
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 12

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

ARRAY PROCESSING AND MATRIX
MANIPULATION

In section/week 7, it was discussed the basic principles of F’s
array facilities in the context of rank-one arrays. In mathematical terms,
such arrays are suitable for representing vectors. In order to represent

matrices or more complex rectangular structures, more than one subscript
is required. The same general principles apply to rank-n arrays.

Matrices and two-dimensional arrays
Mathematically, a matrix is a two-dimensional rectangular array

of elements. For example, a 3 × 4 matrix A consists of elements,

















4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

AAAA
AAAA
AAAA

F extends the concept of one-dimensional array (chapter or week 7) in a natural
manner, by means of the dimension attribute. Thus, to define a two-

dimensional array “a” requires storing the elements of the matrix A, and it would
be written

real, dimension(3,4) :: a

In the dimension attribute, the number of rows is specified first and the number of
columns second. This order is important.

 As a second example, three 10 × 4, two-dimensional arrays b, c and d
whose elements are logical would be created by,

logical, dimension(10,4) :: b, c, d

The elements of an array can be used anywhere it is legitimate to use a
scalar.

They can occur in arithmetic expressions, be passed as actual arguments,
occur in I/O statements, and so on.

a(3,4) = 2.0*a(3,4) + 1.0 ! Doubles a(3,4) and adds 1 to
it.

 do i = 1 , 4
 a(1,i) = a(3,i) ! Replace row 1 of a by row 3 of a.
 end do ! Row 3 is unaltered.

 do i = 1 , 3
 a(i,2) = a(i,1) ! Replace column 2 of a by a column

 end do

Name Result
matmul Matrix product of two matrices, or a

matrix and a vector
dot_product Scalar (dot) product of two vectors
transpose Transpose of a matrix
maxval Maximum value of all the elements of

an array, or of all the elements along
a specified dimension of an array

maxloc The location in an array where the
maximum value first occur

minval Minimum value of all the elements of
an array, or of all the elements along
a specified dimension of an array

minloc The location in an array where the
minimum value first occur

product Product of all the elements of an
array, or of all the elements along a
specified dimension of an array

sum Sum of all the elements of an array,
or of all the elements along a
specified dimension of an array

An example of matrix and vector multiplication.

 program vectors_and_matrices
integer, dimension(2,3) :: matrix_a
integer, dimension(3,2) :: matrix_b
integer, dimension(2,2) :: matrix_ab
integer, dimension(2) :: vector_c
integer, dimension(3) :: vector_bc

! set initial value for vector_c
vector_c = (/1, 2/)

! set initial value for matrix_a
!
! |1 2 3|
! matrix_a = | |
! |2 3 4|

matrix_a(1,1) = 1
matrix_a(1,2) = 2
matrix_a(1,3) = 3
matrix_a(2,1) = 2
matrix_a(2,2) = 3
matrix_a(2,3) = 4

! matrix_a = reshape((/1,2,2,3,3,4/), (/2,3/))
! set matrix_b as the transpose of matrix_a

matrix_b = transpose(matrix_a)
do i = 1 , 3
write(6,*) (matrix_b(i,j),j=1,2)
end do

! calculate matrix product
matrix_ab = matmul(matrix_a, matrix_b)
do i = 1 , 2
write(6,*) (matrix_ab(i,j),j=1,2)
end do
vector_bc = matmul(matrix_b,vector_c)

 write(6,*) (vector_bc(j),j=1,3)
 end program vectors_and_matrices

Basic array concepts for arrays having more than one
dimension

In F, an array may have from one to seven dimensions. The rank of
an array is defined as the number of its dimension. The rank of an

array is specified by using the dimension attribute in a type
declaration statement. Therefore the three declarations

real, dimension(8) :: a
integer, dimension(3,10,2) :: b
type(point), dimension(4,2,100,8) :: c

specify an eight-element rank-one real array a, 3 × 10 × 2 rank-three
integer array b, and a 4 × 2 × 100 × 8 rank-four array c of the

derived type point.

