
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 10

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

USING FILES TO PRESERVE DATA

One of the most important aspects of computing is the ability for
a program to save the data that it has been using for subsequent use either

by itself or by another program.
This involves the output of the data to a file. Files may be written and read
sequentially, the information in a file may be written and read in a random

order. In either case the file may be stored permanently within the
computer system.

This chapter shows how the read and write statements
discussed in the previous chapter can be used to read data from a file and

write data to a file, in a sequential manner, and introduces several
additional statements which are required when dealing with files. Random

access information will not be discussed here.

Files and records

All the programs that were written up to now have been based on
the assumption that when the program is run it reads some data from the
keyboard, process it, produces some results which are displayed on the

screen. Once the program has finished nothing remains within the
computer system.

 This ignores two very important aspects of the normal computing
process.

1. The first is that there are more than a few lines of data it is
 usually far more appropriate to type the data into a file, and then
 for the program read the data directly from the file.

2. The second aspect that it must be considered occurs when the
 results produced by one program, or some of the results,
 are required as data for another program or another run of
the same program.

A sequence of records forms a file, of which there are two types
– external and internal.

An external file is identifiable sequence of records, which is stored
on some external medium (magnetic tape optical disk etc.).

 The file store of the computer system is used for this purpose.
This consists of special input/output units, usually, though not
always, based on magnetic disks, etc. Information may be
transferred to and from these units by using read and write
statements in a similar manner to that used for data and results
transferred via the default input and output units.

A record refers a sequence of characters such as a line
of typing or printed in a line of results.

 A record refers to some defined sequence of characters
or values.

 F programs may read and write three types of records –
formatted, unformatted and endfile records.

 Formatted, unformatted and endfile records

– The first type of record is called a formatted record, and consists of
a sequence of characters selected from those, which can be
represented by the processor being used. A formatted record may
be:

– write(unit=10, fmt=format_var) var_1,var_2,var_3

– Each such output statement creates a new record or several new
records if the format used defines multiple records.

A formatted record is formatted so that it can be represented in a
form that human beings (or a different type of computer) can
understand.

F contains a second type of record, called an unformatted record,
which consists of a sequence of values (in a processor-dependent
form) and is essentially a copy of some part, or parts, of the
memory of the computer.

An unformatted record can only be produced by an unformatted
output statement, which is the same as a formatted write statement
but without any format specifier:

write(unit=9) var_1, var_2, var_3
write(unit=3, iostat=ios) x, y, z

As it might be expected that an unformatted record can only
be read by an unformatted input statement:

read(unit=9) var_4, var_5, var_6
read(unit=3, iostat=io_status) a, b, c

read(unit=9) var_4, var_5, var_6
read(unit=3, iostat=io_status) a, b, c

One important difference between the input/output of
formatted and unformatted records is that whereas a
formatted input or output statement may read or write more
than one record by use of a suitable format, for example

write(unit=3, fmt=”(2i8,/,(4f12.4))”) int_1, int_2

an unformatted input or output statement will always read or
write exactly one record. The number of items in the input
list of an unformatted read statement must therefore be the
same as the number in the output list of the unformatted
write statement that wrote it, or fewer.

There is a third type of record, which is particularly important for files,
which are to be accessed sequentially; this is the endfile record, which is a
special type of record, which can occur as the last record of a file and is
written by a special statement.

endfile(auxlist)
where auxlist consists of a unit specifier and optionally, an iostat
specifier, where these specifiers are the same as those already introduced
is section 9 for use with a write statement.

An endfile record has no defined length, but if it is read by an
input statement it will cause end-of-file condition which can be detected
by an iostat specifier in a read statement. If it is not specifically
detected in this way an error will occur and the program will fail.

Connecting an external file to a program and
disconnecting it

For any information to be transferred between a file and a program the
file must be connected to a unit.

In other words, a logical connection, or relationship, must be
established between the file and the unit number that will be used in

any read or write statements, which are to use that file.

This connection is initiated by means of an open statement,
which takes the form

open(open_specifier_list)

where open_specifier_list is a list of specifiers, as
shown in figure below.

unit = unit number
file = file_name
status = file_status
form = format_mode
action = allowed_actions
position = file_positon
iostat = ios

The unit specifier must be present, and takes the same form
as in the read, write and endfile statements.

