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Abstract

A finite difference/front tracking method for direct simulations of multiphase
flows is described. A few examples of both two- and three-dimensional
simulations are presented.

Background

Multi-phase flows are central to many industrial processes. Heat transfer by
‘boiling is the preferred mode in most power plants and bubble driven circulation
systcms are used in metal processing operations such as steal making, ladle
metallurgy and the secondary refining of aluminum and copper. In combustion
of liquids the fuel is usually introduced as a spray, and sprays are central to most
painting and coating processes. Similarly, many natural processes involve
bubbles and drops. Rain is perhaps the most common example, but bubbles also
play a major role in the air/ocean interaction, for example. Prediction and
optimization of industrial processes requires reliable mathematical description. In
fluid mechanics direct numerical solutions of the Navier-Stokes equations have
become a standard research tool. Multiphase flows still remains outside of this
activity, for the most part. The need is widely recognized by the community, but
the computational complexity has limited most investigations to relatively simple



systems. Here, we describe a relatively new method that we are currently using
to conduct direct simulations of mmltiphase flows. '

In the limit of high and low Reynolds numbers, it is sometimes possible to
sxmphfy the flow description considerably by either ignoring inertia completely
(Stokes flow) or by ignoring viscous effects completely (inviscid, potential
flow). Most success has been achieved whcrc the paruclcs are nndcformablc
sphcrcs whcrc, in both thesc limits, it is p0551blc to reduce the govermng
equatmns to a system of coupled ordinary dlﬁ'crenual cquatlons for the particle
positions. For Stokes flow see Brady (1993) for a review. For inviscid flows,
see Sangani and Prosperetti (1993), for example. For both Stokes flows as well
as inviscid flows, problems with deformable boundaries can be simulated with
boundary integral techniques. For Stokes flow, Zhou and Pozrikidis (1993,
1994) have simulate the unsteady motion of 12 two-dimensional drops both in a
shear flow and in a channel where the flow is driven by a pressure gradient.
Fully three-dimensional boundary integral computations of the interaction of two
drops have recently been presented by Manga and Stone (1993), and Kennidy,
Posrikidiz, and Skalak (1994) have examined the deformation of a drop in a
shear flow. Chahine and collaborators (see Chahine, 1990, for example) have
computed the interactions of a few inviscid cavitation bubbles.

For intermediate Reynolds numbers it is necessary to solve the full Navier-
Stokes equations. The steady rise of buoyant, deformable, axisymmetric bubbles
were simulated by Ryskin and Leal (1984) in a landmark paper that has had a
major impact on subsequent development. Kang and Leal (1987) extended the
methodology to axisymmetric, unsteady motion. Several other two-dimensional
and a:dsyrmmctﬁc computations of the unsteady motion of one or two bubbles or
drops have appeared recently. Fukai et al. (1993) have computed the
deformation of an axisymmetric drop colliding with a rigid wall and Shopov et al
(1990) as well as Sussman, Smereka, and Osher (1994) have followed the initial
deformations of a buoyant bubble, for example. The unsteady motion of a few
two-dimensional solid cylinders has been simulated by Feng, Hu, and Joseph
(1994) for several Reynolds numbers.

Numerical Method

Our method is properly described as a hybrid between a front capturing and a
front tracking technique. We use a stationary regular grid for the fluid flow, but



also track the interface by a separate grid of lower dimension. This grid is
usually referred to as a front, but unlike in front tracking methods, we do not
treat each phase separately, but write only one set of Navier-Stokes equations for
the whole flow field. In a conservative form those are:
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Here, u is thc velocity vector, p the pressure, p and u the discontinuous
‘ dcnsuy and viscosity field, respectively, and fis a body force. Thc surface
tension force, F,, act only on the interface between the fluid and i is therefore
multiplied by a thrcc—dxmensmnal delta function, §. The integral is over the
entire boundary.
It is important to note that this equation contain no approximations beyond those
in the usual Navier-Stokes equations. In particular, it contains implicitly the
proper stress conditions for the fluid interface. If we integrate over a small
volume containing the interface, most of the terms go to zero as we shrink the
integration volume, and in the limit of infinitesimal volume we end up with
[[—-pﬁ +p(Va+va'): ﬁ)]] = oxA
where the brackets denote the jump across the interface. These are, of course,
the usual conditions imposed on a fluid boundary. Integrating the mass
conservation equation across the interface shows that continuity of normal
velocities is also satisfied. To discretize the above equation, we use a staggered
grid. The spatial derivatives are approximated by a second order centered finite
differences and for most of our computations we use a second order time
integration scheme. This results in a method that has excellent conservation
properties.
The momentum equations are supplemented by the incompressibility conditions,
which, when combined with the momentum equations leads to an elliptic
equation for the pressure. We used a simple SOR for many of our early
computations (in the so-called Black and Red form for computations on the
CRAY), but now a multigrid package (MUDPACK from NCAR) is used for
most of our computations. Within each phase we take density and viscosity to be
constant. These fields are updated at every time step after the front has been
moved, see Unverdi and Tryggwason (1992) for details.
The surface tension force, which is computed from the front configuration is,
perhaps, the most difficult part of the algorithm. Therefore, we have spent
considerable time on that and explored various alternatives. The current



