Chapter 6 -  Analysis of Structures

Now we are going to consider internal forces.

In the force analysis of structures it is necessary to dismember the structure and to analyze separate FBD of individual members in order to determine the forces internal to the structure.

This analysis calls for very careful observance of  Newton's 3rd law, which states that each is accompanied by an equal and opposite reaction.

3 categories of engineering structures:


1). Trusses- support loads, stationary, 2 force members


2). Frames- support loads, stationary, at least one multi-force members


3). Machines- transmit and modify forces, at least one multi-force member

Def. of truss: a framework composed of members connected at their ends to form a rigid 

structure.

Examples:  Bridges, roof supports, derricks

Structural members used: I-beams, channels, angles, bars

Fastened together at ends by:  Welding , rivets, bolts

Weights of truss members are assumed to be applied to the joints, half the weight at each end.  Many times weight is small compared to the forces the members support so it is neglected.

In the analysis, it is  assumed that the members are pinned together.

What does this do?  The forces at each end of a member reduce to a single force and no couple.  Members become a 2 -force member. Equal, opposite, collinear (Newton's 3rd law)
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Compression

Typical trusses are shown on Pg. 174.  what is common about all these trusses? 

Made up of triangles. Triangles constitute a rigid truss.
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Not rigid
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Simple Truss: add 2 new members, attach them to separate existing joints and connect them at a new joint.
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Total # of members, m






m=2n-3
n=total # of joints
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Analysis of trusses by the method of joints

Let's look at the following plane truss
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Dismembering
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Notice Newton's 3rd law between the pin and member equal and opposite

Since the entire truss is in equilibrium, each pin is in equilibrium.

Truss contains n Pins => 2n equations (x, y)

Remember:


m=2n-3=> 2n=m + 3

Thus 2n or m=+3 unknowns may be determined


m => all the forces in the members 


3 => 
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The entire truss is a rigid body in equilibrium thus we can write the following equation for the entire truss.
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These contain no new information and so are not independent.

But we can use these to determine reactions at the supports.

The arrangement of pins and members in a simple truss is such that it will always be possible to find a joint involving only 2 unknown forces.

Once these forces are determined their values are transferred to adjacent joints and this joint is analyzed.  This is repeated until all the unknown forces are determined.

Examples

1). Given: the following truss

Find: using the method of joints, find the force in each member, state compression or tension.





Joint B






These are forces on pins! Forces on members are:
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 EMBED Equation.3  
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Check:
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2). Given: the following truss
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Find: Using the method of joints, determine the force in each member, state compression, or 

tension.
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Joint E  





Truss and loading is symmetrical about the centerline.
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