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Abstract - We present a novel method for the classification 
and identification of electrocardiograms (ECGs) of various 
heart rhythm disturbances. This is an essential step in the 
automatic analysis of heart rhythm disturbances. Dynamic 
time warping (DTW) is used for this purpose. DTW is 
utilized successfully in speech recognition. Wavelet 
analysis is used in some implantable cardioverter 
defibrillators currently for ECG waveform recognition and 
classification purpose. The simulations of time-series ECG 
data of various rhythm disturbances are produced. Normal 
sinus rhythm ECG templates are compared to the 
simulated rhythms by both methods. DTW analysis 
successfully differentiates the ECGs of various 
arrhythmias. Of note, DTW is able to differentiate 
ventricular tachycardia from supraventricular tachycardia 
unlike wavelet analysis. Differentiation of these two rhythm 
types has significant clinical implications. DTW can 
potentially be used for automatic pattern recognition of 
ECG changes representative of various rhythm 
disturbances. 

Keywords: Pattern recognition, dynamic time warping, 
wavelet analysis. 

1 Introduction 
  Electrocardiogram (ECG) signals from heart beats 
have typical features such as P wave, QRS complex, and T 
wave. QRS complex represent the signal during which the 
ventricles are depolarized. Heart pump function is realized 
after the QRS signal stimulates the ventricles. One heart 
beat can be defined as a period from one R peak to the next 
one. ECG signals are quasiperiodic and nonstationary and 
heart beats have nonlinear characteristics and change over 
time. QT interval is defined as the time interval between 
the onset of Q wave and the end of the following T wave in 
an ECG signal. Similarly, RR interval is the time interval 
between the peak of two consecutive R waves. 

 Abnormalities of the heart rhythm (arrhythmias), 
constitute a major problem in patients with various heart 
diseases. Arrhythmias represent cardiac electrical system 
abnormalities which can be detected by the ECG changes. 
One of the leading reasons for death is life threatening 
ventricular arrhythmias. Ventricular arrhythmias are fast 

rhythms that originate from the ventricles. One of the most 
important characteristics of such arrhythmias is that the 
QRS complexes are wider and also different in shape 
compared to the QRS complexes that occur during normal 
sinus rhythm.  

 Implantable cardiac defibrillators (ICD) can detect 
and treat such rhythms. Automatic recognition of such 
rhythms is therefore critically important for ICDs. 
Currently, most of the ICDs use only rate criteria for 
detection of life threatening arrhythmias. One of the ICDs 
use wavelet analysis for QRS complex classification in 
detection of such significant arrhythmias (Medtronic Inc, 
Marquis ICDs). However, there is still a need for better 
ECG discrimination algorithms. 

 False detection of arrhythmias can result in 
inappropriate therapy and therefore can lead to significant 
problems for the patient. Therefore, the ECG detectors 
have to be extremely robust but also have to meet high 
performance requirements. Being able to distinguish life 
threatening arrhythmias from the normal rhythm or more 
benign arrhythmias with high accuracy is crucial in the 
cardiac electrophysiology field.  

 Time-frequency wavelet theory is used for the 
detection of life threatening arrhythmias. The wavelet 
analysis is found to be useful in differentiation of 
ventricular fibrillation, ventricular tachycardia and atrial 
fibrillation [1]. Dynamic Time Warping (DTW) is a much 
more robust distance measure for time series, allowing 
similar shapes to match even if they are out of phase in the 
time axis. Because of this flexibility, DTW is widely used 
in science, industry and finance. However, there is an 
increasing awareness that the Euclidean distance is a very 
brittle distance measure [2, 3]. What is needed is a method 
that allows an elastic shifting of the time axis, to 
accommodate sequences which are similar, but out of 
phase, as shown in Figure 3. 

