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1 Introduction

The propagation of shock waves in bubbly liquids has attracted great inter-
est because of its practical importance. It has many interesting applications
in petroleum and chemical engineering, biological and medical sciences, geo-
physics, etc. It is also of fundamental importance. Despite the fact that shock
waves in a dilute bubbly liquid have been extensively investigated in the lit-
erature [1-4] using model equations, direct numerical simulations using the
full Navier-Stokes equations, where the effects of viscosity and vorticity are
fully accounted for, have not been treated before due to the complexity of
the phenomenon. The front tracking method [5], has been rather successful in
solving the full Navier-Stokes equations in the presence of a deforming phase
boundary in many multi-phase flow applications. Such applications [6,7] in-
clude the collapse of a cavitation bubble near a solid wall and the formation
of a toroidal bubble by a high speed micro-jet near a rigid boundary.

Here, our goal is to extend the front tracking method to be able to fol-
low the collapse of a cluster of bubbles in a quiescent liquid inside a 2D or
3D rectangular domain excited by a pressure jump (shock wave) at the top.
The study of a relatively simple model (say, by considering a polytropic law
for the gas as a first step) by direct numerical simulations (DNS) using the
front tracking method, where bubble deformations and interactions are fully
accounted for, is a useful first step in understanding the flow characteristics
behind the shock. Such simulations will yield information about the magni-
tude of velocity and pressure fluctuations, and allow us to quantify the effect
of bubble/bubble interactions and bubble deformation. Numerical simulations
also make it possible to go beyond the classical Rayleigh-Plesset analysis for a
dilute liquid, where the upper limit of the void fraction is only a few percent.
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2 Shock Propagation in Bubbly Liquids by DNS using
The Front Tracking Method

We consider a bubbly liquid filling a 2D or a 3D rectangular domain. The
bubbles are initially assumed to be either circular (in 2D) or spherical (in
3D) in shape, uniformly distributed and in equilibrium with the surrounding
liquid. A pressure jump (incident shock wave) is introduced at the top wall
of the domain (with liquid inflow) and a wall boundary condition is imposed
at the bottom (with no outflow). The domain is taken to be periodic in the
transverse direction(s). For the numerical simulation by the front tracking
method, the fluid motion is governed by the normalized unsteady Navier-
Stokes equations, valid for the whole flow field. Neglecting gravity and surface
tension, these equations can be written as

∂(ρu)
∂t

+ ∇ . (ρuu) = − ∇ p +
1

(Re)
∇ . (2µD ) (1)

where the density ρ varies in the interval ρb ≤ ρ ≤ ρ` and the viscosity µ
varies in the interval µb ≤ µ ≤ µ`, with subscripts b and ` denoting the
bubble and the liquid, respectively. Here, D is the deformation tensor, u is
the velocity field and p is the pressure field. The Reynolds Re number is given
by

Re =
ρ′m

√
p′m/ρ′m L′

µ′m
(2)

where L′ is a characteristic length of the order of the initial mean radius of
the bubbles, ρ′m and µ′m are conveniently defined normalization values of the
density and of the viscosity, both lying between those values of the liquid and
of the bubble, and p′m is a normalization pressure chosen for a characteristic
speed

√
p′m/ρ′m or for a characteristic time L′

√
ρ′m/p′m (all primed variables

are dimensional). We neglect the compressibility of the carrier liquid, taking
it to be incompressible so that

∇ .u = 0 (3)

