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ABSTRACT

Numerical simulations of two-dimensional bubbles
moving in a nonuniform temperature field ‘are pre-
sented. The full Navier-Stokes equations as well as the
energy equation for the temperature distribution, are
solved for the fluid inside and outside of the bubbles by
a Front Tracking/Finite-Difference Method. The ma-
terial properties of the bubble fluid and the ambient
fluid are different, and we assume temperature depen-
dent surface tension. We explore the dependence of
the thermal migration velocity and the deformation on
the various nondimensional parameters. The interac-
tion of two bubbles is then explored. The bubbles line
up across the channel and move side by side toward
.the hotter wall. Similar evolution-is seen for six.bub-
bles. The bubbles move in two layers—one consisting
of four bubbles and the other one of two—that migrate
toward the hot. wall with different velocity. Although
the bubbles strive to line up in the direction perpendic-
ular to the temperature gradient, they generally place
them self as far away from each other as possible, along
this line.

INTRODUCTION

Bubbles and drops in an ambient fluid which has
a temperature gradient will move toward the hot re-
gion due to thermocapillary forces. Surface tension de-
creases with increasing temperature and the nonuni-
form surface tension along the bubble surface causes
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shear stresses that are transmitted to the outer fluid
by viscous forces, thus inducing a motion of the bubble
in the direction of thermal gradient. In space, where
buoyancy forces are negligible, thermocapillary forces
can be dominant. For material processing in micro-
gravity, thermal migration can be used, for example, to
remove gasses in melts before solidification. Thermo-
capillary migration can also be important in the design
of two-phase heat exchanger in space. Accumulation
of bubbles on heated surfaces may act like an insulator
and preventing heat transfer to the surface. To under-

"stand the interaction of many bubbles in thermocapil-

lary induced motion and to investigate the effect of the
various governmg parameters, we solve the full Navier-
Stokes equations and the energy equation for both ‘flu-
ids, computatlonally

Thermal migration of bubbles was first examined by
Young et al. (1959), both theoretically and experimen-

‘tally. Young et al. were able to hold a buoyant bubble

stationary by applylng a downward temperature gradi-
ent and gave a first order approximation to the terminal
velocity in the limit of negligible convective transport
of momentum and energy with the assumption that the
bubble maintains its spherical shape. They also verified
that the temperature gradient required to hold a bub-
ble stationary increased with bubble radius and that

‘this gradient is independent of viscousity as predicted

by their theoretical model. Later, Subramanian (1981)
obtained the solution for small but nonzero convective
heat transfer by using asymptotic expansion technique.
Merrit (1988) extended the theory of Young et al. to in-
clude gravity. Balasubramaniam and Lavery (1989), for



a large range of nondimensional numbers, numerically
solved the problem for an isolated axisymmetric spheri-
cal bubble. They found that the scaled bubble velocity
is more sensitive to the Marangoni number at a fixed
Reynolds number than to Reynolds number at a fixed
Marangoni number. Balasubramaniam and Chai (1987)
have given an exact solution for small Marangoni num-
ber for a single bubble. They also computed the small
deformation from a sphere shape. Chen and Lee (1992)
investigated numerically the effect of surface deforma-
tion on terminal velocity of a single bubble and con-
cluded that surface deformation reduces the terminal
velocity considerably. Experimental results are given
by Merrit et al. (1988) and Thompson (1979) for bub-
bles and by Barton and Subramanian (1989), Rashidna
and Balasubramaniam (1989) and Wozniak and Siek-
man (1989) for liquid drops. Others have examined the
problem for two bubbles or drops, but limited to either
small Marangoni or Reynolds number. Meyyapan at
al. (1983) analyzed the motion of two bubbles oriented
arbitrarily with respect to the temperature gradient,
using an approximate method. They found that each
bubble moves with the same velocity that it has if it is
isolated. Same case for drops was analyzed by Ander-
son (1985) who also predicted the migration velocity of
a cloud of equal sized drops. Recently, Strape (1992)
analytically examined the interaction of bubbles in the
zero Marangoni and Reynolds number case. He also as-
sumed that the Capillary number is negligible so that
the bubbles are always spherical. He has given the tra-
jectories for two bubble in these limits. He also found
that for a statistically homogeneous cloud of bubbles,
the bubble collision rate increases with the standard
deviation of the bubble size distribution.