 DTW, being such a technique, based on dynamic 
programming, has long been utilized by the speech 
processing community [4, 5, 6]. 
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 Dynamic Time Warping is a technique to align two 
sequences in order to obtain a dissimilarity measure using 
non-linear temporal alignment. ECG and speech signals 
have similar nonstationary characteristics [7]. Therefore 
Euclidean distance is not available to compare the 
similarity between two ECG frames due to the 
inconsistency of the frame length. Heart beat variation 
causes nonlinear time fluctuation of ECG frames. 
Elimination of this fluctuation by time-normalization is one 
of the methods for ECG classification research. However, a 
linear normalization technique in which the timing 
difference between the ECG frames is minimized, is 
inherently insufficient for dealing with the highly nonlinear 
ECG frame fluctuations. On the other hand, the DTW 
matching is a pattern matching algorithm with a nonlinear 
time-normalization effect. It has been used successfully in 
speech recognition for that purpose [8]. In this algorithm, 
the fluctuation in time is modeled approximately by a 
nonlinear warping function with some carefully specified 
properties. Timing difference between two ECG frames is 
minimized by warping the time axis of one frame such that 
the maximum coincidence is attained with the other. Then 
the time-normalization is calculated as the individual 
minimized residual distance between them. This 
minimization process is carried out efficiently by the DTW 
technique [6]. 

 
Figure 3. One to one alignment on time axis 
vs. non-linear alignment (warped time axis). 
Nonlinear curve alignment is important in 
pattern recognition of ECG signals. Wavelet 
analysis dose not allow this type of flexibility 
in pattern recognition and matching. 

2 Methods 
 We use ECGSYN software, which is developed for 
generation of synthesized ECG [9]. ECGSYN generates a 
synthesized ECG signal with user-settable mean heart rate, 
number of beats, sampling frequency, waveform 
morphology (P, Q, R, S, and T timing, amplitude, and 
duration), standard deviation of the RR interval, and LF/HF 
ratio (a measure of the relative contributions of the low and 
high frequency components of the RR time series to total 
heart rate variability). Using a model based on three 
coupled ordinary differential equations, ECGSYN 
reproduces many of the features of the human ECG, 
including beat-to-beat variation in morphology and timing, 
respiratory sinus arrhythmia, QT dependence on heart rate, 
and R-peak amplitude modulation. The output of ECGSYN 
may be employed to assess biomedical signal processing 

techniques which are used to compute clinical statistics 
from the ECG. 

 The algorithms used by ECGSYN are described in 
[10]. Current implementations of ECGSYN allow the user 
to modify the morphology of the P-QRS-T cycle, which 
was not a feature of the original ECGSYN described in the 
paper. The angle of each attractor (P, Q, R, S and T) around 
the limit cycle is set by ti (initially, [-70 -15 0 15 
100]*π/180). Their positions above or below the z=0 plane 
are set by bi and the widths of the waveform components 
are given by ai. Since ti=0 defines the placement of the R-
peak, the ordering of each element of ti, ai and bi is [P Q R 
S T]. The bi and the ti are stretched by the square root of 
the reciprocal mean RR interval, as suggested by Bazett's 
(empirical) formula relating the QT interval to the heart 
rate. This transformation does not cancel out the reduction 
of the inter-attractor angular distance that arises 'naturally' 
from augmented heart rates in this model. 

