
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 11

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

AN INTRODUCTION TO NUMERICAL METHODS IN
F PROGRAMS

The main area of application for F programs is the solution of
scientific and technological problems. In other words a process which

usually involves the solution of mathematical problems by numerical, as
opposed to analytical means.

Numerical calculations

The F language was primarily designed to help in the solution of
numerical problems, although it is certainly not limited to that purpose.

Consequently, it is extremely important that the writer and the user of
such F programs should be aware of the intrinsic limitations of a computer

in this area and the steps that may be taken to improve matters.

 As it has already been met, a real number is stored in a computer to about six or
seven decimal digits of precision with an exponent range of around –1038 to +1038.

For example e88=1.651636e38, but e89 can not be calculated because this would
require an exponent of 10 (it exceeds the limit that the computer allows.

Any attempt to store a number whose exponent is too large, as here, will create a
condition known as overflow and will normally cause program fail at this stage of
the processing.

Obviously, once a calculation has overflowed, any subsequent calculations using
this result will also be incorrect.

A similar situation arises with the number such as

 e-868=4.473779e-38.

This situation is known as underflow, which is less
serious than the overflow, since the effect is that the
number is too close to zero to be distinguished from

zero.

Many computers will report this form of error and store
this number as zero.

Or some computer systems do report its occurrence as
non-fatal error

– Most computers have provision to store floating-point numbers
using one of two precisions, usually referred to as single-precision
and double precision with corresponds hardware registers to
perform arithmetic operations on them.

– And also the use of the intrinsic function selected_real_kind
permits more precise control over the precision and exponent range
of floating-point number (real variable).

– But it is always remembered that the mechanism for specifying
higher precision or exponent range should not be used blindly to
attempt to get out of numerical difficulties.

 Conditioning and stability

A well-conditioned problem is one, which is
relatively insensitive to changes in the values of

its parameters, so that small changes in these
parameters only produce small changes in the

output.

An ill-conditioning problem is one, which is
highly sensitive to changes in its parameters,

where small changes in its parameters produce
large changes in the output.

An example of an ill-conditioned problem is the pair of simultaneous
equations,
 x + y = 10

1.002x + y = 0

whose solution is clearly x = -5000, y=5010.

However, if some round-off had led to the second equation being
expressed as

 1.001x + y = 0

then the solution would have been x = -10000, y = 10010 which is a
very great change from the original solution. If the round-off error
had led the coefficient of x in the second equation to be 1.00 (to

four significant digits) then the problem would have been
insoluble.

Clearly in this case the reason for this extremely ill-
conditioned behaviour is that the two equations represent
two straight lines which are almost parallel, and therefore a
very small change in the gradient of one will cause a very
large movement of their point of intersection.

-4

-2

0

2

4

6

8

10

12

-4 -2 0 2 4 6 8 10 12
x

y

x+ y= 10

1.00 2x+y=0

On the other hand, the two equations

 x + y = 10
 1.002x - y = 0

which have the solution x = 4.995, y=5.002 or x = 5, y=5 respectively.
This well-conditioned behaviour is because, in this case the two lines
are almost perpendicular to each other.

0

2

4

6

8

10

12

0 2 4 6 8 10

x

y

x+y =10

1 .002x -y=0

Data fitting by least squares approximation

A frequent situation in experimental sciences is that data
have been collected which, it is believed, will satisfy a linear
relationship of the form

y = ax + b

However, due to experimental error, the relationship
between the data collected at different times will rarely be
identical and can typically be represented graphically as
shown in the figure drawn below. Fitting a straight line
through the data in such a way as to obtain the fit, which
most closely reflects the true relationship, is, therefore, a
widespread need. One well-established method is known as
the method of least squares.

x

y

0.0 1.5 2.9 4.4 5.9 7.3 8.8
0.00

1.68

3.36

5.03

6.71

8.39

10.07

This method can be applied to any polynomial, or even to more
general functions, but for the present but it shall be considered here
only the linear case.

The difference between a calculated value and an experimental
value y is called residual, and the method of least squares attempts to
minimise the sum of the squares of residuals for all the data points.