The interaction of bubbles and drops with plane sur-
faces is the subject of other investigations. Ascoli and
Leal (1990) considered the thermocapillary migration
of a deformable drop moving normal to a planar wall
and found that the deformation increases with increas-
ing effective Capillary number. A gas bubble interact-
ing with a planar wall was studied by Meyyapan and
Subramanian (1987).

The literature is more rich for single bubbles or drops
than the interaction of many bubbles and drops. In
most of the work, it was assumed that the bubbles
do not deform and that convective transfer can be ne-
glected. Here we present results for one and many
bubbles by solving the full governing equations numer-
ically in two dimension. In our computations, we do
not impose any condition on the shape of the bubbles,
although we find that the bubbles remain nearly spher-
ical in most cases.
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Figure 1: THE COMPUTATIONAL SETUP. THE
TWO-DIMENSIONAL DOMAIN IS RESOLVED BY
A REGULAR GRID.

FORMULATION & NUMERICAL METHOD

The physical problem and the computational domain
is sketched in Figure 1. We have a wall bounded region
in the z direction and the domain is periodic in the z
direction. The bubble has constant physical properties
denoted by the subscript ¢ and the ambient fluid has
properties denoted by the subscript o. The top wall is
hot and the bottom wall is cold. The surface tension
varies along the interface. Initially, the temperature is
linearly increasing in the z direction and we expect that
the bubble will move towards the hotter wall.

The Navier-Stokes equations are valid for both flu-
ids, and a single set of equations can be written for
the whole domain as long as the jump in viscosity and
density is correctly accounted for and. surface tension
is included. Here we treat the surface tension forces as
body forces and write only one equation for the whole
domain. The Navier-Stokes equations can be written in
conservative form as follows,

dpu

ek V(pi?) = -Vp+ V- p(Vi+ VaT)
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In the last term, we include the surface tension forces
acting on the interface by a delta function. Here # ‘<



the velocity field, p is the density, p is the pressure, p
is the viscosity, o is the surface tension, & is the mean
curvature and Z; is the position of the interface.

The energy equation can be written as

ey (%T +V- (ﬁT)) = V- (kVT),

(2
where T is the temperature and k and ¢, are the co-
efficients of heat conduction and heat capacity, respec-
tively. Both fluids are immiscible and the physical prop-
erties are constant in each fluid. Therefore, the equa-
tions of state for density, viscosity, heat capacity and
heat conduction are

Dp _ . Dp _
=0 ot =0 (3¢)
Dk Dec,
= =0 =2 . 3b
D=0 Dt = (38)

The incompressibility constrain gives the divergence
free velocity field condition as

Vg = 0. (4)
If we combine the momentum equation and the incom-
pressibility condition, this leads to a non-separable el-
liptic equation for the pressure. Since the physical prop-
erties are taken to be constant, density field is indepen-
dent of temperature variation and we have excluded
natural convection in this problem.

We take the surface tension to be a linear decreasing
function of the temperature:

oc=o,+0or(To—T) (5)
where
or = —(do/dT) = constant

and o, is the average surface tension at a reference tem-
perature T,. In many cases, or can be assumed to be
a constant and for simplicity we assumed that it is so
here. o7 is positive for all fluids, so increasing tem-
perature reduces the surface tension. In a nonuniform
temperature gradient, the cold side of the bubble will
have a higher surface tension than the warm side and
it will therefore pull surface from the warm side, where
surface will be generated, around the bubble to the cold
en, where the surface will disappear. This movement of
the surface, with its viscous drag upon the outer fluid,
will pick up a sheet of liquid and jet it off the cold back
end. By jetting liquid one way, the bubble propels it-
self up the temperature gradient. Thermodynamically,
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such a self-propelling bubble is a heat engine. When-
ever surface is created, heat is absorbed, and whenever
surface is destroyed heat is given off. Therefore a swim-
ming bubble absorbs heat at its hot end and rejects heat
at its cold end (Trefethen, 1963).

