
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 9

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

MORE CONTROL OVER INPUT
AND OUTPUT

The input and output facilities of any programming language are extremely
important, because they establishes communication between the user and the

program is carried out.

The list-directed input and output statements, which are used up to now,
provide the capability for straightforward input from the keyboard and output to

the display or printer.

These statements allow the user very little control over the source or the layout of
the input data or over the destination or layout of the printed results.

This chapter introduces the more general input and output features of F,
by means of which the programmer may specify exactly how the data will be

presented and interpreted, from which of the available input units it is to be read,
exactly how the results are to be sent.

Format and edit descriptors

Up to this point all the input and output has been carried out
using list-directed read and print statements. They are restricted in
their ability to define both the format of the information, especially, its

source or destination.

An input statement must contain three distinct types of
information:

1. where the data is to be found
2. where it is to be stored in the computer’s memory

3. how it is to be interpreted

 The key element in both input and output process is the editing of
information in one form presentation in another form. The input and
output statements have taken the forms up to now.

read *, input_list
 print *, output_list

But each of these statements also has an alternative form:

read chr_expr, input_list
 print chr_expr, output_list

where chr_expr is a character expression.

 In both forms the item following the keyboard
(read or print) is a format specifier

– This provides a link to the information
necessary for the required editing to be carried
out as part of the input or output process.

– This information is called a format and
consists of a list of edit descriptors enclosed in
parentheses.

– (ed_des1, ed_des2, ...)

In the list-directed form the asterisk (*)
indicated that the format to be used is

 a list-directed format which will be created by
the processor to meet the perceived needs of the
particular input or output list.

– In the new form, the format is called an
embedded format because it appears as part of
the read or print statement.

– read “(edit_descriptor_list)”, input_list

It is also possible to store such a format in a
character variable, and then include the name of
the variable, which is the simplest form
character expression, in the read or print
statement:

– print print_format, output_list

 where print_format is a character variable
containing the format.

Input editing
The first and simplest edit descriptor is used for inputting whole
numbers, which are to be stored in an integer variable, and takes
the form

– iw

– This indicates that the next w characters are to be read and
interpreted as an integer. Thus if one wished to read the line

– 123456789

– as a single integer to be stored in the integer variable n it could be
written

– read “i9”, n

If one wished to read the same line as three
separate integers (123, 456, 789) then it would
be written

– read “i3, i3, i3”, n1, n2, n3

 where n1, n2 and n3 are integer variables.

This format interacts with the rest of the read statement in the following
way:

•First the read statement recognises that it requires an integer to store
in n1; the format indicates that the first item to be read is an integer
occupying the first three character positions (i3). The characters “123”
are therefore read and converted to the internal form of the integer 123
before being stored in n1.

•The read statement then requires another integer and the format
indicates that this is to come the next three character positions (i3). The
characters “456” are therefore read and converted to the internal form of
the integer 456 before being stored in n2.

•Finally, the process is repeated a third time, causing the characters
“789” to be read, converted, and stored in n3 as integer 789.

•The read statement is satisfied, since data has been read for all of the
variables in its input list, and so input of this line of data is completed.

The full list of edit descriptors is:

Descriptor Meaning
iw Read the next w characters as an integer
fw.d Read the next w characters as a real number with d

digits after the decimal place if no decimal point is
present

aw Read the next w characters as characters
a Read sufficient characters to fill the input list item,

stored as characters
Lw Read the next w characters as the representation of a

logical value
tc Next character to be read is at position c.
t1n Next character to be read is n characters before (t1) of

trn after (tr) the current position

The next data edit descriptor is the f edit descriptor, which is used for
reading real values, and takes a slightly more complicated form than that
used for integers:

fw.d

If the data is typed with a decimal point in the appropriate position then
the edit descriptor causes the next w characters to be read and converted
into a real number. The value of d is irrelevant (although it must be
included in the format).

On the other hand if the w columns which are to be read as a real number
do not contain any decimal point then the value of d indicated where one
may be assumed to have been omitted, by specifying that the number has
w decimal places

 The input record are 123456789

 the statement

read “f9.4”, real_num

will cause the first nine characters to be read as a real
number with four decimal places.

 the number 12345.6789

read “f3.1, f2.2, f3.0, t16, f4.2”, r1, r2, r3, r4

will cause the value

12.3 to be stored in r1
 0.45 in r2
678.0 in r3
34.56 in r4.