algorithm, which appear to be very satisfactory, is based on computing directly
the force on each element by a line integral over the boundary of each surface
element:
F,= }m o X Ids
Here, 7 isa tangent to the boundary of the surface element and 7 is the surface
normal. By oompuung the surface tension forces th15 way, we cxphcxtly enforce
that the integral over any portion of the surface gives the nght value, and for
closed surfaces, in particular, we enforce that the net force on the surface is zero.
This is particularly important for long time simulations where a failure to enforce~
this constrain can lead to unphysical motion of bubbles and drops.
The surface mesh is an unstructured grid consisting of points and elements. Both
the points and the elements are arranged in a linked list, so it is relatively easy to
change the structure of the front, including adding and deleting points and
elements. Topological changes, such as when bubbles coalesce or drops break in
two can also be accomplished.
The computational technique described above has been used to simulate several
multi-fluid problems. Among those are head-on collisions of drops presented by
Nobari, Jan and Tryggvason (1993) and three-dimensional collisions shown in
Nobari and Tryggvason (1994). Unverdi and Tryggvason (1992) simulated the
collision of fully three dimensional bubbles; Esmaeeli, Ervin, and Tryggvason
(1994) discuss the lift of deformable bubbles rising in a shear flow; Jan and
Tryggvason (1992) examined the effect of contaminants on the rise of buoyant
bubbles and Nobari and Tryggvason (1994) followed the coalescence of drops
of different sizes. Nas and Tryggvason (1992) presented simulation. of thermal
migration of many two dimensional bubbles.
In ﬁgurcs 1-3 we show a few examples. In figure 1 a single frame from a
computation of four buoyant bubbles rising in a doubly periodic box are shown.
Here the Reynolds number is moderate (around 40) and the deformation of the
bubbles is small. We have done a number of both two- and three-dimensional
computations of several bubbles to examine the evolution of dense bubble
clouds. For low Reynolds numbers and two-dimensions, we have computed the
-evolution of over three-hundred bubbles for a relatively long time. Figure 2
shows one frame from a two-dimensional computation of the resuspension of
drops in a shear flow. Initially the drops are all next to the lower wall, but here
they have spread across the channel, mainly due to collisions with each other.



We have also examined the effect of heat transfer and variable surface tension,
and figure 3 shows one frame from a threc-diincnsional simulation of the thermal
migration of two bubbles due to a temperature dependent surface tension.

The approach taken for the fluid flow, works also for heat flow and phase
changes. In Juric and Tryggvason (1994) ‘wc dcvéloped a method to simulate
phasc changcs in a pure material in the absence of any fluid mouon. With these
assumpuons we have only to solve one heat conducuon equanon

BPCT =V -kVT + [§6(X — Xr)da
F

where ¢ is adjusted in such a way that the temperature of the interface is given
by the Gibbs-Tompson conditions

oK
Te=Ty|ll-—
P=Tu(1-5)

Here, TM is the melt temperature, TF is the temperature at the front, k& is the
conductivity, and L is the volumetric latent heat. Additional terms can be added
to the right hand side to account for surface tension anisotropy, for example. We
have compared the method with exact solutions for stable solidification and
found excellent agreement for relatively coarse resolution. We have also used it
to simulate the evolution of fairly complex unsteady solidification problems as
shown in Figure 4 where the evolution of an unstable solidification front into an
undercooled melt is computed.

Acknowledgment

Various aspect of this work have been supported (fully or in part) by NASA
grants NAG3-1317 and NGT-51070, by NSF grants MSM-8707646 and CTS-
913214, and by ONR contract N00014-91-J-1084. Some of the computations
were done at the San Diego Supercomputing Center which is funded by the
National Science Foundation.

References

J.F. Brady. Stokesian Dynamics Simulation of Particulate Flows. In: M.C. Roco
(editor). Particulate Two-Phase Flow. Butterworth. (1993), 912-950.

Chahine, G.L. Numerical modeling of the dynamic behavior of bubbles in nonuniform
flow field, Numerical Methods For Multiphase Flows 91 (1990), pp. 57-64

Esmaeeli, A., Ervin, E. A., & Tryggvason, G. Numerical simulations of rising
bubbles, (Ed: J.R. Blake), Proc. IUTAM Conference on Bubble Dynamics and
Interfacial Phenomena (1994).

