range. Non-linear relations will be needed to account for this. This could
easily be changed in our current code.

Even though the magnitude of the gravity in space is small, it is still on the order
of 10=°¢g m/s?. The effect of low levels of gravity, where surface tension forces are
comparable to buoyancy forces, should be considered. This, again, is easily added to
our code.

If the temperature variation in the system considered are not large, the material
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properties do not depend on temperature. When this requirement is not satisfied,
variation of properties with temperature should be taken into account.

Although some polydisperse systems are considered in this thesis, engineering
systems usually involve many different-sized bubbles or drops. To simulate such
systems by fully resolving the flow field accurately will be a challenging issue for
future work. One way of achieving calculations along this lines is to parallelize
the code. Although we attempted to do this by using the domain decomposition
method, the final code has not been fully tested as yet. This extension, however, has

the potential of allowing simulations with as many as 256° grid points.
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APPENDIX A

Nomenclature

Capillary Number

Scaled distance from wall
Marangoni Number
Reynolds Number
Reference velocity

Average reference velocity
Total mass flux

Bubble radius

Average bubble radius

Heat capacity of bubble fluid
Heat capacity of host-fluid
distance

Conductivity of bubble fluid
Conductivity of host-fluid
Normal vector

Surface coordinate

Tangent vector
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Nondimensional time

Velocity vector

x-component of velocity

y-component of velocity

z-component of velocity

x-coordinate

nondimensional domain lenght in x direction
Position vector of interface

y-coordinate

nondimensional domain lenght in y direction
z-coordinate

nondimensional domain lenght in z direction
x-coordinate of center of mass of a bubble
y-coordinate of center of mass of a bubble

z-coordinate of center of mass of a bubble

[Li

Ho

Separation

Thermal diffusivity
Deformation
Circulation

Delta function
Curvature

Size ratio of bubbles
Viscosity of bubble fluid

Viscosity of host-fluid



Pi

Po

or

Oz
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Kinematic viscosity

Density of bubble fluid

Density of host-fluid

Surface tension coefficient

Surface tension gradient with respect to temperature

Surface tension gradient with respect to z
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ABSTRACT

COMPUTATIONAL INVESTIGATION OF THERMOCAPILLARY

MIGRATION OF BUBBLES AND DROPS IN ZERO GRAVITY

by

Selman Nas

Chairperson: Associate Professor Grétar Tryggvason

The thermocapillary migration of many bubbles and drops in zero gravity is studied
numerically in two and three dimensions. The full Navier-Stokes equations and the
energy equation for the temperature, are solved for the fluid inside and outside of the
bubbles and drops by a front tracking/finite difference method. The method is veri-
fied by comparison with analytical solution in the limit of zero Reynolds, Marangoni
and Capillary numbers and good accuracy is found. It is found that two bubbles,
initially oriented arbitrarily with respect to the temperature gradient, tend to line
up, side by side, perpendicular to the temperature gradient in both two and three
dimensions. The interaction between two drops, on the other hand, is different.
Only in the low Re and Ma number region drops do behave like the bubbles, but
when both the Re and the Ma are high, they tend to line up in tandem. Drops

also deform more than bubbles, along the direction of the temperature gradient.



Numerical simulations of a large mono-dispersed bubble system show that the bub-
bles form horizontal layers. As soon as the bubbles form one layer that fills the
channel horizontally, the rest of the bubbles form another layer. Although these lay-
ers sometimes break up by instability waves, the layers are eventually regenerated.
Three-dimensional simulations confirm this tendency to form layers while simulations
of bubbles in polydisperse systems show the same behavior. In contrast to the two
dimensional simulations of polydisperse systems, where bubbles of different size form
a horizontal layer, a three dimensional simulation of a polydispersed system shows

that different sizes of bubbles form different layers.





