CHAPTER I

INTRODUCTION

1.1 Motivation

Bubbles and drops in an ambient fluid with a temperature gradient will move
toward the hot region due to thermocapillary forces. Surface tension decreases with
increasing temperature and the nonuniform surface tension of the bubble surface
causes shear stresses that are transmitted to the outer fluid by viscous forces, thus
inducing a motion of the bubble in the direction of the thermal gradient. In space,
where buoyancy forces are negligible, thermocapillary forces can be dominant. For
material processing in microgravity, thermal migration can be used, for example,
to remove gas bubbles or liquid drops in melts before solidification. It has been
suggested that it is possible to produce high quality glass in space because of the
ability to process it without a container (Uhlmann (1982)). However, bubbles due to
chemical reactions have to be removed to achieve this. Thermocapillary migration
could provide a way to do this in the absence of gravity. Vapor bubbles may also
form due to evaporation in liquid-rockets which are used to power space vehicles and
space probes (Ostrach (1982)). Similarly, the cooling system of the Space Shuttle
uses liquids from which gas bubbles might form. The bubbles in these systems

should be managed in order to have a properly working systems. Thermocapillary



migration can also be important in the design of two-phase heat exchangers for space
applications. Accumulations of bubbles on heated surfaces can act like an insulator
and prevent heat transfer to the surface. To understand the interaction of many
bubbles during thermocapillary induced motion and to investigate the effect of the
various governing parameters, here we solve the full Navier-Stokes equations and the

energy equation for both fluids, computationally.

1.2 Historical Background

In this section, we review some of the previous experimental, theoretical, and
numerical investigations that have been carried out on thermocapillary migration of
bubbles and drops.

Thermal migration of gas bubbles was first examined by Young et al. (1959),
both theoretically and experimentally. Young et al. were able to hold a buoyant
gas bubble stationary by applying a downward temperature gradient, found a first
order approximation to the terminal velocity in the limit of negligible convective
transport of momentum and energy, under the assumption that the bubble maintains
a spherical shape. They also verified that the temperature gradient required to hold
a bubble stationary was proportional to the bubble radius and that this gradient is
independent of viscosity as predicted by their theoretical model.

Hardy (1979) performed experiments similar to Young et al. He reduced some of
the experimental inaccuracies in the experiments of Young et al. and also obtained
the temperature gradient needed to counter the buoyancy effect. His results were in
good agreement with the theoretical predictions of Young et al.

Thompson (1979) and Thompson et al. (1980) used a NASA zero gravity drop

tower to do experiments in 5.2 seconds of free fall. They used nitrogen bubbles in



different host fluids. The results showed that the thermocapillary motion of bub-
bles occured in each test fluid except distilled water. Thompson suggested that the
phenomena did not occur in distilled water due to surfactant contamination.

Meritt and Subramanian (1988) performed experiments on bubbles in silicon oil
in a downward temperature gradient, overcoming the buoyant rise of the bubble.
Although the bubbles in those experiments increased in size by as much as 100%
during the experiment, due to the mass transfer from the liquid, their results showed
good agreement with the work of Young et al. The surface tension, which was ex-
tracted from the experiments, was also in good agreement with earlier measurements
of Hardy (1979).

Experimental investigations of the thermocapillary migration of liquid drops is
a more recent field of research than work using gas bubbles. Wozniak and Siekman
(1989) carried out a low gravity thermocapillary migration experiment on liquid drops
in the Furopean sounding rocket program. They reported that for high Reynolds
(Re) and Marangoni (Ma) numbers, the measured migration velocities were close
to the prediction given by Subramanian (1983). For intermediate non-dimensional
numbers, however, they observed larger deviations from the theoretical model of
Subramanian (1983).

Barton and Subramanian (1989) have completed measurements of drop migration
speeds in circumstances where convective transport effects were negligible. These
results are generally in agreement with the predictions of Young et al.

