Programming Cycle
Basic steps

1. Specify the problem clearly

2. Analyse the problem and break it down into its fundamental elements

3. Plan the program, a structured approach! Flowcharts & Dry running
4. Edit your source Code according to the plan developed at step 3

5. Compile and link program.

6. Execute and debug program.
7. Test the program exhaustively, and repeat steps 4 to 6 as necessary until the program works in all situations that you can envisage

Structure of a program in Fortran 90

1. Heading (program, module, etc.)

2. specification part

Declare variables and structures

Assign values to variables

3. execution part (Process data)

4. Print results (if necessary)

5. subprogram part

6. end program statement

Program =
Data Types + Algorithms

· Data types:

what you work on

· Algorithms:

what you do with them

Data Types

Five basic types:

1. integer

2. real

3. complex
4. character

5. logical

· Data types of ‘container’ classes

Integers

· a whole number (positive, negative or zero)

· no decimal point

· Examples
0
123
-23456
+123789

Reals

· Numbers with decimal fractions

· There has to be decimal point

· Examples
1.23456

5678.

-0.001987
Another representation:
1.952e3

0.1952e4

123.456e-8

Character

· Sequence of symbols from the Fortran character set

· Enclosed between double quotes

· Examples
"This is a string"
"I do, I don't"
"1234abc345"

Logical

· Can take only two values:

.TRUE.

.FALSE.

Identifiers

· Names used to identify programs, constants, variables, etc.

· Identifiers must begin with a letter

· This can be followed by up to 30 letters, digits, undescores

· Be careful with the case: lower or upper case letters

· Examples
Current
Decay_Rate
pressure
an_identifier_with_a_long_name
the_best_program
Invalid names :

•X*Z

•THE TIME

•7YEARS

•_no_way$

Constants

· 10293845 is an integer constant

· 12.3456 is a real constant

· "What a nice day!" is a character constant

Parameters

Parameters are constants, their value, once defined, can not be changed :

REAL :: g,pi

INTEGER :: days

PARAMETER (days=365)

PARAMETER (g=9.81,pi=3.14159)

Variables

· Variables are value containers

· Compiler associates with a variable a memory location

· Value of a variable at any time is the value stored in the associated memory location at that time

Declarations of Variables
· Form:
type-specifier :: list
· Declares that the identifiers in the list have the specified type

· Type statements must appear in the specification part of the program

· Examples
integer :: number_years, counts, months
real :: Mass, Velocity, Acceleration
character (len=12) :: MyName, YourName
IMPLICIT NONE
It should be placed at the beginning of the specification part

You have to declare all variables you will be using in the program!

Variable initialization

All variables are initially undefined

Initialization in the declarations
Examples:
real :: W=1.2, z=5.678, mass=4.56
integer :: year=1998, count=0

Named constants

Form:
type-specifier, parameter :: list

Examples
integer, parameter :: INITCOUNT = 30
real, parameter :: G = 9.81

It's a good idea to write named constants in upper case

Arithmetic operations

· Variables and constants can be processed by using operations and functions appropriated to their types.

· [image: image1.wmf]Operator

Operation

+

Addition, unary plus

-

Subtraction, unary

minus

*

Multiplication

/

division

**

exponentiation

Operations

Operations
Examples
To calculate B2 - 4AC
B**2 - 4*A*C
Types are important:
9/4 = 2
9.0/4.0 = 2.25

Mixed-mode expressions:
3 + 8.0/5  3 + 8.0/5.0  3 + 1.6  3.0 + 1.6  4.6

Priority rules

All exponentiations are performed first; consecutive exponentiations are performed from right ot left

All multiplications and divisions are performed next; in the order in which they appear from left to right

Additions and subtractions are performed last, in the order in which they appear from left to right
Some examples
2 ** 3 ** 2 = 512
10/5 *2 = 2 * 2 = 4

To calculate 51/3
5.0**(1.0/3.0, but not 5.0**(1/3)  5.0**0  1.0

Library functions
abs(x) Absolute value of x
cos(x) Cosine of x radians

exp(x) Exponential function

int(x) Integer part of x
sqrt(x) Square root of x

Assignment statement

Form:
variable = expression

Assigns the value of expression to variable

Assignment is not a statement of algebraic equality; it is a replacement statement

Examples
Density = 2000.0
Volume = 3.2
Mass = Density*Volume
WeightRatio = log(Mass/90.)

volume=(4.0*pi*radius**3.0)/3.0

Input/Output

· Programs need to communicate with users!

1. Two kinds of I/O (for the moment!):
· Formatted I/O

· List-directed I/O

2. List-directed output
print *, output-list
write (unit=*, fmt=*) output-list
3. List-directed input
read *, input-list
read (unit=*, fmt=*) input-list
List-directed I/O

· Examples
print *, "Tell me your birthday"
write (unit=*, fmt=*) a, b, c**2
read *, day, month, year

� EMBED Word.Document.8 \s ���

PAGE
14

[image: image2.wmf]Operator

Operation

+

Addition, unary plus

-

Subtraction, unary

minus

*

Multiplication

/

division

**

exponentiation

_1077359684.doc
		Operator

		Operation

		+

		Addition, unary plus

		-

		Subtraction, unary minus

		*

		Multiplication

		/

		division

		**

		exponentiation

