Introduction to Scientific and Engineering Computing BIL106E (F)

MORE CONTROLING INPUT/OUTPUT (I/O)

(
Reading Assignment: pp: 230-263 of your textbook,

Do the self-test exercises.
Input/Output Formatting
[image: image1.wmf]I

n

p

u

t

O

u

t

p

u

t

E

x

t

e

r

n

a

l

M

e

d

i

a

K

e

y

b

o

a

r

d

D

i

s

k

F

i

l

e

M

a

g

n

e

t

i

c

T

a

p

e

e

t

c

.

D

i

s

p

l

a

y

P

r

i

n

t

e

r

,

D

i

s

k

F

i

l

e

,

M

a

g

n

e

-

t

i

c

T

a

p

e

e

t

c

.

C

o

m

p

u

t

e

r

'

s

M

e

m

o

r

y

i

n

t

e

g

e

r

r

e

a

l

c

h

a

r

a

c

t

e

r

e

t

c

.

c

o

n

v

e

r

t

t

o

i

n

t

e

r

n

a

l

f

o

r

m

c

o

n

v

e

r

t

t

o

e

x

t

e

r

n

a

l

f

o

r

m

(
“Intelligent” read

read *, a,b,c,d

“Reasonable” print

print *, x,y,z

List-Directed Read and Print

(
Value separators, ,(comma) /(slash) one or more consecutive blanks end-of- record or end-of-line.

(
It gives you a “reasonable”/readable output

(
But… Not much control over the space between values, digits after the decimal point, etc.

Format Descriptors

(
Instead of:

read *, input_list

print *, output_list

read ch_expr, input_list

print ch_expr, output_list
ch_expr is format specifier

(ed_des1,ed_des2,…)
edit descriptors - character-type data

read "(edit_descriptor_list)", input_list

print "(edit_descriptor_list)", output_list
(
Integer data

iw
Next w characters are to be read and interpreted as an integer

read "(i9)", n
read "(i3, i2, i5)", a, b, c
(
Tabs

tc
read at position c

tln
n character before

trn
n character after

(

Real data

fw.d

If there is a decimal point, read next w characters and interpret it as a real number

If there is no decimal point, take d into account

ew.d
(
Character data

aw
–w < len
–w > len
rightmost len characters stored

a

w = len assumed

(
Logical data

Lw

t ,true, .T, .true., ...

Output Editing

Essentially the same

More Control…

read (clist) input_list

write (clist) output_list

clist
control list

keyword = value

–unit = unit

–fmt = ch_expr

–iostat = io_status
I / O Statement (Forms)
(
An input or output statement has the following form.
read (unit=2, fmt=”(2i5, a, 2f16.8)”) I, Code, Str, Bugle, Dpr

write (unit=*, fmt=”(f10.3, i6, f10.3,a)”, advance =“no”) A, B, C,” # ”

write (unit=*, fmt=*) Code, X+Y+Z

(

The positioning specifier advance= “no” in the write statement states that the output file is not to be advanced to a new record after A, B and C have been written to the file. Thus the second write statement will append additional data to the same output record

(
Direction of Transfer

The direction of transfer is determined by the initial keyword in the statement. The keyword read denotes input, while write denotes output.

(

External Device

Each external device is identified with a unique integer value called a unit number. A given unit number represents the same device in the main program and in all of its modules and subprograms. Thus, unit numbers may be said to have global scope.
(
input

read (control list) list

read (unit=1,fmt=‘(i4,f3.2)’) Inum, Aver

output

write (control list) list

write (unit=6,fmt=‘(i4,f3.2)’) Inum, Aver

print (format specifier) list

print *, Inum, Aver

Control List

(
unit specifier : External unit/device to/from data is transferred

–unit=
(
format specifier : Explicit specification of conversion between internal and external data

–fmt=
(
positioning, i/o status

(
other specifiers

Data Transfer

(
Records

Information on a file subdivided into records. A record corresponds roughly to a line on a terminal screen or to a printed line. The structure of unformatted records is processor-dependent, since the amount of space required on the external unit depends on the details of processor data representation.

(
Formatted records

A formatted record is composed of characters. These characters may include letters, digits, and special symbols from the ASCII character set.

(
Non-advancing input and output
Input and output always positions the input or output file, as a default option, at the end of the last record to or from which information has been transferred. In some cases this style of input and output is not convenient. It would often be preferable to stop data transfer in the middle of an input or output record and to continue later with the remainder of the same record. Instead of default advancing file-positioning style, output statement may request a non-advancing style, whereby the file position may remain within a record after the input or output statement has been executed. (See example 9.5, p400, Meissner`s book)

Format Specifier

(
LIST-DIRECTED FORMATTING

An asterisk format specifier indicates list-directed formatting, which is adequate for input in most situations and for output in applications where the precise appearance of the results is not important

(
syntax

read (unit=1,fmt=*) Inum,Rnum

write (unit=2,fmt=*) Inum,Rnum

 1 2.31
Inum=1 Rnum=2.31

Explicit Format Control

(
The following specification describes the arrangement of five fields within a record

(3 f12.0, 2 i3)

(
An input field can be specified by the following format code

read (unit=*, fmt=“(3 e12.0, 2 i3)”) A, B, C, I, J

Each format code in a format description includes the following information:

1) a count, indicating the number of consecutive fields to which it corresponds

2) a conversion mode, indicating by letters such as f, es, i, l or a.

