Introduction to Scientific and Engineering Computing BIL106E (F)

USING FILES TO PRESERVE DATA

(
Reading Assignment: pp: 264-291 of your textbook,

Do the self-test exercises.
(
The most convenient way to process involving large data sets is to store them into a file for later processing.

(

In order to work with files we need to focus on I/O operations, data transfer and file operations.

Information For Data Transfer

(

Data transfer characteristics are specified by the following items called control information.

(1) The direction of data transfer (input or output)

(2) The external device, or unit, to or from which data is to be transferred

(3) The format description that specifies conversion between the computer-oriented internal form of data and its representation as a character string.

(4) (Optional) Positioning action that is to occur at the end of data transfer (Advancing; if the file on the external device is to be repositioned to the end of the current record. Non advancing; if the file position is to remain in its place within the current record)

(5) (Optional) Exception handling to be performed in the event of an end-of-file, end-of-record, or error condition during data transfer.

Files

(
external source

–data obtained from (read opr)

(
external destination

–data sent to (write opr)
(
A file is an external source from which data may be obtained or an external destination to which it may be sent. Data can not be transferred to or from a file until the file is connected to the program.

(
A connection between a unit and a file has certain connection properties. When a unit becomes connected to a file by execution of an open statement, the following properties may be established:

1) An access method, sequential or direct, is always established.

2) A form, formatted or unformatted, is always established.

3) An initial position, rewind or append, specifies initial positioning of the file during execution of open statement

4) A permanence property, temporary or permanent, specifies disposition of the file when the connection is terminated.

5) An action property, read, write or read-write, specifies which kinds of d
ata transfer statements are permitted.

6) A record length may be established.

(
The OPEN Statement

The statement consists of the keyword open followed by a control list.

A control list must include the following specifiers.

1) status = Character expression, where the value of Character expression is old, new, replace, or scratch.

2) action = Character expression, where the value of Character expression is read, write, or readwrite.

3) position = Character expression, where the value of character expression is rewind or append.

The followings are optional specifiers

4) access = Character expression, where the value of character expression is sequential or direct (default is sequential).

5) form = Character expression, where the value of Character expression is formatted or unformatted (default formatted).

6) recl = Integer expression, where the value of Integer expression is positive.

7) iostat = Integer variable name.

Here some examples for open statement:

open (unit = 6, file =“My_Data.bin”, status =“old”, action =“read”,&

 form = “unformatted”)

open (unit = J, file =“My_Input.txt”, status =“old”, action =“read”)

open (unit = 31, file =“X23”, status =“old”, action =“read”, &

 access =“direct”, recl =720)

I/O Positioning

(
INPUT POSITIONING

Let’s consider an existing file has been connected to unit 7 for sequential access. A rewind initial position property for the connection was specified in the open statement. Suppose that several read statements are then executed.

1) If the file is unformatted, each read will advance the file by one record.

2) If the file formatted, each advancing read statement will advance the file by one record.

3) Each non advancing read from a formatted file will advance the file when a slash is encountered in the format or when rescan occurs, and the position remains within the current record at the end of execution of the statement.

Let us suppose that the end-of-file indicator is encountered. The file is then positioned following the end-of-file indicator, and indication of the end-of-file condition is returned to the program.

(
OUTPUT POSITIONING

Now let’s consider a file that has to be used for sequential output. It is connected to unit 13 and contains no records, no indication of the end-of-file condition. A rewind initial position property for the connection was specified in the open statement. Suppose that several write statements are then executed.

1) If the file is unformatted, each write will add one record to the file.

2) If the file formatted, each advancing write will add at least one record.

3) A non advancing write will add a new record when a slash is encountered in the format or when rescan occurs, but will not end the record after data transfer.

After the desired data has been transmitted to the file, the statement end file may be executed to append an end-of-file indicator following the last record written.

Connection Properties

(
access

–sequential / direct (random access)

(
form

–formatted / unformatted

(
initial position

–rewind / append

(
permanence

–temporary / permanent

(
action

–read / write / wr

(
record length

–fixed / variable

(
opening
syntax :

open (control list specifiers)

unit=

–integer expr

file=

–character data

status=

–old / new / scratch / replace

action=

–read / write / readwrite

access=

–sequential / direct

form=

–formatted / unformatted

recl=

–integer expr

iostat=

–int vrbl name

(
closing
syntax

close (control list spesifiers)

close (unit=5)

close (unit=Iunit,iostat=Code,status=“delete”)

Explicit Positioning

(
rewind (control list)

–rewind (unit=3,iostat=Iocode)

(
backspace (control list)

–backspace (unit=Iunit,iostat=Code)

Direct Access Input And Output

(
The connection of a file to a unit has an access method, which is sequential or direct. Direct access means that records may be accessed in an arbitrary sequence. Each record of the file has a unique record number that is established when the record is written and does not change. A Record number specifier in the Control List of each read or write statement indicates which record is to be read or written; this specifier has the form

rec = Record number

Record number is an integer expression with a positive value.

Example for direct access output statement:

write (unit = 3, fmt = *, rec = 76) X, Y, Z, Z5

(

write statement sends information to record number 76 of unit 3.