Some differential calculus, which all are scope of this
course, leads to the conclusion that the equation that

minimises the square of residuals is when the two
coefficients a and b are defined as follows:

() n
xay

b
xnx

yxnyx
a ii

2
i

2
i

iiii ∑ ∑
∑∑

∑ ∑∑ −
=

−

−
=

 The value of the sum of the squares of the residuals, often
referred to as simply the residual sum, can be a good guide as

to how closely the equation fits the data. If it is a perfect fit,
then all data points will lie on the line and the residual sum will

be zero.

Example: Figure drawn below shows
the result obtained from an experiment
to calculate the linear equation of it.

x y
10 39.967
11 39.971
15 39.979
17 39.986
20 39.993
22 40.000
25 40.007
28 40.016

 30 40.022

 subroutine least_squares_line(n,a,b,x,y)
! this subroutine calculates the least squares fit
 line
! ax + b to x-y data pairs

real, dimension(n), intent(in) :: x, y
integer, intent(in) :: n
real, intent(out) :: a, b

! local variables
real :: sum_x, sum_y, sum_xy, sum_x_sq

! calculate sums
sum_x = sum(x)
sum_y = sum(y)
sum_xy = dot_product(x, y)
sum_x_sq = dot_product(x, x)

! calculate coefficients of least squares fit line
a=(sum_x*sum_y-n*sum_xy)/(sum_x**2 - n*sum_x_sq)
b = (sum_y - a*sum_x) / n
end subroutine least_squares_line

x

y

8.0 12.0 16.0 20.0 24.0 28.0 32.0
39.96

39.97

39.98

39.99

40.01

40.02

40.03

y = 0.0027177x + 39.939681

Iterative solution of non-linear equations

In this section it shall be started to investigate methods to
solve the equation f(x) = 0 numerically.

Numerical methods are usually based on calculating an
approximation to the true value of a root (or zero) of the
equation

f(x) = 0

and then successively refining this approximation until
further refining would achieve no useful purpose.

Iterative solution of non-linear equations

Numerical methods are usually based on calculating an approximation to the true value of a
root (or zero) of the equation

f(x) = 0

and then successively refining this approximation until further refining would achieve no
useful purpose.

y

x

y = f(x)

Last figure shows the graphical representation of a continuous function
y = f(x), and it is clear that the roots of the equation

f(x) = 0

are the values of x at which the curve intersect the x-axis. This leads us to
a powerful approach to calculating these roots, based on the observation
that if f(x)<0 and f(xj)>0 , then there must be at least one root in the open
interval xi < x < xj. There may be more than one root in the interval.

The bisection method uses this fact by then evaluating the value of
f(x) at the point midway between xi and xj and then repeating the process
until the value of x is sufficiently close to the true value of the root.

As in all iterative methods, the convergence criteria are:

1. The magnitude of the function should be less than ε.

2. The error , where xt is the true value of the root, should be
less than ε.

3. The difference between successive approximations should
 be less than ε.

Different methods will use different criteria to terminate the
iteration.

In the case of bisection method, it is clear that, at each step, the interval,
which surrounds the true value of the root is halved. For example, if the
two initial values f(x0) and f(x1) have opposite signs, the root must lie
between them as shown in the figure, and the value of f(x2) is calculated,
where

2
xx

x 01
2

−
=

X

Y

y=f(x)

kök

x0

x1

If the sign of f(x2) is the same as that of f(x0) , then the root must lie in the
interval x2<x<x1, while if it is opposite than the root must lie in the
interval x0<x<x2. In either case the new interval is the half size of the first
one. If f(x2) = 0, then, iteration can be stopped since the root is found
exactly.

After n iterations the interval containing the root will, therefore, be of size
t, where

n
01

2
xx

t
−

=

The true root must, therefore, differ from any point within this interval by
no more than and, in particular must differ from the mid-point of this
interval by no more than t/2. Rather suprisingly, therefore, the use of
criterion 2 can be stopped the iteration.

Because of the assumption made here, the two initial
values, x0 and x1, between which the root lies, must
be introduced.

Example: Write a program to find the root of the equation f(x)=0 which
lies in a specified interval. The program should use a function to define the
equation being solved, and the user should input the details of the interval
in which the root lies and the accuracy required.

