CHAPTER I1

FORMULATION AND NUMERICAL METHOD

The physical problem and the computational domain is sketched in Figure 2.1.
We have a wall bounded region in the z direction and the domain is periodic in the
x direction. The bubble has constant physical properties denoted by the subscript ¢
and the ambient fluid has properties denoted by the subscript o. The surface tension
varies along the interface. The top wall is hot and the bottom wall is cold, and

initially, the temperature is linearly increasing in the z direction.

2.1 Governing Equations

The Navier-Stokes equations are valid for both fluids, and a single set of equations
can be written for the whole domain as long as the jump in viscosity and density is
correctly accounted for and surface tension is included. The Navier-Stokes equations,

in conservative form are as follows:

ag;tu + V(puu) = —=Vp + V- u(Vu 4+ Vu’)
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In the last term, we include the surface tension forces acting on the interface as a

body force by representing it as a delta function. Here, u is the velocity field, p is
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the density, p is the pressure, p is the viscosity, o is the surface tension, k is the
mean curvature, n is a unit normal vector, t is a unit tangent vector, ¢ is the delta
function, x; is the position of the interface and the integral is over the interface
separating the fluids.

The energy equation can be written as follows:

oT
pCy (E + V- (uT)) =V (kVT), (2.2)
where T' is the temperature and k& and ¢, are the coefficients of heat conduction and
heat capacity, respectively. Both fluids are immiscible and the physical properties

are constant in each fluid. Therefore, the equations of state for density, viscosity,

heat capacity and heat conduction can be written as follows;
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The incompressibility constraint gives the divergence free velocity field condition as

follows;

V.u=0. (2.5)

If we combine the momentum equation and the incompressibility condition, this leads
to a non-separable elliptic equation for the pressure. Since the physical properties
are taken to be constant, the density field is independent of temperature variation
and we have therefore excluded natural convection in this problem.

We take the surface tension to be a linearly decreasing function of the tempera-

ture:

o=o0,+op(T,—1T) (2.6)

where

or = —(do/dT) = constant
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and o, is the surface tension at a reference temperature 7T,. In many cases, o can
be assumed to be a constant and for simplicity we assumed that it is so here. or is
positive for most fluids (see Braun et al. 1993 for negative value of 7). Therefore,
increasing temperature reduces the surface tension. In a nonuniform temperature
gradient, the cold side of the bubble will have a higher surface tension than the
warm side and it will therefore pull surface from the warm side, where surface will
be generated, around the bubble to the cold end, where the surface will disappear.
This movement of the surface, with its viscous drag upon the outer fluid, will pick
up a sheet of liquid and jet it off the cold back end. By jetting liquid one way, the
bubble propels itself up the temperature gradient. Thermodynamically, such a self-
propelling bubble is a heat engine. Whenever surface is created, heat is absorbed,
and whenever surface is destroyed heat is given off. Therefore a swimming bubble

absorbs heat at its hot end and rejects heat at its cold end (Trefethen, 1963).

2.2 Non-dimensional Numbers

Following other investigators we present our results in non-dimensional variables.

The flow is governed by the following variables;

4, 0oy floy Pos Cpoy k07 Hiy Pis Cpiy kia oT, and VT.

Here a is a typical bubble or drop radius, o, is the average surface tension, p is the
viscosity, p 1s the density, ¢, is the coefficient of heat capacity, k is the coeflicient
of heat conduction, o7 is the rate of change of surface tension with temperature,
and VT, is the undisturbed temperature gradient in the ambient fluid far from
the bubble. The physical properties of the bubble are denoted by the subscript

¢ and those of the ambient fluid by the subscript o. This leads to the following
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non-dimensional numbers;

7 7 7 kz 2
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Here, Ma is the Marangoni number, Re is the Reynolds number, and Ca is the
average Capillary number. The average Capillary number is computed at the middle
of the domain in the vertical direction. These three non-dimensional numbers are
based on the properties of the outer fluid. Sometimes, the Prandtl number, Pr, =
Vo/a,, is used instead of the Re number. «, is the thermal diffusivity of the outer
fluid. As is usually done in the literature for Marangoni bubble motion, we define a
reference velocity by:
ora

U, = VT..
fo

The non-dimensional numbers can now be written in a much simpler form:

The Marangoni number is the Péclet number as it is usually used in the heat transfer
literature and is the product of the Prandtl and the Reynolds number. When we
present our results, velocities will be scaled by the reference velocity defined above
and time will be scaled by the ratio of the initial bubble radius and the reference
velocity. In the creeping flow regime, it is more appropriate to use diffusion time scale
since the convection is negligible. Either viscous time scale or thermal time scale can

be used. When the Prandt]l number is very small than unity, the thermal field attains
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its steady-state value while the fluid motion is just beginning to develop. Therefore,
the flow is governed by the viscous time scale. When the Prandtl number is very large
than unity, the fluid motion becomes quasi-static with a slowly-developing thermal
field. Hence, the thermal time scale determines when the bubble reaches a steady
state as pointed out by Dill (1988).