The status specifier must also be present, and specifies
what is the status of the file before it is opened by the
program. It takes the form

 status = file_status

where file_status is a character expression, which after
removing any trailing blanks, is one of old, new, replace
or scratch.

Note that because file_status is a character expression it can be
written

status = “old”
status = “new”

and so on.

If the file_status is old the file must already exist

If it is new then it must not already exist.

If new is specified then the open statement will attempt to create file,
and if successful will change its status to old, after which any subsequent
attempt to open the file as new will fail.

If file_status is replace, and the file already exists, then it is
deleted and an attempt made to create a new file with the same name; if this
is successful the status is changed to old. If the file does not already exists

then the action taken will be the same as if new had been specified.

Finally, if file_status is scratch then special un-named file is
created for use by the program; when the program ceases execution (or

when the file is closed) the file will be deleted and will cease to exit. Such a
file can therefore be used as a temporary file for the duration of execution

only.

As well as specifying the initial status of the file, it must be
also specified what types of input/output operations are
allowed with the file. The action specifier is used for this
purpose, and takes the form.

action = allowed_actions

where allowed_actions is a character expression,
which, after the removal of any trailing blanks, must take one
of the three values read, write or readwrite.

If allowed_actions is read then the file is to be treated
as a read-only file, and only read statements, together with
the two file positioning statements backspace and rewind
are allowed on this file. Write and endfile statements are
not allowed, thus this prevents a program from accidentally
overwriting information in the file.

If allowed_actions is write then the file is to be
treated as an output file, and only write and endfile
statement, together with the two file positioning statements
backspace and rewind are allowed on this file. Read
statements are not allowed.

If allowed_actions is readwrite then all input/output
are allowed for this file.

If the file status is specified as scratch then
allowed_actions must be readwrite.

After all, any other value would be meaningless.

The remaining specifiers are all optional, and enable us to
specify various requirements regarding the file that is to be
opened and to monitor the opening process itself.

The first of these concerns the type of access that is permitted
to the file and takes the form

access = access_type

where access_type is a character expression which after,
the removal of any trailing blanks, must take one of the two
values sequential or direct; if no access specifier is
provided it is assumed to be sequential.

If file is a specifed to be a sequential file, a position specifier
must be included to instruct the open statement where the file
is to be initially positioned; this takes the form

position = file_position

where file_position is a character expression which,
after the removal of any trailing blanks, must take one of the
values rewind or append.

If the file did not previously exist and file_position is
rewind then the file positioned at its initial point. After all,
there is nowhere else to position a new file.

If the file does already exist and file_position is
rewind then the file positioned at its initial point and a
subsequent read or write statement will either read the first
record in the file, or write a new first record as appropriate.

If the file already exists and file_position is append
then the file is positioned immediately before the endfile
record, if there is one, or immediately after the last record of
the file (at its terminal point) if there is no endfile record.

A subsequent write statement will therefore write the next
record immediately after the end of existing information in the
file; a read statement would lead to either an error or end-of-
file condition since the file has no records remaining to be read
other than an endfile record, if one exists.

If a file is specified to have direct access then a position
specifier is not permitted.

Files normally have a name by which they are known to the
computer system, and this name is specified by using a file
specifier, which takes the form

file = file_name

where file_name is a character expression, which, after the
removal of any trailing blanks, takes the form of a file name
for the particular computer system.

If this specifier is not present then status = “scratch”
must be specified.

Thus if the name of the required file is Imagine1, it could be
connected the file of that name to program by means of a
statement such as

open(unit=9, file=”Imagine1”,
status=”old”, action=”read”,
position=”rewind”)

This will connect unit 9 to the specified file.

Thereafter any input or file positioning statements using unit 9
will read from that file, starting with the first record

It will not be permitted to write anything to the file.

Alternatively, it could be read the name of the required file
from the keyboard by a program fragment such as the
following
print *, “Please give the name of the output file”
read “a”, out_file
open(unit=9,file=out_file,status=”old”,action=”write”,
 position=”append”)

The out_file is a character variable whose length is great to
hold the file name. This will allow only output to the specified
file, starting immediately after the existing information
recorded on the file.

It is not permitted to specify that the status of a named file is
scratch.

Because of the different ways in which they are written and
read, the records in a file must either all be formatted or all
 be unformatted, and the specifier

form = format_mode

is used to specify which is required.