The numerical technique used for the simulations
presented in this paper is the Immersed Front Track-
ing method for multi-fluid flows developed by Unverdi
(1990) and discussed by Unverdi and Tryggvason (1992
a,b). To solve the Navier Stokes equations we use a
fixed, regular, staggered grid and discretize the momen-
tum equations using a conservative, second order cen-
tered difference scheme for the spatial variables and an
explicit first order time integration method. We have
used second order time integration in other problems
and generally find little differences for relatively short
simulations times as those of interest here. The effect
does show up in long time simulations and is usually ac-
companied by a failure to conserve mass. In the compu-
tations discussed here, mass is always conserved within
a fraction of a percent. The interface is represented by
separate computational points that are moved by inter-
polating their velocity from the grid. These points are
connected to form a front that is used to keep the den-
sity and viscosity stratification sharp and to calculate
surface tension forces. At each time step information
must be passed between the front and the stationary
grid. This is done by a method that has become known
as the Immersed Boundary Technique and is based on
assigning the information carried by the front to the
nearest grid points. While this replaces the sharp in-
terface by a slightly smoother grid interface, all numer-
ical diffusion is eliminated since the grid-field is recon-
structed at each step.

The original Immersed Boundary Technique was de-
veloped by Peskin and collaborators (see e.g. Peskin
1977) for homogeneous flows. The extension to strat-
ified flows includes a number of additional complica-
tions. The first is that density now depends on the
position of the interface and has to be updated at each
time step. There.are several ways to do this but we use
a variant of the method developed by Unverdi (1990)
where the density jump at the interface is distributed
onto the fixed grid to generate a grid-density-gradient
field. The divergence of this field is equal to the Lapla-
cian of the density field and the resulting Poission equa-
tion can be solved efficiently by a Fast Poisson Solver.
The particular attraction of this methods is that close
interfaces can interact in a very natural way, since the
grid-density gradients simply cancel. Therefore, when
two interfaces come close together the full influence of
the surface tension forces from both interfaces is in-



cluded in the momentum equations, but the mass of the
fluids in the thin layer between the interfaces—which is
very small—is neglected. A second complication is that
the pressure equation now has a nonconstant coefficient
(or is non-separable) since the density varies. This pre-
vents the use of Fast Poisson Solvers based on Fourier
Methods, or variants there of, and we have used red and
black SOR.

The computation of the surface tension forces poses
yet another difficulty. Generally, curvature is very sen-
sitive to minor irregularity in the interface shape and
it is difficult to achieve accuracy and robustness at the
same time. However, by computing the surface tension

forces directly by
/ %ds

we ensure that the net surface tension force is zero, or:

fa'nnda = 0.

Here, n is the outward normal and « is the mean curva-
ture. This is important for long time simulations since
even small errors can lead to a net force that moves the
bubble in an unphysical way.

The energy equation is solved in the same way as the
momentum equation. The temperature on the front
is interpolated from the neighboring stationary grid
points by using an interpolation function invented by
Peskin (1977). Given the temperature, surface tension
can be found and the surface forces computed. The mo-
mentum and the energy equations are coupled through
this relation. :

Following other investigators we prsent our results
in nondimensional variables. The flow is governed by

a, 0o, Moy Po;s Cpo, ko, iy pi, Cpi,y ki, o7, V.
Here a is the typical bubble radius and VT, is the
undisturbed temperature gradient in the ambient fluid
far from the bubble. This leads to the following nondi-
mensional numbers;