in the carrier liquid phase, and assuming its viscosity and density to remain
constant at all times. The bubbles, on the other hand, are compressible with
the pressure inside either set to a constant or varied isothermally. This im-
poses a moving boundary condition on the pressure field to be satisfied at the
bubble/liquid interfaces and forces the imposed pressure at the top to drop to
the level specified inside the bubbles. Thus, the presence of the bubbles pre-
vents the effect of the increased pressure at the top to reach further into the
bubbly mixture. The fact that the bubbles do not completely block the chan-
nel allows this effect to be felt slightly deeper, but not significantly. Equation
(1), along with the incompressibility condition (3) in the carrier liquid phase
and a specified pressure in the bubbles, set equal to either a global constant
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or its local value resulting from the polytropic law, are solved iteratively by a
conventional finite volume method on a staggered grid [5]. For the simulations
with the polytropic gas law, we evaluate the area (2D) or volume (3D) of each
bubble at each time step. The Reynolds number is assumed to be of O(1) in
magnitude characterizing a flow field with a finite, but low Reynolds number.
Numerical simulations were carried out for both two- and three-dimensional
domains. Since the pressure is specified inside the bubbles, the fluid proper-
ties there play a minor role in the evolution and to make the computations as
easy as possible, we used a density and viscosity ratio of ρ`/ρb = µ`/µb = 10.
Tests with higher ratios using the two-dimensional domain confirmed that the
results are essentially independent of these ratios. The computed results were
compared with those of one-dimensional homogeneous bubbly mixture the-
ory. In particular, a mean shock speed was found by computing the distances
advanced by a constant pressure rise in the shock profile over a time interval
∆t at several times during the evolution and by dividing the mean distance
by ∆t. The shock speeds thus obtained were compared with those calculated
by the one-dimensional homogeneous bubbly liquid theory where the shock
speeds Us are given by

U2
s =

(1 − β1)(p1 − p0)
(1 − β0) (β0 − β1) ρ`

, (4)

using the Rankine-Hugoniot relations[1,2] at a discontinuity connecting two
regions of equilibrium states, designated by 0 and 1. In eq. (4), β0 and β1 are
the void fractions and p0 and p1 are the mixture pressures of the equilibrium
regions 0 and 1, respectively. To justify the comparison of the mean shock
speed with eq. (4), steady-state conditions for shock propagation should be
reached which require long distances in the direction of propagation9,10. Al-
though these conditions are probably not reached over the relatively short
distances of propagation in the computational domains of the present simula-
tions, the calculated r.m.s. values of fluctuations of the instantaneous shock
speeds about the mean shock speed are shown to be only within a few percent,
making the comparison of the mean shock speed with eq. (4) meaningful.

3 Results and Discussion

For the numerical simulations, two- and three-dimensional rectangular com-
putational domains were considered. A grid study was conducted with a res-
olution ranging from 50 × 98 points to 122 × 242 points in 2D and from 18
× 18 × 66 points to 34 × 34 × 130 points in 3D in order to control numerical
accuracy. Better resolution of the bubble/liquid interfaces were observed as
the grid resolution was increased. However, the results for the shock structures
and shock speeds remained almost unchanged. For the 2D case,where the gas
pressure inside the bubbles is held constant, a rectangular grid containing 24
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bubbles were considered. All bubbles were assumed to be initially circular in
shape with the same radius R = 0.25. At time zero, the pressure at the top of
the domain was raised by ∆p = 0.4 and kept constant during the simulations.
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Fig. 1. Results obtained by the front tracking method showing a shock wave initially
at y = 8.0 with strength ∆p = 0.4 propagating into a quiescent bubbly liquid in a
rectangular domain containing 24 bubbles, each with initial radius R = 0.25 where
the gas pressure inside the bubble is held constant at its initial value (the density
and viscosity of the liquid and of the gas are, respectively, ρ` = 2.5 ; µ` = 0.07
and ρb = 0.25 ; µb = 0.007). (a) Snapshot of the bubbly liquid at the initial time
t = 0.0. (b) Snapshot of the bubbly liquid at time t = 3.0 showing the collapse
of bubbles as the shock propagates (shaded areas show higher pressure zones). (c)
Snapshot of the bubbly liquid at time t = 5.5 showing the collapse of bubbles as
the shock propagates (shaded areas show higher pressure zones). (d) The pressure
distribution for the bubbly shock wave at locations y = 3.333 (dashed line) and
y = 6.0 (solid line) along the boundary x = 0.