Array constructors for rank-n arrays

In 7th chapter (week) the concept of an array constructor was introduced
as a means of specifying a literal array-valued constant. This takes the
form

(/ value_list /)

where each item in value_list is either a single value or a list in
parentheses controlled by an implied do. For example:

(/-1, (i, i=1, 48), 1/)

defines an array of size 50 whose first element is –1, whose (i+1)th

element is i (for i=1,...,48), and whose 50th element is 1.

An array constructor, however, always creates a rank-one array values.
If an array constructor is to be used for arrays with rank higher than
one, such as assigning the constructor to rank-two array, the further
steps need to be taken to transform it into an array of the correct shape.
This is achieved by using the intrinsic function reshape. For example

reshape((/1.0, 2.0, 3.0, 4.0, 5.0, 6.0 /), (/2, 3/)

takes the rank-one real array whose elements are 1.0, 2.0, 3.0, 4.0, 5.0,
6.0 and produces, as a result the 2 × 3 real array whose elements are









0.60.40.2
0.50.30.1

Notice that the elements of the source array are used in
array element order; this is one of the few places in F
where knowing the array element order is necessary.

Solution of simultaneous linear equations by Gaussian
elimination

The solution of a system of linear equations is, perhaps,
the most common need in engineering and scientific

problems. The Gaussian elimination method is illustrated by
a small 3 × 3 system of simultaneous linear equations:

x1 + 2x2 + x3 = 9 (1)
2x1 + 3x2 - 2x3 = 7 (2)
4x1 + 4x2 + x3 = 18 (3)

Subtracting 2 times equation (1) from equation (2), and
then 4 times equation (1) from equation (3) it is obtained
the equivalent set of equations:

 x1 + 2x2 + x3 = 9 (4)
 -x2 - 4x3 = -11 (5)
 -4x2 - 3x3 = -18 (6)

Subtracting 4 times equation (5) from equation (6), it is
obtained a further equivalent set of equations:

x1 + 2x2 + x3 = 9 (7)
 -x2 - 4x3 = -11 (8)
 13 x3 = 26 (9)

This completes the Gaussian elimination steps. Now it is
performed the backward substitution step.

Using equation (9), it is obtained

 x3 = 26/13 = 2

Substituting this value for x3 in equation (8), it is obtained

-x2 – 4 × 2 = -11

and hence

x2 = 11 – 8 = 3

Substituting these values for x2 and x3 in equation (1), it is obtained

x1 + 2 × 3 + 2 = 9

Therefore

x1 = 9 – 6 – 2 = 1
The solution of the original system of equation is therefore

x1 = 1, x2 = 3, x3 = 2

Example: Write a program to read the coefficients of a set of simultaneous
linear equations, and to solve the equations using Gaussian elimination.

An initial structure plan for the Gaussian elimination algorithm is as
follows:

1 perform elimination steps
1.1 if aii = 0 then
1.1.1 Return an error message to indicate that
 no solution is calculated
1.1.2 Subtract multiples of the ith equation
 from all subsequent equations so that
 the coefficients of xi in the subsequent
 equations become 0

2 perform backward substitution process

module linear_equations
public :: gaussian_elimination
contains
subroutine gaussian_elimination(a,b,n,ndim,error)

! This subroutine solves the linear system Ax = B
! where the coefficients of A are stored in the array
! a which is the matrix of coefficient
! The solution is put in the array b which is
! the right-hand side
! Error indicates if errors are found

real, dimension(ndim,ndim), intent(inout) ::a
real, dimension(ndim), intent(inout) ::b
integer, intent(out) :: error

! local variables
real :: m, s
integer :: i,j,k

! begin Gaussian elimination procedure
error = 0
do i = 1 , n-1
if (abs(a(i,i)) < 1.e-5) then

! no solution is possible
error = -1
exit
end if

! subtract multiples of row i from subsequent rows to
! zero all subsequent coefficients of x sub i.

do j = i+1, n
m = a(j,i) / a(i,i)