B B G k:x’ Ma_a'razw,m,_
Po I‘o Cpo k > = l‘oao
Re= "T”"“ L e O
2 T,
where,
ko
a, =
PoCpo
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Here Ma is the Marangoni number, Re is the Reynolds
number and Ca is the Capillary number. These three
nondimensional numbers are based on the properties
of the outer fluid. Sometimes the Prandtl number,
Pr, = v,/a,, can also be used instead of the Re num-
ber. «, is the thermal diffusivity for the outer fluid. As
it is usually done in the literature for Marangoni bubble
motion, we define a reference velocity as

U = VTw.

ora

o

The nondimensional numbers can now be written in a
much simpler form:
Ura Ura

, Re=—i,
Vo

HoUy
Oo

Ca =

Ma =
Qo

The Marangoni number is the Péclet number as it
is usually used in heat transfer phenomena and is the
product of the Prandtl and the Reynolds number. The
velocities are scaled by the reference velocity defined
above. Time is scaled by the ratio of initial bubble
radius and the reference velocity.

When the nondimensional numbers are either small
or large, several interesting limiting cases arise. In th~
zero Marangoni number limit the energy equation
duces to the Laplace equation for temperature since the
convective transport of energy can be neglected in this
case. Hence, the problem becomes a quasi-static prob-
lem. For a gas bubble, when the physical properties of
the gas are much smaller then of the ambient fluid, the
energy transfer on the bubble surface can be neglected. -
This implies that the isolines for temperature should
be perpendicular to the bubble surface. Small Prandtl
number results apply to liquid metals and large Prandtl
number to heavy oils. Liquids have Prandtl number on
the order of 1. Typical values are Pr=7 for water and
Pr=0.72 for air, under standard condition. The zero
Reynolds number limit reduces the momentum equa-
tion to the steady case since the inertial affects can be
neglected in this limit. '

When the Marangoni number is large the convec-
tive terms in the energy equation are dominant. In
this  limit, conduction of the energy can be neglected.
This is the case where unsteadiness comes into ef-
fect. If Reynolds number is of the order of unity, large
Prandtl number is the reason for high Marangoni num-
ber. Heavy oils like silicon oil have high Prandtl number
of the order of 10° or 10%.

In the limit of zero Capillary number, it can be as-
sumed that the deformation from a spherical shape are
negligible. As the Capillary number increases, defor-
mation increase. As the deformation from a spheri-
cal shape is high, the scaled terminal velocity of
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Figure 2: THE INITIAL CONDITIONS FOR ONE, TWO AND SIX BUBBLE COMPUTATIONS.

bubble/drop decreases. In the zero Capillary and
Marangoni number limit, the scaled rise. velocity is
known to be 0.5. In our calculations, where Ca =
0.0166, the scaled rise velocity for all the single bub-
ble cases is in good agreement with the results of Chen
and Lee (1992).

In our simulations we include all terms in the govern-
ing equations and do not impose any restrictions inher-
ent for these limiting cases.

RESULTS AND DISCUSSIONS

First we compute the motion of a single bubble. We
have explored the sensitivity of the solution to the grid
resolution by simulating a single bubble on a 32 x 32,
40 x40, 50 x 50 and 64 x 64 for a square domain which is
five bubble radius in each direction. As we increase the
resolution the trajectories and the terminal velocities
converge and we observed that beyond the 50 x 50 grid
the change is negligible. The test covered the range of
parameters simulated here, but we note that different
governing parameters generally require different resolu-
tion for convergence.