The character expression format_mode must take one of
 the two values formatted or unformatted.
 If it is omitted, then the file is assumed to be formatted
 If it is connected for sequential access but unformatted
 If it is connected for direct access

The statement

open(unit=9,file=datafile,status=”old”,
action=”read”,position=”rewind”)

 will connect the file datafile to unit 9 as a formatted,
 sequential access file for input only

On the other hand

open(unit=7,status=”scratch”,
form=”unformatted”, action=”readwrite”,
position=”rewind”)

will create a temporary scratch file and connect it to unit 7 as an
unformatted, sequential access file.

The next specifier, recl, behaves slightly differently
depending upon whether the file is connected for sequential or
direct access. The sequential statement takes the form

recl = record_length

where record_length is an integer expression, which
defines the maximum length that, the records in the file may
have. If the file is a formatted file the length is expressed in
characters. If it is unformatted file the length is expressed in
processor-defined units. In general, this specifier is not required
for sequential files, and its main use in this regard is to limit the
size of records in a file which will be transferred to some other
processor which places a restriction on the size of records in
files.

The final specifier, iostat, is concerned with recognising
when an error occurs during the connection process. For
example if the named file does nor exist or is of the wrong type,
and operates in the same way as has already been discussed in
connection with the read, write and endfile statements.

Non-zero values may be returned in the event of an error during
the opening of a file the execution of the program will be
terminated unless it is detected by the program:

open(unit=13, file=”Problem_File”,
status=”old”,access=”readwrite”,

position=”rewind”,iostat=ios)
if (ios /=) 0 then

print *,”error during opening of ‘Problem_File’”
 .
 .
end if

 ! contiue processing

Finally it should be noted two important rules:

• If a file is connected to a unit, then it may not also be
connected to another unit

• If a file is connected to a unit then another file may not be
connected to the same unit.

If a file is first disconnected from a unit then it may be
connected to another unit, and another file may be connected to
the first unit.

Up to this point it is assumed that once a file has been opened it
will remain open for the remainder of the execution of the
program. This is frequently what is required, but there are
occasions when it is required to disconnect to specify that some
specific action is to take place when such disconnection does
takes place. As file, which has been connected to a program by
means of an open statement can, therefore, be disconnected by
means of a close statement, which takes the form

close (close_specifier_list)

where the possible specifiers are unit, status and iostat.

The unit and iostat specifiers take the same form as for
the open statement, while the status specifier is used to

determine what is to happen to the file when it has been
disconnected from the program. It takes the form

status = file_status

where file_status is a character expression, which
 after the removal of any trailing blanks,

is either keep or delete.

 If it is keep then the file fill will continue to exist after it
 has been disconnected from the program.

 If it is delete then the file fill will cease to exist after it
 has been disconnected.

Only the unit specifier is required in a close statement.

If no status specifier is present the file is closed as though
status=”keep” had been specified unless it was opened with
status=”scratch”.

If a file is opened with status=”scratch” then it will
automatically be deleted when it is disconnected from the
program.

File positioning statements

There are often situations in which it is required to alter the
position in a file without reading or writing any records, and F
provides two additional file positioning statements for this
purpose. The first of these

backspace (auxlist)

causes the file to be positioned just before the preceding record
(that is, enables the program to read the immediately
previously read record again).

As with the endfile statement auxlist consists of a
unit specifier and, optionally, an iostat specifier.

The other file positioning statement is

rewind (auxlist)

which causes the file to be positioned just before the first
record so that a subsequent input statement will start reading or
writing the file from the beginning.

Once again, auxlist consists of a unit specifier
and,optionally, an iostat specifier.

One important point about the positioning of a file concerns
the writing of information to a file in a sequential manner.
The rule in F is that

writing a record to a sequential file destroys all information in
the file after that record.

Thus it is not possible to use backspace or rewind in order
to position a file so that only one particular record can be
overwritten, or so that a particular record or records can be
read. If it is required to overwrite individual records selectively
within a file then the file must be opened for direct access.

A common use of use of backspace in conjunction with
endfile is to add information at the end of a previously
written file, as in the following example;
 .
 .
! read up to end-of-file
 do
 read(unit = 8, iostat = ios)dummy
 if (ios < 0) then
 exit ! negative ios means end-of-file
 end do
! backspace to before end-of-file record
 backspace (unit=8)
! now add new information
 write(unit=8, ...) ...
! terminate file with an end-of-file ready for
 the next time

 endfile(unit=8)