Snapshots of the results obtained by the front tracking method showing
the deformation of the collapsing bubbles and the evolution of the pressure
distribution at two locations along the direction of propagation (the y-axis)
in a rectangular grid with a resolution of 122 × 242 points are shown in Figs.
1 (a)-(d). The results in Figs. 1 (a)-(c) show that the bubbles collapse with
non-circular shape (almost elliptical in the beginning) followed by a re-entrant
jet before they totally disappear (the interfaces are here resolved up to a point
where the top interface almost touches the bottom one). In this case, the fluc-
tuations in the hydrodynamic variables observed in the transverse direction
(x-direction) are reasonably small to justify the use of the one-dimensional
homogeneous bubbly flow theory. Figure 1 (d) shows the evolution of the
pressure distribution of oscillating shock waves at locations y = 3.333 and
y = 6.0 along the direction of propagation (y-axis) at the boundary x = 0,
where periodic boundary conditions are imposed. The amplitude of the pres-
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sure fluctuations in this case can be as high as 0.36 at the beginning of os-
cillations, but they eventually decay in time. The mean shock speed obtained
by the simulations using the above mentioned averaging yields a value equal
to 1.103 (with r.m.s. fluctuations being less than 2%), which seems to be in
good agreement with the value Us = 1.128 evaluated by eq. (4) for homoge-
neous bubbly liquids with p1 − p0 = ∆p = 0.4, ρ` = 2.5, β0 = 0.1473 and
β1 = 0.0.
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Fig. 2. Results obtained by the front tracking method showing a shock wave with
strength ∆p = 0.4 propagating into a quiescent bubbly liquid in a rectangular box
containing 16 bubbles, each with initial radius R = 0.25 where the gas pressure
inside the bubble is held constant at its initial value. (a) Snapshot of the bubbly
liquid at the initial time t = 0.0. (b) Snapshot of the bubbly liquid at time t = 3.5
showing the non-spherical collapse of bubbles as the shock propagates. (c) The
pressure distribution for the bubbly shock wave at locations z = 2.0 (light line) and
z = 3.0 (dark line) along the line x = 0 and y = 0.

The 3D numerical simulations for the case where the gas pressure was
held constant were carried out in a rectangular box, with a grid resolution of
34 × 34 × 130 points, containing 16 bubbles. The bubbles were again taken
initially in equilibrium with the quiescent liquid and spherical in shape, all
with the same radius R = 0.25. A shock wave with strength ∆p = 0.4
was incident at the top wall of the rectangular box. The results obtained by
the front tracking method are shown in Figs. 2 (a)-(c). The non-spherical
collapse of bubbles as the shock propagates can clearly be seen in Fig. 2
(b). An almost uniform flow field can be observed over the cross-section in
the lateral direction as the shock propagates, justifying the use of eq. (4) for
the one-dimensional homogeneous bubbly liquid model in this case as well.
The pressure distributions at locations z = 2.0 and z = 3.0 along the line
x = 0 and y = 0 in the propagation direction of the shock are plotted in
Fig. 2 (d). The pressure fields at these locations oscillate with a maximum
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amplitude of 0.15, and the pressure fluctuations decay as the shock propagates
further. The mean shock speed from the simulations using the above discussed
averaging method yields a value of 0.953 (with r.m.s. fluctuations being less
than 5%), which seems to agree well with the value Us = 0.91 evaluated by
eq. (4) for homogeneous bubbly liquids with p1 − p0 = ∆p = 0.4, ρ` = 2.5,
β0 = 0.2618 and β1 = 0.0.