Figure 2 shows the initial placement of the bubbles
for the computations presented in this paper. In 2a we
follow the rise of a single bubble. The size of domain
in horizontal direction is 2.5 times larger than the bub-
ble diameter and the vertical size of the domain is 15
times larger than the bubble diameter. The bubble is
placed far enough from the lower wall so that boundary
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effects should not influence the bubble motion. Upon
release of the bubble, we observed that for a short pe-
riod, the bubble deforms and its shape oscillates. The
oscillation in shape die out as the bubble moves to-
wards the hot wall. At later times, we did not see any
significant deformation from a cylindrical shape. In all
these calculation, the Capillary number is fixed with
Ca = 0.0166. Unless noted otherwise, all other nondi-
mensional numbers are as in Figure 5b. Figure 3 shows
the temperature and stream function contours at dif-
ferent nondimensional times. Stream function contours
clearly show the dividing streamline and a stagnation
point behind the bubble. Here, we plot the stream func-
tion contours in a laboratory fixed frame. The contours
in a frame which is moving with the bubble does not
show any interesting behavior. The streamlines shown
here are nearly identical to those shown by Subrama-
nian (1992) for axisymmetric bubbles. The rise velocity
of the bubble is shown in Figure 4. The first period is
the impulsive movement of the bubble. Then the bub-
ble slows down and reached a steady state rise. It con-
tinues to rise with this terminal velocity until it reaches
to the upper wall. Although we terminate these compu-
tations before the bubble reaches the top of the domain,
we have conducted other calculation where the bubble
interacts with the wall and found deformation similar
to those computed by Ascoli and Leal (1990).

To show the effect of the various nondimensional pa-
rameters we show, in Figure 5, the temperature and
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Figure 3: TEMPERATURE CONTOURS (BOTTOM) AND STREAMLINES (TOP) FOR THE SINGLE BUBBLE
IN FIGURE 2a. THE NONDIMENSIONAL TIME, t*, IS EQUAL TO 12.5, 37.5, 87.5, 137.5.

stream function contours for several different cases. In
all frames, the bubble has reached an essentially steady
state and we only show the contours close to the bub-
ble. The bubble remains cylindrical for the computa-
tions shown here and the major difference is the shape
of the temperature contours and the structure of the
wake. As the bubbles rise they ‘carry cold fluid from
the bottom, “This fluid heats up as the bubble moves
into warmer fluid and the disturbance in the tempera-
ture contours is a reflection of the relative importance
of advection over conduction. For the parameters used
in the computations the disturbance is smallest for the
low Reynolds and Marangoni number computation on
the left and largest for high Reynolds and Marangoni
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number computation on the right. Although the wake
is relatively similar in the three middle frames, the stag-
nation point is further away in the run on the left and
the streamlines in the high Reynolds number run on the
right show that although the stagnation point is close
to the bubble, the fluid is pushed considerably farther
down between the bubbles than in the other cases.

We next examine the interaction of two bubbles. The
bubbles are released close to each other and arbitrar-
ily oriented with respect to the temperature gradient.
The initial placement is shown in Figure 2b. The do-
main size is two times larger in the horizontal direc-
tion than the domain for the single bubble case. The
nondimensional numbers are the same as for the si-
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Figure 4: THE SCALED RISE VELOCITY OF THE
BUBBLE IN FIGURE 3 VERSUS SCALED TIME.

gle bubble case in Figure 3. Figure 6 shows the tem-
perature contours and the stream function contours at
different time frames. As the bubbles rise, the lower
bubble first catches up with the top one. It draws hot
fluid down its side and as the top bubble rises, some
of this fluid is drawn into its wake, thereby reducing
slightly the temperature increase across the top bub-
ble and hence its velocity. This can be seen in the
streamline plot in the first frame, which is well after
the motion is initiated. Once the bubbles are mov-
ing side by side, they move apart laterally, until they
are equispaced across the channel (recall that the side
boundaries are periodic). This is due to the fact that
once the bubbles are side by side and moving upward,
the outer fluid has to flow down between them to sat-
isfy continuity. When the spacing between the bub-
bles is uneven there is greater flow through the larger
spacings. Since the downward moving fluid is hotter,
the isotherms are pushed further down where there is
a large space between the bubbles than when the space
is small. This is very clear in the second frame. Since
the bubbles move from colder parts of the domain to
the hotter ones, this leads to a lateral motion (in ad-
dition to the upward motion) where the small spaces
become larger and the large spaces smaller until the
bubbles have arranged themselves in a horizontal array
with equal spaces between them. See the last frame.
The arguments presented here are based on the uneven
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temperature distribution generated by the motion of
the bubbles. We have not conducted these simulations
for widely different parameters, but it is obvious, for
example, that if the time scale of conduction was much
shorter than for convection (zero Ma), then the tem-
perature field would remain nearly undisturbed and we
would expect a somewhat different behavior than ob-
served here.

