| Type of Contact and Force Origin | Action on Body to be Isolated | | |---|-------------------------------|---| | 1. Flexible cable, belt, chain, or rope Weight of cable negligible Weight of cable not negligible | T | Force exerted by
a flexible cable is
always a tension away
from the body in the
direction of the cable. | | 2. Smooth surfaces | N | Contact force is compressive and is normal to the surface. | | 3. Rough surfaces | R N | Rough surfaces are capable of supporting a tangential component F (frictional force) as well as a normal component N of the resultant contact force R . | | 4. Roller support | | Roller, rocker, or ball
support transmits a
compressive force
normal to the
supporting surface. | | 5. Freely sliding guide | | Collar or slider free to
move along smooth
guides; can support
force normal to guide
only. | | MODELING THE ACTION OF FORCES I | T | | |--|--|--| | Type of Contact and Force Origin | Action on Body to be Isolated | | | 6. Pin connection | Pin Pin free not free to turn to turn $R_x \qquad R_y \qquad R_y \qquad M$ | A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the axis; usually shown as two components R_x and R_y . A pin not free to turn may also support a couple M . | | 7. Built-in or fixed support A or Weld | F V | A built-in or fixed support is capable of supporting an axial force F , a transverse force V (shear force), and a couple M (bending moment) to prevent rotation. | | 8. Gravitational attraction | W = mg | The resultant of gravitational attraction on all elements of a body of mass m is the weight $W = mg$ and acts toward the center of the earth through the center mass G . | | 9. Spring action Neutral F F position X Y | \longrightarrow^{F} | Spring force is tensile if spring is stretched and compressive if compressed. For a linearly elastic spring the stiffness k is the force required to deform the spring a unit distance. |