Rashidna and Balasubramaniam (1991) carried out experiments on drops in sil-
icon oil using density matched systems. Drops moving towards the hot region in
a vertical temperature gradient were observed. After a long time, however, drops

began moving towards the cooler side. They attributed this surprising behavior to



mass transfer between the phases, causing the drops to become more dense than the
host-fluid.

Bratukhin (1976) derived an analytical solution for the thermocapillary flow of
bubbles and drops based on a power series expansion in terms of the Marangoni
number, and found the particle velocity, the fluid velocity, the temperature field,
and the pressure field by using an Oseen approximation. Thus, his results are valid
for small Reynolds numbers, to O(Re). In zero gravity, and in the limit of zero
Reynolds number, his formula is the same as the one found by Young et al.

Later, Subramanian (1981) obtained the migration velocity of a gas bubble for
small, but nonzero convective heat transfer by using asymptotic expansion technique.
In his analysis, it 1s assumed that the bubble is nondeformable and that the Reynolds
number is small enough to be taken as zero. The migration velocity of the bubble is
given up to O(Ma?). As the results show, the effect of convective transport of energy
is to reduce the migration velocity of bubbles. Subramanian (1983) later extended
his work to liquid drops. In the proper limit, his results give the correct value of
the migration velocity for gas bubbles. For certain physical properties, it was shown
that the drop velocity can be higher with increasing Marangoni number; in contrast,
for bubbles, the effect is always a reduction in the migration velocity.

Balasubramaniam and Chai (1987) have given an exact solution for the migration
velocity of a single drop in the limit of negligible convective transport of energy. They
also computed the shape of the droplet, when deformations from a spherical shape
are small. Their results are in agreement with previous results, such that the bubbles
tend to deform oblately, and that droplets tend to elongate in the flow direction while
droplets of the same density as the ambient fluid do not deform.

Shankar and Subramanian (1988) reconsidered the thermocapillary migration of



a gas bubble in the limit of a zero Reynolds number at values of the Marangoni
number ranging from 0 to 200, solving the energy equation by a finite difference
method. They confirmed that increasing Marangoni number decreases the migration
velocity of a gas bubble and presented a very simple formula for the bubble migration
velocity for Ma > 25, by fitting their numerical solution.

Siekman and Szymeczyk (1988) numerically solved the thermocapillary motion for
a gas bubble, accounting fully for the convective transport of energy and momentum
while assuming a nondeformable bubble. Their results show that convective energy
and momentum transport effects tend to reduce the bubble migration velocity.

Balasubramaniam and Lavery (1989), extended the work of Siekman and Szym-
czyk (1988) and, for a large range of non-dimensional numbers, numerically solved
the problem for an isolated axisymmetric spherical bubble. They found that the
scaled bubble velocity is more sensitive to the Marangoni number at a fixed Reynolds
number than to the Reynolds number at a fixed Marangoni number.

Haj-hariri et al. (1990) have examined the inertial effects on the thermocapillary
velocity of a drop. It was found that with the convective transfer of heat neglected,
droplets with densities higher /lower than the outside liquid deform to prolate/oblate
spheroidal shapes, at small values of the Capillary and Reynolds numbers. It was
shown that the migration velocity could increase, decrease, or remain unchanged
depending on the ratios of physical properties.

Chen and Lee (1992) investigated numerically the effect of surface deformation
on the terminal velocity of a single bubble and concluded that surface deformation
reduces the terminal velocity considerably.

Other investigators have examined the thermocapillary motion for two bubbles or

drops, but only for small Marangoni and Reynolds numbers. Meyyapan et al. (1983)



investigated the motion of two bubbles moving along their line of centers. They
found that each bubble moves with the same velocity that it has if it is isolated.
Their analysis also assumed that convective transport of energy and momentum is
sufficiently small so it can be neglected and that the bubbles do not deform. When
the bubbles differed in size, the smaller bubble moved faster than if isolated while
the larger bubble moved slower. However, these interaction effects generally were
small.