Random Access

(
direct accessing

open (unit=1,file=“wr”,access=“direct”, &

recl=100, status=“replace”, action=“readwrite”)

do Irec=1,10

write (unit=3,fmt=“(3i5)”,rec=Irec) I1,I2,I3

end do

do Irec=10,1,-1

read (unit=3,fmt=“(3i5)”,rec=Irec) I1,I2,I3

end do

Example problem 1:

Save on a file the information of students in the class.

Randomly ask information of the students and change them if necessary.

program class1

implicit none

real:: Note,Number

integer::Recn

character(len=10):: Name

open (unit=1,file="class1.dat",access="direct",&

 status="replace",action="readwrite",recl=45,&

 form="formatted")

Recn=0

do

 write (unit=*,fmt="(2x'enter name ')",advance="no")

 read (unit=*,fmt=*) Name

if (Name=="end") then

exit

 else

 Recn=Recn+1

 write (unit=*,fmt="(2x'enter no,note ')",advance="no")

 read (unit=*,fmt=*) Number,Note

 end if

 write (unit=1,fmt="(a5,2f15.3)",rec=Recn) Name,Number,Note

end do

 print *,"Input ended"

do
write (unit=*,fmt="(2x'enter no ')",advance="no")

read (unit=*,fmt=*) Recn

if (Recn==0) then

exit

else

read (unit=1,fmt="(a5,2f15.3)",rec=Recn) Name,Number,Note

write (unit=*,fmt="(2x,'student ',a5,' with number',f15.3,2x,' has grade ‘&

,f5.0)") Name,Number,Note

end if

end do

close (unit=1)

stop

end program class1
Example problem 2:

You have a target at a given distance.

You are commender of a gun.

You give the necessary initial velocity of the bullet and the barrel angle of the gun

Try to hit the target with less guess as possible ‘ otherwise you will be hitted :-) ‘

Visualize the trajectory of the bullet up to the hit

program trajec
implicit none

real::Dist,Displ,Vel,Init_vel,Angle,Diff,Adiff,Time,&

Ang_sin,Ang_cos,Sx,Sy

integer::Itime,Utime,Guess

character(len=1)::Answ

character(len=5)::Miss

real,parameter::Grav=9.81,Delt_t=0.5,Rad_cnv=0.01745,Alpha=1

write (unit=*,fmt="(2x'dist to target ? ')",advance="no")

read (unit=*,fmt=*) Dist

Guess=0

do

Guess=Guess+1

write (unit=*,fmt="(2x'Init veloc ')",advance="no")

read (unit=*,fmt=*) Init_vel

write (unit=*,fmt="(2x'Init angle ')",advance="no")

read (unit=*,fmt=*) Angle

 Ang_cos=cos(Angle*Rad_cnv)

 Ang_sin=sin(Angle*Rad_cnv)

 Time=Init_vel*Ang_sin/(0.5*Grav)

! Displ=2*Init_vel**2*Ang_sin*Ang_cos/Grav

 Displ=Init_vel*Ang_cos*Time

 Diff=Displ-Dist

Adiff=abs(Diff)

 if (Diff>0) then
 Miss="Far"

 else

 Miss="Short"

 end if

 if (Adiff<=Alpha) then
 exit

 else

 write (unit=*,fmt="(2x,' you missed by ',f6.1,' meters ',a5)") Adiff,Miss

 end if

end do

 print *," !!!!!!!!!!!!"

 print *," You get it in ",Guess," guesses"

 print *," !!!!!!!!!!!!"

 print *,"calculates trajectory and save to file"

print *,"calculates trajectory and save to file"
 open (unit=2,file="trajec.dat",action="write",status="replace")

 Utime=int((Time*100)+0.5)

 do Itime=0,Utime,1

 Time=Itime/100.0

 Sx=Init_vel*Ang_cos*Time

 Sy=-0.5*Grav*Time**2+Init_vel*Ang_sin*Time

 write (unit=2,fmt="(3f10.2)") Time,Sx,Sy

 end do

stop

end program trajec

Unformatted Input/Output

(

The connection of a file to a unit has a form which is formatted or unformatted. Unformatted files usually correspond to so-called binary files, whereas formatted files correspond to text files.

(
Unformatted records contain information in a processor-dependent form that is obtained by transferring data to and from internal storage without any editing or other transformation. The external representation of the data corresponds exactly to its internal representation. Thus, unformatted data transfer is more efficient because the data is merely copied between the external device and the internal storage of the computer.

(
Formatted records are composed of characters representing data values; a formatted record corresponds to a printed line. Conversion is required between the internal form of the data and its representation on the file.

(Do example 9.10 (Meissner’s book))
Formatted Internal Data Transfer

(

Formatted internal data transfer changes the representation of data without actually transmitting it to or from an external device. Formatted external data transfer includes two separate processes:

a) The change in representation of data between its internal form and its external form.

b) The transmission of data to or from the external device.

(

In an internal data transfer statement, the integer expression or asterisk Unit specifier in the control list is replaced by the name of a character variable that serves as a buffer or “internal file”.

(Do example 9.11 (Meissner’s book)
)

Visualization

(
output saved to a file

file read by an application
visualisation

(
MS-Excel
open an existing file

file type txt

specify delimitaton of columns

get file

choose range to be visualise ok

(Bal
Webnotes10
6