 Normal sinus rhythm, two different forms of 
supraventricular tachycardia, and four different forms of 
ventricular tachycardia with QRS complexes gradually 
changing from complexes which resemble normal sinus 
rhythm complexes to the ones that are very dysmorphic, are 
generated. All the generated rhythms are carefully analyzed 
by an cardiac electrophysiologist in order to ensure 
similarity of the generated ECGs to ECGs that are seen in 
clinical setting. In supraventricular tachycardia QRS 
complexes are the same as normal sinus rhythm ones, 
however P and T waves are different and rate is faster. 
However, in ventricular tachycardia QRS complexes are 
wider in duration and also different in shape. It is crucial to 
differentiate between supraventricular tachycardias and 
ventricular tachycardias for devices like ICDs. Since 
wavelet analysis is currently used for differentiation 
purpose in one of the ICD models, besides DTW analysis, 
we assessed the synthesized time-series ECG data with 
wavelet analysis as well. ECG time-series data involved 
1024 successive beats for each type of rhythm. Normal 
sinus rhythm ECG template for a single cardiac cycle was 
compared to each cardiac cycle in these 1024-beat long 
synthesized rhythms. Each cardiac cycle was extracted 
from the R peak to the next R peak. R peak represents the 
peak of the QRS complex. Since the rate is different in 
each rhythm, we have generated interpolated data points in 
each beat in order to obtain same number of data points in 
each cardiac cycle. That way the rate of the rhythm was 
ignored which also allowed us to interpret only the 
differences of the ECG pattern of various heart rhythms. 

 For DTW analysis, we first use a utility to calculate 
the full local-match matrix i.e. calculating the distance 
between every pair of frames from the sample and template 
signals. Then, a simple dynamic programming algorithm 
that allows three steps - (1,1), (0,1) and (1,0) - with equal 
weights is used. This approach results in having large 
constant regions in the modified signals, therefore we 
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modified the dynamic programming algorithm to allow 
(1,2) and (2,1) steps. Let t and r be the template and sample 
signals and D denotes this local-match matrix at point (i,j) 
on a two dimensional grid. The optimum path is found by 
minimizing this cost function, namely: 

 

 

 The details of the matlab code for the original 
implementation of DTW can be found in Dan Ellis’ Web 
Page; http://www.ee.columbia.edu/~dpwe/. 

 The term wavelets refers to sets of function of the 
form 

 

i.e., sets of function formed by dilation and translation of a 
single function, ψ(t) called as the mother wavelet. 
Continuous wavelet transform on f(t)  is defined as 

 

 

If        and  

then f(t) can be expressed as a wavelet series, that is, 
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 The Discrete Wavelet Transform (DWT) is proposed 
for fast computation. (3) is considered where the discrete 
values of dilation and translation parameters, a and b are 
used. Dyadic grid is the simplest and most efficient 
discretization for practical purposes and lends itself to the 
construction of an orthonormal wavelet basis. Common 
choices for discrete dyadic grid wavelet parameters a and b 
is 2 and 1 respectively. The DWT is particularly effective 
in analyzing waveforms which have spikes or pulses buried 
in noise. The noise may be more effectively removed and 
the shape of the pulses preserved. We used Daubechies’ 
first order mother wavelet, which is the same as the Haar 
mother wavelet, at level six in order to compute the discrete 

wavelet transformation coefficients. The normalized 
average distance between the coefficents are used as a 
measure in order to specify the similarity between two 
signals. 

3 Results 
 A sample of synthetic ECGs representing various 
types of arrhythmias is shown in Figure 1.  

 

 In Figure 1, the order of rhythms from top to bottom 
is as follows: Normal sinus rhythm (NSR), supraventricular 
tachycardia type 1 (SVT1), ventricular tachycardia type 1 
(VT1), ventricular tachycardia type 2 (VT2), ventricular 
tachycardia type 3 (VT3), ventricular tachycardia type 4 
(VT4), and supraventricular tachycardia type 2 (SVT2).  

 The ventricular tachycardia sample which is labeled 
as VT4 was closest in morphology to the normal sinus 
rhythm ECG among the VT forms. However, VT1 
represented the most different morphology among the VT 
forms due to the wider QRS complexes. We also 
synthesized two different forms of SVT. The ranges of 
matching of single normal sinus rhythm cycle (one heart 
beat) template was compared to the 1024 successive beats 
in each different rhythm and the results are shown in Figure 
2. 