 Since t16 edit descriptor (t1n) specifies a relative tab – that is
a move of 6 characters position to the left.

The current position is in 8 after execution of the f3.0 then
t16 moves the point reading to 3.

In Summary

read “f3.1, f2.2, f3.0, t16, f4.2”, r1, r2, r3, r4

Data: 12345678 .23.56.8
 r1 contains 12.3 0.23
 r2 contains 0.45 0.5
 r3 contains 678.0 6.8
 r4 contains 34.56 3.56

There is one further point to be made about the format of real data. The
exponential format is allowed for numbers being input by a read statement. In
this case, the exponent may take one of three forms

• a signed integer constant
• e (or E) followed by an optionally signed constant
• d (or D) followed by an optionally signed constant

In the latter two cases the letter (e, E, d or D) may be followed by one or more
spaces. The interpretation is identical, regardless of which letter is used.

Thus a real data value may be written in a great many different ways; for
example, some of the ways in which the number 361.764 may occur in data are
shown in the figure below.

361.764 3.61764+2 361764-3 0.0361764d-1
3617.64d-1 3.61764e+2 361.764+0

The third major data edit descriptor is the a edit descriptor, which
is used to control the editing of character data. It takes one of the form

aw
a

During input, the edit descriptor aw refers to the next w characters (just as
iw and fw.d refer to w characters).

 If one assumes that the length of the input list item is
len then the following rules apply

• If w is less than len then extra blank characters will be
added at the end so as to extend the length of the input
character string to len. This is similar to the situation
with assignment.

• If w is greater than len , the rightmost len characters
of the input character string will be stored in the input list
item.

Thus, if the three variables ch1, ch2 and ch3 are declared
by the following statements:

character (len=10) :: ch1
character (len=6) :: ch2
character (len=15) :: ch3

then the following two statements will have the identical
effect:

read “a10, a6, a15”, ch1, ch2, ch3
read “a, a, a”, ch1, ch2, ch3

The remaining data edit descriptor is used with logical data,
and takes the form

Lw

where it is used an upper-case L to avoid the potential
confusion with the digit l that can be caused to human
readers by using the lower-case form.

This edit descriptor processes the next w characters to derive
either as true value, a false value or an error. Thus any of
the following are acceptable as representing true:

t
true
.T

 .true.
truthful

while the following will be interpreted as false.

F
False
.f

 .true.
futile

Output editing

The edit descriptors used for outputs are essentially the same
as those used for input, although there are some additional
ones that are only available for output and the interpretation
of the others is slightly different.

The edit descriptors for output
Descriptor Meaning
iw Output an integer in the next w character positions
fw.d Output a real number in the next w character positions

with d decimal places
Aw Output a character string in the next w character positions

A Output a character string, starting at the next character
position, with no leading or trailing blanks

Lw Output w – 1 blanks, followed by T or F to represent a
logical value

Tc Output the next item starting at character c.
t1n Output the next item starting n character positions before

(t1) or
trn after (tr) the current position

The i edit descriptor (iw) causes an integer to be output in
such a way as to utilise the next w character positions. These w
positions will consist of one or more spaces (if necessary),
followed by the value of the number. Thus the statements

tom = 23
dick = 715
harry = -12
print “(i5, i5, i5)”, tom, dick, harry

will produce the following line of output where the symbol ◊
represents a space

◊◊◊23◊◊715◊◊-12

The f edit descriptor operates in a similar way, and fw.d indicates that a
real number is to be output occupying w characters, of which the last d are
to follow the decimal point. Note that the real value to be output is rounded
(nor truncated) to d places of decimals before it is sent to the relevant
output device. Rounding is carried out in the usual arithmetic way. Thus the
statements

x = 3.14159
y = -275.3024
z = 12.9999
 print “(f10.3, f10.3, f10.3)”, x, y ,z

will produce the following line of output:

◊◊◊◊◊3.142◊◊-275.302◊◊◊◊13.000

Because the edit descriptors each specify only three places of decimals, the
value of x is printed as 3.142 (rounded up), the value of y as -275.302
(rounded down), and the value of z as 13.000 (rounded up).