Figure 7 shows the rise velocity of each bubble for
the simulation in Figure 6, as well as the velocity of the
center of mass of two bubbles. The initial acceleration is
similar to the one bubble case, both bubbles accelerate
rapidly, reach a large velocity and then slow down. The
bubble on the left that is closer to the bottom of the
box, reaches a higher initial velocity and slows down
more slowly than the one on the right, that was ahead
initially. The left bubble therefore catches up with the
right one, as seen in the previous figure, and once it
does so, the right one speeds up. The bubble to the
right actually obtains a velocity that is larger than the
velocity of the other one and then slows down again,
repeating this oscillation. Notice, that the center of
mass velocity is relatively constant while the bottom
bubble catches up with the top one, but then increases
as the spacing between the bubbles increases.

To investigate the interaction of many bubbles, we
computed the evolution of the six bubbles initially
placed as shown in Figure 2c. The resolution is the
same as in the two bubbles case and is approximately
25 meshes per bubble diameter. Their initial positions
were selected arbitrarily. The nondimensional numbers
for this case is the same as in Figure 3 and 6.

Figure 8 shows the temperature and stream function
contours in the laboratory frame, at different times.
We see from the plots that two bubbles separate from
the rest and they rise, the separation increases fur-
ther, while the others start lining up across the chan-
nel. Later on, the two leading bubbles move side by
side and rise almost independent of the other bubbles.
They reach a steady state velocity earlier then the other
bubbles. Their motion is similar to the two bubbles in-
teraction in Figure 6 and their terminal velocity is close
to the terminal velocities of the two bubble case. Exam-
ining the velocity of each bubble in Figure 9, we see that
the velocity of the center of mass of the bubbles (Fig-
ure 10a) reaches a steady state while each individual
bubble does not. Especially, each bubble in the group
of four bubbles has oscillating rise velocities. Also, the
leading bubbles rise faster than the four bubbles left be-
hind. The average temperature distribution at the time
of the last frame is plotted in Figure 10b where the ini-
tial temperature distribution is shown by the straight
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Figure 5: STEADY STATE THERMAL MIGRATION OF A SINGLE BUBBLE FOR DIFFERENT NONDIMEN-
SIONAL NUMBERS. (a) Ma = 4, Re = 0.2, pi/po = 0.1, ¢pi/cpo = 0.5, t* = 22.5 (b)) Ma = 20, Re = 5,
i/ o = 0.5, cpifcpo = 0.5, 1* = 62.5 (c) Ma =40, Re = 0.2, pi/po = 0.1, pi/cpo = 0.05, " =15 (d) Ma = 400,
Re = 2000, p;/po = 10, cpi/cpo = 0.5, t* = 500. Ca = 0.0166, p;/po = 0.5 and k;/k, = 0.5 IN ALL CASES.
THE INITIAL POSITION OF THE BUBBLE IS SHOWN IN FIGURE 2a. THE GRID USED HERE IS 50 x 200

MESHES:

line. As the bubbles rise, they perturb ‘the initial linear
temperature profile. The bubbles carry cold fluid with
them upward and a warmer fluid flows back between
them to cox_isérve mass. Since the thermal capacity of
the bitbbles is less than the outer fluid, the net effect
is to heat the region around and behind the bubbles.
This is clear in Figure 10b. The temperature increases
above the linear temperature profile where the two top
bubbles are and even more across the bottom four bub-
bles. Since ‘i_;hvev temperature of the bottom wall is fixed,
the gradient in the bottom region must increase, as is
also seen in the close spacing of the isotherms in Figure
8.