 Data in red color represent results from DTW, and 
data in green color represent results from wavelet analysis. 
The order of rhythms is as follows: Normal sinus rhythm, 
supraventricular tachycardia form 1, ventricular 
tachycardia form 1, ventricular tachycardia form 2, 
ventricular tachycardia form 3, ventricular tachycardia 
form 4, and supraventricular tachycardia form 2. DTW 
differentiated both types of SVT from all different types of 
VT successfully without any overlap. However, wavelet 
analysis demonstrated significant overlap between various 
forms of VT and SVT.  Using wavelet analysis, mean 
matching percent of NSR to VT4 was 86 ± 0.49, and mean 
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Figure 1. The synthesized ECGs are shown. 
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matching percent of NSR to SVT2 was 87.2 ± 0.74. This is 
interpreted as lack of significant strength in differentiation 
of SVT from VT since there is significant overlap between 
two comparisons. However, with DTW analysis, mean 
matching percent of NSR to VT4 was 36.2 ± 0.85 and 
mean matching percent of NSR to SVT2 was 42.7 ± 1.34. 
DTW allowed discrimination of two rhythms without any 
significant overlap. 

 
Figure 2. X-axis represents different heart 
rhythms that were produced. Y-axis 
represents results of matching ranges of 
normal sinus rhythm to other rhythms. Single 
normal sinus rhythm beat template (from R 
peak to next R peak) was compared to 1024 
successive beats in each different rhythm. 
Data in red color represent results from 
DTW, and data in green color represent 
results from wavelet analysis. The order of 
rhythms is as follows: Normal sinus rhythm, 
supraventricular tachycardia type 1, 
ventricular tachycardia type 1, ventricular 
tachycardia type 2, ventricular tachycardia 
type 3, ventricular tachycardia type 4, and 
supraventricular tachycardia type 2.  

 
4 Discussion 
 This study introduces a novel pattern recognition tool 
for pattern recognition of ECG abnormalities belonging to 
various heart rhythm disturbances. Although different 
methods have been used thus far, accurate automatic 
rhythm recognition is a very important problem in ECG 
related industry such as in ICDs. Wavelet analysis is the 
most advanced tool that is being used currently for the 
automatic recognition of ECG changes in ICDs. However, 
this feature is not reliable enough and in fact is 
automatically turned off in ICDs after a certain rate is 
reached in various rhythm disturbances. Our study 
proposes that DTW can be a stronger analysis tool for 

recognition of ECG changes that are noted in life-
threatening arrhythmias. The fact that VT forms that were 
produced with closer morphology to the normal sinus 
rhythm template are differentiated with DTW but not with 
wavelet analysis supports that hypothesis.  The most 
powerful specification of DTW is allowing one to achieve 
non-linear temporal alignment. Wavelet analysis, however, 
can only compare time series signals using linear temporal 
alignment. Due to this lack of flexibility, wavelet analysis 
could not be used as successfully as DTW in speech 
recognition. Having similar characteristics to speech 
signals, ECG signals can also be only be differentiated 
more succesfully if a nonlinear approach is used in pattern 
recognition. Therefore, DTW allows one to implement an 
elastic template matching algorithm by looking for optimal 
alignment, which seems to be an important strength in 
assessment of nonstationary time-series signals, such as 
ECG. DTW is also used in string matching, handwritten 
character recognition, object recognition, prototype 
formation, morphing, polygon recognition, curve 
alignment. Introduction of this technique in ECG analysis 
has significant potential benefits for clinical 
electrophysiology. 

5 Conclusions 
 DTW is a novel and powerful method in pattern 
recognition of ECGs that represent various heart rhythm 
disturbances. DTW can differentiate between normal sinus 
rhythm, SVT and VT ECGs. However, wavelet analysis 
seems to have a weaker power in differentiation of ECGs 
of some arrhythmias. This finding might be very useful in 
the development of ICDs with better automatic rhythm 
differentiation algorithms and other ECG related equipment 
where automatic recognition of various arrhythmias is 
important. 
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