Feng, J., Hu, H.H. & Joseph, D.D. Direct simulation of initial value problems for the
motion of solid bodies in a Newtonian fluid. Part 1. Sedimation. J. Fluid Mech. 261
(1994), 95-134.



Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C.M. & Miyatake, O. Modeling of the
deformation of a liquid droplet impinging upon a flat surface. Phys. Fluids A 5
(1993), 2588-2599.
Jan, Y.-J., & Tryggvason, G. Computational Studies of Contaminated Bubbles.
_.Submitted for publication (1993). . .. .. . .- - - o

Juric, D. & Tryggvason, G. A Front Tracking Method for Dentritic
- Solidification. Submitted for publication (1994). " e

Kang, LS. & Leal, L. G. Numerical solution of axisymmetric, unsteady free-boundary
. problems at finite Reynolds number. L Finite-Difference scheme and its applications
J t09 ;hgc dgf4(())rmaﬁ6n of a bubble in a uniaxial straining flow. Phys. Fluids 30 (1987),

Kennedy, MR. Pozrikidis, C. & Skalak, R. Motion and Deformation of Liquid
Drops, and the Rheology of Dilute Emulsions in Simple Shear Flows.

Computers Fluids 23 (1994), pp. 251-278.~ _

Nas, S. & Tryggvason, G. Computational investigation of the thermal migration
of bubbles and drops", Proc. ASME Winter Annual Meeting FED-175
(1993), 71-83 .

Nobari, M.R., Jan, Y.-J. & Tryggvason G. Head-on collisions of drops-a

.numerical investigation", Submitted for publication (1994).

N%%a?‘s, M.R. & Tryggvason, G. Numerical simulations of drop collisions. AIAA 94-

Manga, M. & Stone, H.A. Buoyancy-driven interactions between deformable drops at
low Reynolds numbers. J. Fluid Mech. 256 (1993), 647-683.

Ryskin, G. & Leal, L.G. Numerical solution of free-boundary problems in fluid
mechanics. part 2. Buoyancy-driven motion of a gas bubble through a quiescent
liquid, J. Fluid Mech. 148 (1984), pp. 19-35

Sangani, A.S. & Prosperetti, A. . Numerical Simulation of the Motion of Particles at
Large Reynolds Numbers. In: M.C. Roco (editor). Particulate Two-Phase Flow.
Butterworth (1993). 971-998.

Shopov, P.J., Minev, P.D., Bazhekov, LB. & Zapryanov, Z.D. Interaction of a

-deformable bubble with a rigid wall at moderate Reynolds numbers, J. Fluid Mech.
219 (1990), 241-271

Sussman, M., Smereka, P. & Osher, S. A Level Set Approach for Computing
?cs)lgutions to Incompressible Two-Phase Flows. J. Comput. Phys. 114 (1994), 146-

Unverdi, S$.0. & Tryggvason, T. A front-tracking method for viscous,
incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992), 25-37

Unverdi, S.0. & Tryggvason, G. Computations of multi-fluid flows, Physica D 60
(1992), 70-83

Zhou, H. & Pozrikidis, C. Pressure-Driven Flow of Suspensions of Liquid Drops.
Phys. Fluids 6 (1994), 80-94.

Zhou, H. & Pozrikidis, C. The flow of ordered and random suspensions of two-
dimensional drops in a channel. J. Fluid Mech. 255 (1993), 103-127.



Figure 1. One frame from a three-dimensional computation of the motion
of four bubbles in a doubly periodic domain. Here the Morton number is 10~
5 and the Eotvos number is 3, giving a Reynolds number of about 40 for a
single bubble in unbounded fluid. The computations are done on a 643 grid.

Figure 2. One frame
from a two-dimensional
computation of the
resuspension of several
drops in a shear flow. The
drops were initially near
the bottom wall but have
spread across the channel
at this time, mainly due to
collisions with each other.
Here, the shear Reynolds
number is 20 and a 288 by

288 grid was used.



Figure 3. One frame from a
three-dimensional computation
of the thermal migration of two
bubbles. The top wall is hot and
the bottom wall is cold and the
energy equation is solved in
addition to the Navier Stokes
equations. The bubbles migrate
toward the hot wall due to -
temperature dependent surface
tension. The Marangoni number
here is 20 and the grid is 64 by
32 by 128 grid points.

Fig'u.re 4. The dendritic solidification of an undercooled melt. The
solidification front is plotted at fixed time intervals. The grid resolution is
200 by 200 for the figure on the left where no anisotropy is included, and
800 by 800 for the figure on the right, where a six fold anisotropy is used.