3) a field width

4) a decimal position (optional)

(
I Format code for integer input
read (unit = *, fmt = “(i3, i4, 2 i6, i8, i3)”) I, J, K, L, M, N

external appearance field width format code internal value
123 3 i3 +123

+123 4 i4 +123

 -123 6 i6 -123

- 1203 6 i6 -1203

 -12300 8 i8 -12300

- - -__ 3 i3 0

(
f Format code for real output

write (unit = *, fmt = “(t2, f10.3, f6.0, f8.2, f5.2, f6.3)”, A, B, B, C, H

real variable internal value format code external appearance

 A -897.6577 f10.3 _ _ -897.658

 B 234. f6.0 _ _ 234.

 B 234. f8.2 _ _ 234.00

 C -0.12 f5.2 -0.12

 H 0. f6.3 _ 0.000

(
f Format code for real input

read (unit = *, fmt = “(f10.4, f8.0, f5.3, f13.6, f9.0, f8.4, f8.2)”, A, B, C, D, E, F, G

real variable internal value field width external appearance

 A -897.6577 10 _ -897.6577

 B +234. 8 _ _ + _ 234.

 C -0.12 5 - . 12 _

 D -897.6577 13 -8.976577E+02

 E -0.02032 9 -20.32E-3

 F +2.032 8 2032.e-3

 G 2032.0 8 2.032E3_

IMPORTANT: If a decimal point appears in the input field, the value of d in the format code is ignored; the actual decimal point overrides the format specification

Integer I/O

(
syntax

read (unit=1,fmt=“(i3,i5)”) Inum,Jnum

write (unit=2,fmt=“(i3,i5)”) Inum,Jnum

---|-----

 1 231
Inum=1 Jnum=231
 1 22
Inum=10 Jnum=220

Real I/O

(
syntax

read (unit=1,fmt=“(f3.0,f5.2)”) Rnum,Tnum

write (unit=1,fmt=“(f3.0,f5.2)”) Rnum,Tnum

---|-----

1.0 2.3
Rnum=1.0
Tnum=2.3

1 2.3
Rnum=1.0
Tnum=2.3

write (unit=*,fmt=“(e12.4)”) Avar

1 01

----------|--

 -1.2345e+08

Repetitive I/O

Syntax

read (unit=1,fmt=“(3i3)”) Inum1,Jnum1,Inum2
write (unit=2,fmt=“2(i3,i5)”) Inum1,Jnum1, Inum2,Jnum2

fmt=“2(i3,i5)” .eqv. fmt=“(i3,i5,i3,i5)”

fmt=“(3i3)” .eqv. fmt=“(i3,i3,i3)”
---|-----|---|-----

 1 231 2 345
Inum1=1 Jnum1=231

Format Longer Than List

read (unit=1,fmt=“(3i3)”) Inum1,Jnum1
write (unit=2,fmt=“2(i3,i5)”) Inum1,Jnum1, Inum2
 remainings are ignored

output ex:

---|-----|---|-----

 1 123 2

List Longer Than Format

read (unit=1,fmt=“(3i3)”) Inum1,Jnum1,Inum2,Jnum2

write (unit=2,fmt=“2(i3,i5)”) Inum1,Jnum1, Inum2,Jnum2&

Inum1,Jnum1, Inum2,Jnum2
format rescan

Output ex:

---|------|---|-----

 1 123 2 34

 3 22 4 443

Format Rescan
(
If there are more list items than format codes in the format description, the input or output process must continue to another record in order to complete the list. For example; suppose that we use the format description (f12.4, i3) which specifies an input record containing only two fields. If five data items are be read, the format must be rescanned to match the remaining items of the list. In the first of the following examples, the rescan point is near the middle of the format; in the second, the rescan point is at the repeat count that immediately follows the opening right parenthesis of the format.

(2 (i5, i4, i3), f5.2, 2(i5, i4, i3), f5.2, i6)

 ^ rescan point

(2 (2 (i5, i4, i3), f5.2), i6)

 ^ rescan point

Positioning

(

advance= yes / no

write (unit=*,fmt=“(‘ enter Name and Number‘)”,advance=“no”)

read (unit=*,fmt=“(i3,a6)”)) Name,Inum

write (unit=*,fmt=“(‘ student with name ‘,a6,’ has nb ‘,i4)”) Name,Inum

Important : Revise example 9.5 of Meissner’s book page 400
(
space x format code

write (unit=*,fmt=“(4x,’Enter name’,3x)”,advance=“no”)
read (unit=*,fmt=“(a6)”) Name

write (unit=*,fmt=“(3x,’Name entered is’,3x,a6)”) Name

(
tabulate t format code

write (unit=*,fmt=“(t5,’Enter name’,3x)”,advance=“no”)
read (unit=*,fmt=“(a6)”) Name

write (unit=*,fmt=“(t4,’Name entered is’,t21,a6)”) Name

(
next record (line) / format code

write (unit=*,fmt=“(//4x,’Enter name’,3x)”,advance=“no”)
read (unit=*,fmt=“(a6)”) Name

write (unit=*,fmt=“(/3x,’Name entered is’/,3x,a6/)”) Name

I/O Status

(
iostat=Vrbl (integer)

Vrbl = 0 => Opr succeeded

Vrbl > 0 => Error

Vrbl < 0 => EOF , EOR

(

Format specification with named constant
Instead of a literal character constant, a format specifier may be the name of a character string that contains the format description.

program test

implicit none

 real :: A, B, C

 integer :: J, K

 character (len = *), parameter :: F14 = “(3 f12.0, 2 i3)”

 read (unit = *, fmt = F14) A, B, C, J, K

 write (unit = *, fmt = F14) A, B, C, J, K

 stop

end program test

(Bal
Webnotes9
5