When the non-dimensional numbers are either small or large, several interesting
limiting cases arise. At the zero Marangoni number limit, the energy equation reduces
to the Laplace’s equation for temperature since the convective transport of energy can
be neglected in this case. Hence, the problem becomes a quasi-static problem. For a
gas bubble, when the physical properties of the gas are much smaller than those of
the ambient fluid, the energy transfer on the bubble surface can be neglected. This
implies that the isotherms should be perpendicular to the bubble surface. Small
Prandtl number results apply to liquid metals and large Prandtl number to heavy
oils. Liquids have Prandtl numbers on the order of unity. Typical values are Pr=7
for water and Pr=0.72 for air, at standard conditions. The zero Reynolds number
limit reduces the momentum equation to the steady case since inertial effects can be
neglected in this limit.

When the Marangoni number is large, the convective terms in the energy equation
are dominant. In this limit, conduction of energy can be neglected. If the Reynolds
number is of the order of unity, large Prandt]l numbers correspond to high Marangoni
numbers. Heavy oils, like silicon oil, have large Prandtl numbers, on the order of
10°.

In the limit of zero Capillary number, it can be assumed that deformation from
a spherical shape is negligible. As the Capillary number increases, however, defor-

mation of the bubble increases. If the deviation from a spherical shape is large,
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the scaled terminal velocity of the bubble/drop decreases. In the zero Capillary,
Marangoni and Reynolds number limit, the scaled migration velocity of a gas bubble
is known to be 0.5.

In order to report the deformation of a bubble in later chapters, we define the

deformation of a bubble as follows;

1—c¢
1 +e¢

where

minor axis of the bubble

‘= major axis of the bubble’

In the simulations presented in this thesis, we include all terms in the governing

equations and do not impose any restrictions inherent for these limiting cases.

2.3 Numerical Method

The numerical technique used for the simulations presented here is the Immersed
Front Tracking method for multi-fluid flows developed by Unverdi (1990) and dis-
cussed by Unverdi and Tryggvason (1992 a,b). To solve the Navier-Stokes equations
we use a fixed, regular, staggered grid and discretize the momentum equations using
a conservative, second order centered difference scheme for the spatial variables and
an explicit second order time integration method. We have used first order time
integration in other problems and generally find little differences for the relatively
short simulation times of interest here. The effect does show up in long time simu-
lations, however, and is usually accompanied by a failure to conserve mass. In the
computations discussed here, mass is always conserved within a fraction of a percent.
The interface is represented by separate computational points that are moved by in-

terpolating their velocity from the grid. These points are connected to form a front
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that i1s used to keep the density and viscosity stratification sharp and to calculate
surface tension forces. At each time step, information must be passed between the
front and the stationary grid. This is done by a method that has become known as
the Immersed Boundary Technique and is based on assigning the information car-
ried by the front to the nearest grid points. While this replaces the sharp interface
by a slightly smoother grid interface, all numerical diffusion is eliminated since the
grid-field is reconstructed at each step.

The original Immersed Boundary Technique was developed by Peskin and collab-
orators (see e.g. Peskin (1977)) for homogeneous flows. The extension to stratified
flows includes a number of additional complications. The first is that density now
depends on the position of the interface and has to be updated at each time step.
There are several ways to do this but we use a variant of the method developed by
Unverdi (1990) where the density jump at the interface is distributed onto the fixed
grid to generate a grid-density-gradient field. The divergence of this field is equal to
the Laplacian of the density field and the resulting Poisson equation can be solved
efficiently by a Fast Poisson Solver. The particular attraction of this method is that
close interfaces can interact in a very natural way, since the grid-density gradients
simply cancel. Therefore, when two interfaces come close together the full influence
of the surface tension forces from both interfaces is included in the momentum equa-
tions, but the mass of the fluids in the thin layer between the interfaces—which is
very small—is neglected. A second complication is that the pressure equation now
has a nonconstant coefficient (or is non-separable) since the density varies. This
prevents the use of Fast Poisson Solvers based on Fourier Methods, or variants there
of. We used a simple SOR for many of our early computations (in the so-called

Black and Red form for computations on a CRAY computer), but here, a multigrid
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package (MUDPACK from NCAR) was used for most of the computations.