! do k = 1,n
! a(j,k) = a(j,k) - m*a(i,k)
! end do

a(j,:) = a(j,:) - m*a(i,:)
b(j) = b(j) - m*b(i)
end do

!***
! this part may be extracted after gaining experience

write(6,'(" elimination stage - ",i2)') i
do k = 1 , n
write(6,'(1x,i2,1x,10f8.3)') k,(a(k,j),j=1,n),b(k)
end do
pause 'press enter key to continue'

!***
end do

!
! perform back substitution process
!

do i = n, 1, -1
s = b(i)
do j = i+1, n
s = s - a(i,j)*b(j)
end do
b(i) = s / a(i,i)
end do
end subroutine gaussian_elimination
end module linear_equations

program test_gauss
use linear_equations
integer, parameter :: ndim = 10
real, dimension(ndim,ndim) :: a
real, dimension(ndim) ::b
integer :: n, error

! read the matrix of coefficients and right hand side
! from the file named test_gauss.dat

open(1,file="test_gauss.dat",action="read")
read(1,*) n
do i = 1 , n
read(1,*) (a(i,j),j=1,n),b(i)
end do
close (1)

! call gauss elimination procedure
call gaussian_elimination(a,b,n,ndim,error)

! print output
write(6,'(2x,"the solution vector is")')
do i = 1 , n
write(6,'(1x,"x(",i2,")=",f8.3)') i,b(i)
end do

 end program test_gauss

The solution of the set of equations

2x1 + 3x2 – x3 + x4 = 11
 x1 - x2 + 2x3 - x4 = -4
-x1 - x2 + 5x3 + 2x4 = -2
3x1 + x2 - 3x3 + 3x4 = 19

and the results produced by the program are
elimination stage - 1
 1 2.000 3.000 -1.000 1.000 11.000
 2 .000 -2.500 2.500 -1.500 -9.500
 3 .000 .500 4.500 2.500 3.500
 4 .000 -3.500 -1.500 1.500 2.500
 elimination stage - 2
 1 2.000 3.000 -1.000 1.000 11.000
 2 .000 -2.500 2.500 -1.500 -9.500
 3 .000 .000 5.000 2.200 1.600
 4 .000 .000 -5.000 3.600 15.800
 elimination stage - 3
 1 2.000 3.000 -1.000 1.000 11.000
 2 .000 -2.500 2.500 -1.500 -9.500
 3 .000 .000 5.000 2.200 1.600
 4 .000 .000 .000 5.800 17.400
 the solution vector is
 x(1)= 2.000
 x(2)= 1.000
 x(3)= -1.000

 x(4)= 3.000

This slide is the end slide of the semester

Seven golden rules of programming

The philosophy depicted in this course can be summarised
under 7 golden rules.

1 Always plan ahead: It is invariably a mistake to start to
write a program without having first drawn up a program
design plan which shows the structure of the program and the
various levels of details.

2 Develop in stages: In a program of any size it is essential to
tackle each part of the program separately, so that the scale and
scope of each new part of the program is of manageable
proportions.

3 Modularise: The use of procedures and modules, which
can be written and tested independently, is a major factor in the
successful development of large programs, and is closely
related to the staged development of the programs.

4 Keep it simple: A complicated program is usually both
inefficient and error-prone. F contains many features, which
can greatly simplify the design of the code and data structure.

5 Test thoroughly: A program must always be testes at every
stage and cater for as many situations(both valid and invalid)
as possible.

5 Document all programs: There is nothing worse than
returning to an undocumented program after an absence of any
significant time. Most programs can be adequately documented
by the use of meaningful names, and by the inclusion of plenty
of comments, but additional documentation should be
produced if necessary to explain things that cannot be covered
in the code itself. A program has to be written only once – but
it will be read many times, so effort expended on self-
documenting comments will be more than repaid later.

7 Enjoy programming: Writing computer programs, and
getting them to work correctly, is a challenging and
intellectually stimulating activity. It should also be enjoyable.
There is an enormous satisfaction to be obtained from getting a
well-designed program to perform the activities that is
supposed to perform. It is not always easy, but it should be
fun!