Meyyapan and Subramanian (1984) extended the analysis of Meyyapan et al.
(1983) to the motion of two bubbles oriented arbitrarily with respect to the tem-
perature gradient, using an approximate method. They found that a small bubble
does not affect the motion of a larger bubble to any significant degree. It was further
shown that if two bubbles are close and oriented with their line of centers perpen-
dicular to the temperature gradient, the small bubble sometimes moves opposite to
the direction of the temperature gradient.

Feuillebois (1989) has given an exact solution for the problem considered by
Meyyapan et al. (1983).

The motion of two liquid drops oriented arbitrarily with respect to a tempera-
ture gradient was examined theoretically by Anderson (1985) in zero Reynolds and
Marangoni number limit. In his analysis, where the method of reflections was used
to solve the governing equations, the convective transport of energy and momentum
as well as gravitational effects were neglected. He also utilized his two-drop theory
to find the effect of the volume fraction of the drops on the mean drop velocity in
a bounded suspension. It is shown that the mean velocity of a suspension is lower
than for a single drop.

Acrivos et al. (1990) have studied the thermocapillary motion induced in a cloud



of bubbles by a uniform temperature gradient under the assumptions that the bubbles
are all the same size, that the surface tension is high enough to keep the bubbles
spherical, and that the bubbles are non-conducting. It was shown that in a cloud of n
particles surrounded by an infinite expanse of fluid, the velocity of each sphere under
creeping flow conditions is equal to the velocity of an isolated particle, unchanged
by interactions between particles.

Keh and Chen (1990) considered the axisymmetric thermocapillary motion of
two spherical droplets in a constant applied temperature gradient along their line of
centers under creeping flow conditions. It was shown that for the thermocapillary
motion of two identical liquid droplets, both migrate faster than the velocity they
would posses if isolated. For the case of two gas bubbles with equal radii, there was
no particle interaction for all separation distance.

Keh and Chen (1992) investigated the axisymmetric thermocapillary motion of
a chain of spherical droplets along their line of centers in a quasi-steady limit of
conservation of energy and momentum by a combined analytical-numerical study.
For the case of two droplets, the migration velocity of each drop were confirmed.
For the special case of multiple gas bubbles, it was demonstrated that the migration
velocity of each bubble is unaffected by the presence of the others if all the bubbles
have identical radii.

Zhang and Davis (1992) examined the pairwise collision rate of small spherical
drops undergoing thermocapillary migration in a dilute dispersion under creeping
flow conditions by using a trajectory analysis. It was found that increases in the vis-
cosity and/or thermal conductivity of the drop fluid decrease the collision efficiency,
described as the effects of the drop interaction on collision rate, due to the effects of

hydrodynamic and thermocapillary interactions.



Strape (1992) analytically examined the interaction between bubbles in the zero
Marangoni and Reynolds number case. He also assumed that the Capillary number is
negligible so that the bubbles are always spherical. He has given the trajectories for
the two-bubble case in these limits. He also found that for a statistically homogeneous
cloud of bubbles, the bubble collision rate increases with the standard deviation of
the bubble size distribution.

Wei and Subramanian (1993) theoretically investigated the quasi-static thermo-
capillary migration of a chain of two and three spherical bubbles in an unbounded
fluid with a uniform temperature gradient, at the limit of vanishing Reynolds and
Marangoni number. They explored the flow topology and identified reverse flow
wakes.

Keh and Chen (1993) considered the more general problem of droplet interactions
in thermocapillary migration. They also solved this general problem in the limit of
zero Reynolds and Marangoni numbers and showed that the terminal velocity of a
drop is not affected by the presence of other drops if they all are equal in size. They
have also examined the effect of volume fractions on the average thermocapillary
migration velocities in a bounded dilute suspension.