‘We have computed similarinteraction for four bubbles
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and found that for two different initial conditions they
line up across the channel as they move towards the hot
wall. Oscillations in their rise velocities were similar to
the six bubbles case.

To investigate whether the layer formation suggested
by the simulations shown above is a prominent feature
in larg% bubble clouds, we have conducted preliminary
simulations on a coarser grid where we place twenty five
equal sized bubbles in a domain twice the size of the
one used here. These préliminary"épmputations sug-
gest that while such layers may form, they will break
up through instability waves many times longer than
the bubble diameter. Due to the coarse resolution em-
ploied the results may not be entirely reliable and »=
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Figure 6: TEMPERATURE CONTOURS (BOTTOM) AND STREAMLINES (TOP) FOR SELECTED FRAMES
FROM THE TWO BUBBLE INTERACTIONS. INITIAL CONDITIONS IN FIGURE 2b. THE NONDIMEN-

SIONAL TIME, t*, IS EQUAL TO 25, 50, 100, 150.

are currently conducting a more careful investigation
on the behavior of large systems.

CONCLUSIONS

The major novelty of the simulations presented here
is that there is no restriction on the number of bubbles
simulated, the bubble shapes, nor the configuration of
the bubble array. While in principle there is no lim-
itations on the material properties simulated, we are
subject to the usual requirement of high resolution for
high Reynolds numbers. Furthermore, since the current
version of our code is explicit, the size of the time step
can become very small for very small Pr number or
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very large Pr when Ma number is high. These numer-
ical restrictions put practical limitations on the range
of parameters that can be simulated accurately for any
given resources. The simulations presented here are,
also, only two-dimensional. While this makes direct
comparison of the results with experimental observa-
tions impossible, we believe that the general behavior
is well predicted. The basic numerical method has been
applied to three-dimensional isothermal problems (Un-
verdi and Tryggvason, 1992) and we anticipate that the
three-dimensional counterpart of our thermal migration
simulations will not pose any major problems. While
we have initiated work on the three-dimensional prob-
lem, it is not completed yet. Fully three dimensional
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Figure 7: THE SCALED RISE VELOCITY OF THE
BUBBLES IN FIGURE 6 VERSUS SCALED TIME.
LEFT AND RIGHT ARE THE BUBBLE VELOCI-
TIES, RESPECTIVELY. THE THIRD LINE IS THE
CENTER OF MASS VELOCITY.

simulations will always be considerably more demand-
ing on computational resources and we expect that we
will relay heavily on two-dimensional simulations for ex-
ploratory simulations, even after the three-dimensional
version is completed.

The major findings reported here is the tendency of
the bubbles to line up, side by side, across the channel.
While this behavior appears to be similar to what is
found for spheres and cylinders in fluidized beds, where
rows of spheres align themselves into a string perpendic-
ular to the flow, the mechanism here is different. For
solid spheres the reason is the low pressure region at
the “waist” which attracts other particles. In the sim-
ulations here the drops actually repel each other, since
cold fluid is more easily carried with the bubbles in nar-
row gaps than bigger ones and the bubbles generally
move away from cold regions. ‘Thus, while the bub-
bles line up across the channel they tend to maximize
the distance between adjacent bubbles. This formation
of bubble layers could be of considerable significance
for, for example, material processing in microgravity
where layers like these might affect the bulk properties
of solidified material. We have not yet investigated the
dependence of the collective behavior of bubbles on the
various nondimensional numbers, but expect to do so in
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the near future, We also intend to conduct larger scale
simulations and to investigate the stability of a bubble
layer to long wavelength disturbances.
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Figure 9: THE SCALED RISE VELOCITY OF THE BUBBLES IN FIGURE 8 VERSUS SCALED TIME. THE
BUBBLES ARE NUMBERED FROM LEFT TO RIGHT.
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