Finally, a 2D numerical simulation was carried out for the case where
a 2D isothermal law (with the polytropic index being equal to unity ) for the
gas pressure was assumed. The same rectangular grid used for the constant
pressure case containing 24 bubbles, all having the same radius R = 0.25,
was considered for the flow simulations. The incident shock strength was also
set equal to ∆p = 0.4 to allow a full comparison with the case of constant
gas pressure. Snapshots of the initial bubble distribution and of its evolution
using a grid resolution of 122 × 242 points at non-dimensional times t = 1.6
and t = 3.6 are shown in Figs. 3 (a)-(c).
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Fig. 3. Results obtained by the front tracking method showing a shock wave with
strength ∆p = 0.4 propagating into a quiescent bubbly liquid in a rectangular
domain containing 24 bubbles, each with initial radius R = 0.25 where the gas
pressure is varied isothermally (the density and viscosity of the liquid and of the gas
are, respectively, ρ` = 2.5 ; µ` = 0.07 and ρb = 0.25 ; µb = 0.007). (a) Snapshot
of the bubbly liquid at the initial time t = 0.0. (b) Snapshot of the bubbly liquid at
time t = 1.6 showing collapsing bubbles behind the shock as the shock propagates
(shaded areas show higher pressure zones). (c) Snapshot of the bubbly liquid at time
t = 3.6 showing collapsing and rebounding bubbles behind the shock as the shock
propagates (shaded areas show higher pressure zones). (d) The pressure distribution
for the bubbly shock wave at locations y = 3.333 (dashed line) and y = 6.0 (solid
line) along the boundary x = 0.

The initial void fraction is 0.1473 and the void fractions behind the shock
at t = 1.6 and t = 3.6 are, respectively, 0.1114 and 0.096, showing an
overall decrease in the void fraction as the shock propagates. Relatively small
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changes in the movement of the bubble centers are observed implying that the
motion of the bubble centers can be neglected. When the shock front hits the
boundary of the bubbles, the bubbles start to collapse isothermally and the
gas pressure inside the bubbles increases resulting in a decrease in the pressure
threshold for further collapse. Eventually this pressure threshold diminishes
and the bubbles rebound (after a few oscillations, they would eventually reach
equilibrium if the computational domain could have been enlarged). Therefore,
in the first instance of shock propagation, only collapsing bubbles are seen
(Fig. 3(b)). As the shock propagates downward towards the bottom wall, the
bubbles close to the top (where the shock was incident) start to rebound (Fig.
3 (c)). The bubble collapses and rebounds are seen to be almost elliptical in
shape for this case. Again, the lateral pressure and velocity fluctuations can
be neglected resulting in an almost one-dimensional propagation of the shock
front. The evolution of the pressure distributions at locations y = 3.333 and
y = 6.0 along the boundary, where periodic boundary conditions are imposed,
are shown in Fig. 3 (d). The profiles look much more smooth for the reasons
explained above. The mean shock speed obtained from the simulations using
the above mentioned averaging yields a value of 1.992 (with r.m.s. fluctuations
being less than 7%). On the other hand, the shock speed Us of one-dimensional
homogeneous bubbly liquid is evaluated by eq. (4) with ρ` = 2.5, p1 − p0 =
∆p = 0.4 , β0 = 0.1473 and β1 = β0 /(1 + ∆p) = 0.1052. The shock speed
thus obtained using eq. (4) yields the value Us = 1.997, which agrees well with
the simulated value. Due to the increase in the gas pressure as the bubbles
collapse, the bubbles collapse at a slower rate and the shock propagates faster
in this case as compared to the case where the gas pressure is held constant
under the same conditions.

4 Concluding Remarks

The results of this investigation have shown that shock propagation in a bub-
bly liquid with void fractions as high as 15% to 25% can still be well described
by the one-dimensional homogeneous bubbly liquid model when the gas pres-
sure inside the bubble is kept constant or varied isothermally, irrespective of
the dimensionality of the computation domain. While bubble deformation and
bubble/bubble interactions are properly accounted for by the present simula-
tions, our results do not address the effects of liquid compressibility, thermal
damping and bubble fragmentation. These effects demand the solution of the
compressible Navier-Stokes equations together with the energy equation both
inside and outside the bubble. Although this does not seem to be possible at
present times, a model equation that replaces the polytropic law for the pres-
sure inside the bubble by an equation similar to that proposed by Prosperetti
[8] to take into account the effect of thermal damping can be used as a first
step. Only then, can this simple model be extended to simulate bubbly flows
in more complex geometries than those examined here, such as bubbly flows
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through constrictions or over curved boundaries.
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