The computation of the surface tension forces poses yet another difficulty. Gen-
erally, curvature is very sensitive to minor irregularity in the interface shape and
it is difficult to achieve accuracy and robustness at the same time. However, by

computing the surface tension forces on each element directly by
K= }f on X tds, (2.7)
elem

we explicitly enforce that the integral over any portion of the surface gives the right
value, and for closed surfaces, in particular, we enforce that the integral of surface
tension forces is zero. This is important for long time simulations since even small
errors can lead to a net force that moves the bubble in an unphysical way. Here,
n is the surface normal vector, t is the unit vector tangent to the boundary of the
surface element, o is the surface tension coefficient.

The energy equation is solved in the same way as the momentum equation. Cen-
tral differencing is used for the spatial derivatives on the staggered mesh and a second
order time stepping is used to advance the temperature in time. The temperature
on the front is interpolated from the neighboring stationary grid points by using an
interpolation function invented by Peskin (1977). Given the temperature, surface
tension can be found and the surface forces computed. The momentum and the
energy equations are coupled through this relation.

We use different platforms to compute the simulations. This includes CRAY YMP
and CRAY C90 supercomputers as well as HP, IBM RS /6000, IBM SP1 workstations.
Due to the frequent crashes and the use of backup files in order to choose the low
load times, it is hard to estimate the time to complete each run. It varies from one

day to several days on a local workstation for two-dimensional simulations. This
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goes as high as two months for three dimensional simulations on workstations.

2.4 Validation

In order to establish the correctness of the method presented here, we have done
three tests to compare our results with existing analytical results. The first test is
for the creeping flow regime. The terminal velocity of a single bubble rising in an
unbounded domain has been found by Young et al. (1959). Young et al. utilize
the solution of Hadamard and Rybczynski (1911) for flow around a fluid sphere and
assume that convective transport of momentum and energy can be neglected. In
other words, they assume that Reynolds and Marangoni numbers are very small
and that the convective terms in the governing equations can be neglected. Once
this is done, the problem becomes quasi-static. The energy equation reduces to a
form where the Laplacian of temperature vanishes over the whole domain. They
also assume that deformation from a spherical shape is negligible. This implies that
Capillary effects can be neglected. They have given the scaled rising velocity as

follows:
2
2T )@+ 37)

Wes = ( (2.8)

where k* is the ratio of the coefficient of heat conductivity of the bubble to that
of the ambient fluid and p* is the ratio of the viscosity of the bubble to that of
the ambient fluid. For a gas bubble, since the conductivity and viscosity ratios are
negligible, this formula reduces to Vy g = %

In an attempt to compare our results with the migration velocity of a bubble in
the creeping flow regime, we first conducted resolution tests using two-dimensional
simulations. The non-dimensional numbers are Re = 2.5 x 1072, Ma = 2.5 x 1073

and Ca = 107> and the ratios of the physical properties of the bubble to that of
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the outer fluid is 0.5. We have examined the sensitivity of the solution to the grid
resolution by simulating a single bubble on 32 x 32, 64 x 64 and 128 x 128 grids for a
square domain which extends four bubble radii in each direction. This corresponds
to 16, 32 and 64 mesh points per bubble, respectively. As we increase the resolution
the terminal velocities converge and the difference between the 64 x 64 grid and
128 x 128 grid is about 2%. Figure 2.2 shows the velocity versus time for these three
runs.

We then do fully three dimensional simulations of a single bubble to compare our
results with three-dimensional analytical solutions in the creeping flow regime. In
order to reduce the computational costs, and due to limited computational resources,
32 grid points per bubble diameter were used in the three dimensional simulations.
We have done these simulations for Re = 2.5x1073, Ma = 2.5x107% and Ca = 1072,
The ratios of the physical properties of the bubble to that of the outer fluid (k* and
©* in Equation (2.8)) are 0.5. The theoretical value of the rising velocity for a bubble
migrating in an unbounded domain is 0.228 from Equation (2.8). Figure 2.3 shows
the results of the fully three dimensional simulation of a single bubble migrating at
steady state for these non-dimensional numbers. The migration velocity versus the
distance, H, between the wall and the bubble centroid, scaled by bubble radius, is
plotted in Figure 2.3. Since we have walls on the top and bottom of the computational
domain as well as periodic horizontal boundaries, there are wall effects which reduce
the rise velocity of the bubble. As we increase the size of the computational box,
Figure 2.3 shows that the results approach the unbounded domain results.

For one of the cases in Figure 2.3, where the bubble is two bubble radii away
from the wall, we plot the bubble and the temperature field in the middle plane of

the computational box at steady state in Figure 2.4. The detailed structure of the
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isotherms is shown in the middle plane in Figure 2.5. Figure 2.5 shows that the
temperature field is consistent with the theoretical prediction that the temperature
gradient inside the bubble does not change and the temperature field is uniform. For
the same simulation, Figure 2.6 shows the velocity field in the middle cross sectional
plane of the bubble while Figure 2.7 shows the detailed structure of this velocity field
in the same plane.