The interaction between bubbles and drops and plane surfaces has been the sub-
ject of other investigations. Meyyapan et al. (1981) investigated theoretically the
slow axisymmetric thermocapillary migration of a spherical gas bubble normal to a
solid plane surface and a free liquid surface. Their calculation showed that the effect
of the plane surface is to decrease the bubble’s migration velocity. They also demon-
strated that the distance at which the bubble starts to be affected by the presence of
the plane surface is much smaller than for a gravity driven motion. They explained

this behavior in terms of the decay rates of the disturbance velocity fields.



A gas bubble in a temperature gradient with an arbitrary orientation with respect
to the plane surface, was studied by Meyyapan and Subramanian (1987), extending
the work of Meyyapan et al. (1981). Their results show that the presence of the
planar surface always reduces the migration velocity of the bubble. The highest
reduction is observed when the bubble moves normal to the plane surface.

Ascoli and Leal (1990) considered the thermocapillary migration of a deformable
drop moving normal to a planar wall and found that the deformation increases with
increasing effective Capillary number.

Chen and Keh (1990) examined the migration of a drop towards a planar surface
under creeping flow conditions. It was found that for the motion of a droplet normal
to a solid plane, the effect of the plane surface is to reduce the migration velocity
of the droplet. For the case of droplet migrating toward a free surface, the droplet
velocity can be either greater or smaller than that which would exist in the absence
of the plane surface, depending on the relative thermal conductivity of the droplet
and its relative distance from the plane.

Chen et al. (1991) examined the steady, creeping, thermocapillary migration of
a spherical fluid particle in a tube owing to an imposed axial temperature gradient
under conditions of axisymmetry, negligible thermal convection and an insulated tube
wall. They studied the influence of wall-fluid particle hydrodynamic and thermal

interactions in determining the thermocapillary migration velocity.

1.3 Current Work

The literature on thermal migration is more extensive for single bubbles or drops
than for the interaction of many bubbles and drops. In most previous work, it has

been assumed that the bubbles do not deform and that convective transfer can be
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neglected. Here, we present results for both single and several bubbles and drops
by solving the full governing equations numerically in two and three dimensions. In
our computations, we do not impose any restriction on the shape of the bubbles,
although we find that the bubbles remain nearly spherical in most cases.

The full Navier-Stokes equations, as well as the energy equation for the tem-
perature distribution, are solved for the fluid inside and outside of the bubbles by
a Front Tracking/Finite Difference Method. The material properties of the bubble
fluid and the ambient fluid are different, and we assume temperature dependent sur-
face tension. We explore the dependence of the thermal migration velocity and the
deformation on the various non-dimensional parameters.

The definition of the physical problem and the mathematical formulation, as well
as the governing parameters, are covered in Chapter II. Chapter II also includes a
description of the numerical method used to solve the governing equations and the
validation of the two and three dimensional code.

In Chapter III, we start with the rise of a single bubble and present the effect
of the various governing parameters on the migration velocity and the deformation
of the bubble. Then, we move to the interaction of two, two-dimensional bubbles
and study the effect of the initial condition of bubbles on their interaction. The
interaction between two bubbles or two drops is then explored in detail by two and
three dimensional simulations in the rest of Chapter III.

We present the behavior of large numbers of bubble systems in Chapter 1V.
In the first part of Chapter 1V, we consider simulation of a cloud of equal-sized
bubbles. The evolution of six and sixteen equal-sized bubbles is explored by two-
dimensional simulation. Then, the interactions of nine bubbles is investigated by fully

three-dimensional simulations. Similar to the mono-dispersed case, the behavior of
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a polydispersed system is explored in the rest of Chapter IV. First, the interaction
of six and sixteen unequal-sized two-dimensional bubbles is presented, followed by
fully three-dimensional computation of nine, unequal-sized bubbles.

Chapter V contains the conclusions, and suggestions for future work on the ther-

mocapillary migration of bubbles and drops.