Analysis: A structure plan might be as follows:

1. Read range (left (x0) and right (x1)) and tolerance
2. Call subroutine bisect to find a root in

the interval (left, right)
3. If root found then

3.1 Print root
otherwise

3.2 Print error message

Subroutine Bisect
 root: the root found
 delta: the uncertainty in the root (it will nor exceed
tolerance)
 error: status indicator

1. If left < right then
2. If x_left and x_right do not bracket a root then

2.1 Set error = -1 and return
3. Repeat indefinitely (until convergence criteria met)

3.1 Calculate mid-point (x_mid) of interval
3.2 If (x_mid-x_left) < tolerance then exit with

root = x_mid
3.3 Otherwise, determine which half interval the root

 lies in and set x_left and x_right appropriately
3.3.1. If f(x_mid) = 0 then exit with root = x_mid,

delta = 0, and error = 0
Otherwise

3.3.2. If f(x_left)*f(x_mid) is less than 0 then
3.3.2.1. If f(x_left) and f(x_mid) have

 opposite signs, so
 set x_right to x_mid.

Otherwise
3.3.2.2. f(x_left) and f(x_mid) have the

 same sign, so
 set x_left to x_mid

The variation of the function is:

X Axis (units)

Y
Ax

is
 (u

ni
ts

)

-6.8 -5.2 -3.7 -2.2 -0.7 0.8 2.4-7.25

-4.74

-2.23

0.28

2.79

5.30

7.81

The solution of x + ex = 0 using program bisect is:

 -10.000000 10.000000
 -10.000000 .000000
 -5.000000 .000000
 -2.500000 .000000
 -1.250000 .000000
 -.625000 .000000
 -.625000 -.312500
 -.625000 -.468750
 -.625000 -.546875
 -.585938 -.546875
 -.585938 -.566406
 -.576172 -.566406
 -.571289 -.566406
 -.568848 -.566406
 -.567627 -.566406
 -.567627 -.567017
 -.567322 -.567017
 -.567169 -.567017
 -.567169 -.567093
 -.567169 -.567131

 The root is -.567141

Complex variables

In addition to the real and integer numeric data types, F contains a third
intrinsic numeric data type, which called complex. It consists of two parts – a real
part and an imaginary part. The intrinsic complex type stores a complex number
in two consecutive numeric storage units as two separate real numbers – the first
representing the real part and the second representing the imaginary part.

A complex variable is declared in a type specification statement of the form

complex :: name1, name2

while a complex constant is written as a pair of real literal constants, separated by
a comma and enclosed in parentheses:

(1.5, 7.3)
(1.59e4, -12e-1)
(19.0, 2.5e-2)

The complex data type is, thus, a composite type and can be
thought of as being an intrinsic version of a derived type. There
are three intrinsic functions:

real(z) where z is complex, delivers the real part
of z

aimag(z) where z is complex, delivers the imaginary
part of z

cmplx(z) if a is real, delivers the complex value
(real(a), 0.0)
if a is integer, delivers the complex value
(real(a), 0.0)
if a is complex, delivers the complex value a

cmplx(x,y) where x and y must be integer or real,
delivers the complex value (real(x),
real(y))

conjg(z) where z is complex, delivers the complex
conjugate (x,-y), where x and y are the
real and imaginary parts of z, respectively

All three functions are elemental, and their arguments can, therefore, be either scalar
or array-valued.

The complex number (x, y) is written x+iy, where i2 = -1.
Both real and integer numbers may be combined with complex numbers in a mixed-
mode expression, and the evaluation of such a mixed-mode expression is achieved
by first converting the real or integer number to a complex number with a zero
imaginary part.
Thus, if z1 is the complex number (x1, y1), and r is a real number then

r*z1

is converted to

(r,0.0)*(x1,y1)

which will be evaluated as

(r*x1,r*y1)

Similarly, if i is an integer, then

i+z1

is evaluated as

(real(i)+x1,y1)
program complex_arithmetic
complex :: a,b,c

! read two complex numbers
read *, a,b
c = a*b

! print data
print *,"a=",a
print *,"b=",b
print *,"c=",c
end program complex_arithmetic

input:
(12.5,8.4),(6.5,9.6)

output:
a= (12.500000,8.400000)
b= (6.500000,9.600000)

 c= (6.100004E-01,174,600000)