In our second test we examine the qualitative behavior of a single bubble in the
creeping flow regime with respect to changes in the ratio of the physical properties.
Equation (2.8) indicates that the density and the heat capacity ratio do not play a
role in the migration velocity of the bubble. The migration velocity is only affected
by viscosity and heat conductivity according to Equation (2.8). Figure 2.8 shows the
scaled migration velocity with respect to time for different viscosity ratios. When
the bubble reaches steady state, it is seen clearly that beyond the viscosity ratio
p* = 1/50, the effect is negligible. This is consistent with Equation (2.8). While
the viscosity ratio changes, the ratio of other physical properties are kept constant
at unity. Similarly, the effect of the heat conductivity ratio is shown in Figure 2.9.
While we decrease the ratio, we see that once it is smaller than about &* = 1/40,
the effect is negligible. Both of these results are qualitatively consistent with the
prediction of Equation (2.8). We have also done a similar test for the density and
heat capacity ratios. Figure 2.10 shows the effect of the density ratio while the effect
of the heat capacity ratio is plotted in Figure 2.11. Both of these results show that
these ratios do not change the migration velocity of the bubble at steady state as
predicted by Equation (2.8). When the conductivity ratio is unity, the change in the
heat capacity ratio does not change the energy equation. Therefore, in Figure 2.11,

the test is done with the coefficient of heat conductivity ratio equal to 1/20. In all
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these four different tests, the time is scaled by the viscous diffusion time scale. The
other non-dimensional numbers are the same as for the three dimensional simulation,
namely, Re = 2.5 x 1073, Ma = 2.5 x 107% and Ca = 107,

Finally, we show the results of a much simpler test. A strip of one fluid is laid
down in a channel and surrounded by an ambient fluid. A schematic is shown in
Figure 2.12. The domain is wall bounded in the vertical direction and periodic in
the horizontal direction. There are two free surface at the top and the bottom of
the symmetry axis x. The density of the middle layer is equal to the outer one, but
its viscosity half of the outer one. We assume that the temperature field is fully
developed and increases linearly with z. Since the surface tension is a function of
temperature, the only force acting on each interface is the surface tension gradient

along the interface, o,. The governing equation for this flow can be written as

% (ﬂZ—Z) to.8(y) =0 (2.9)

where u is the  component of the velocity. The solution of Equation (2.9) is subject
to the no-slip boundary condition on the walls and because of symmetry zero velocity
gradient at the symmetry axis. At each interface, the jump in shear stresses is
balanced by the surface tension forces. The solution to Equation (2.9) can easily be

found as

20,d/u,(1 = lyl/d) if df2 < |y] < d

u(y) =
oxd/p, if |y| < d/2
By integrating the velocity across the channel, the total mass flux is
3 o,d?
Qe'r - Z 1o

We examine the convergence of () by computing the total mass flux at different
resolution when the flow becomes fully developed, reaching a steady state. Fig-

ure 2.13 shows the mass flux normalized by the exact mass flux for different mesh
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size. The test is done on 1 x 1 domain with 16 x 16 grid points, 32 x 32 grid points,
64 x 64 grid points and 128 x 128 grid points. As we increase the resolution, or de-
crease the mesh size, it is seen that the solution converges well to the exact solution.

This further establishes the correctness and the accuracy of the method.
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Figure 2.1: The computational setup. The top and bottom wall are no-slip bound-
aries with constant temperature 7%, and 7.,,5. The horizontal bound-
aries are periodic
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Figure 2.2: Velocity versus time. Convergent test for a single two-dimensional bubble
on a computational domain which is 4 bubble radii in each direction.
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Figure 2.3: Velocity versus box size for a single bubble in 3d. The resolution is 48°
grid points, 64° grid points and 80% x 96 grid points, respectively.
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Figure 2.4: The temperature field in the middle plane of the computational domain.
The domain is four bubble radii in each direction. The bottom wall is
cold and the top wall is hot.

Figure 2.5: Temperature contours in the middle plane of the computational domain.
50 equally spaced contours are shown.
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in the middle plane of the computational domain.

Figure 2.6: The velocity field

Figure 2.7: Details of the velocity field in the middle plane of the computational

domain.
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Figure 2.8: Effect of the viscosity ratio on the migration velocity.
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Figure 2.9: Effect of the conductivity ratio on the migration velocity.
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Figure 2.11: Effect of the heat capacity ratio on the migration velocity.
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Figure 2.12: Schematic of the third test problem.
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Figure 2.13: Resolution test for the problem in Figure 2.12. Total mass flux scaled
by the exact mass flux versus grid resolution.





