Type of Contact and Force Origin	Action on Body to be Isolated	
1. Flexible cable, belt, chain, or rope Weight of cable negligible Weight of cable not negligible	T	Force exerted by a flexible cable is always a tension away from the body in the direction of the cable.
2. Smooth surfaces	N	Contact force is compressive and is normal to the surface.
3. Rough surfaces	R N	Rough surfaces are capable of supporting a tangential component F (frictional force) as well as a normal component N of the resultant contact force R .
4. Roller support		Roller, rocker, or ball support transmits a compressive force normal to the supporting surface.
5. Freely sliding guide		Collar or slider free to move along smooth guides; can support force normal to guide only.

MODELING THE ACTION OF FORCES I	T	
Type of Contact and Force Origin	Action on Body to be Isolated	
6. Pin connection	Pin Pin free not free to turn to turn $R_x \qquad R_y \qquad R_y \qquad M$	A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the axis; usually shown as two components R_x and R_y . A pin not free to turn may also support a couple M .
7. Built-in or fixed support A or Weld	F V	A built-in or fixed support is capable of supporting an axial force F , a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.
8. Gravitational attraction	W = mg	The resultant of gravitational attraction on all elements of a body of mass m is the weight $W = mg$ and acts toward the center of the earth through the center mass G .
9. Spring action Neutral F F position X Y	\longrightarrow^{F}	Spring force is tensile if spring is stretched and compressive if compressed. For a linearly elastic spring the stiffness k is the force required to deform the spring a unit distance.