It is important to realise that, for all numeric edit descriptors, if the number does not
require the full field width w it will be preceded by one or more spaces across the
page and the printing of tables becomes relatively easy. An example of this
technique is shown in the following program:

program tabular_output
real, parameter :: third = 1.0 / 3.0
real :: x
integer :: i
do i = 1 , 10
x = i

! print "(f15.4, f15.4, f15.4)", x,sqrt(x),x**third
print "(3f15.4)", x,sqrt(x),x**third
end do
end program tabular_output

 1.0000 1.0000 1.0000
 2.0000 1.4142 1.2599
 3.0000 1.7321 1.4422
 4.0000 2.0000 1.5874
 5.0000 2.2361 1.7100
 6.0000 2.4495 1.8171
 7.0000 2.6458 1.9129
 8.0000 2.8284 2.0000
 9.0000 3.0000 2.0801

 10.0000 3.1623 2.1544

The a edit descriptor works in a similar fashion for output as it does for
input, and aw will cause characters to be output to the next w character
positions of the output record. As was the case for input, it needs to be
establish exactly what happens if the length of the output list item is not
exactly w. The rules that apply here are similar to that of for input:

• If w is greater than len then the character string will be right-justified
within the output field, and will be preceded by one or more blanks. This is
similar to what happens with the i and f edit descriptors.

• If w is less than len then the leftmost w characters will be output.

If a character string is output to a field larger than its length then it will have
spaces added at the beginning of data.

Finally, there is the L edit descriptor for use in outputting a
representation of logical values. This is perfectly
straightforward, and the descriptor Lw will cause w-1 blanks to
be output, followed by the letter T or the letter F to indicate
true or false.

There is one further point that should be made at this point. A
number, called a repeat count, may be placed before the i, f,
a or L edit descriptors to indicate how many times they are to
be repeated. Thus the format

(i5, i5, i5, f6.2, f6.2, f6.2) => (3i5, 3f6.2)

has identical meaning.

 Read, write and print statements

A more general for of Read statement

read(cilist) input_list
where cilist is a control information list consisting of one or more
items, known as specifiers, separated by commas. There must always be a
unit specifier in the control information list, which takes the form:

 unit = unit
where unit is the input device (or unit in F parlance) from which input is
to be taken unit may also be the name of an internal file. It either takes
the form of a scalar integer expression whose value is zero or positive, or it
may be an asterisk to indicate that the default input unit is to be used.
Normally some units will be preconnected and will be automatically
available to all programs.

The default input will usually be preconnected as unit 1 or unit
5. (This is purely for historical reasons, since IBM, and several
other manufacturers, used unit 5 for the card reader and unit 6
for the printer in their early Fortran systems). So it may be
written

unit = 5

or

unit = *

to identify the default input unit.

Normally the input will need to be converted from some
external form such as the characters sent by a keyboard, to an
internal form suitable for storing in the computer’s memory. To
carry out this conversion it needs a format, and this is identified
by a format specifier, which takes one of the forms

fmt = ch_expr

in an analogous fashion to the format specification discussed
earlier in this section. These statements are identical in their
effect to the earlier list-directed input statements.

read(unit=*, fmt=*) a, b, c <==> read *, a, b, c

The remaining specifier is concerned with monitoring the outcome of the
reading process, and takes the form

iostat = io_status

where io_status is an integer variable. At the conclusion of the
execution of the read statement io_status will set to a value which the
program can use to determine whether any errors occurred during the input
process. There are four possibilities:

• The variable is set to zero to indicate that no errors occurred.
• The variable is set to a processor-dependent positive value to indicate
that an error has occurred.
• The variable is set to a processor-dependent negative value to indicate
that a condition known as an end-of-file condition has occurred.
• The variable is set to a processor-dependent negative value to indicate
that a condition known as an end-of-record condition has occurred.

For this chapter the iostat is simply used to determine whether or not the
reading of data was carried out successfully by testing the value of the
variable in an if or case construct:

read (unit=*, fmt=”(5f6.3)”,iostat=ioerror) p, q, r, s, t
if (ioerror /= 0) then ! ioerror is non-zero
 ! Print error is non-zero
 ! and take remedial action
 ! before exit from procedure
 .
 .
 .

 return

Exactly the same specifiers are available, as was the case for
the read statement, although it is impossible to encounter an
end-of-file condition or an end-of-record condition during
output. The only other difference is the obvious one that an
asterisk as a unit identifier refers to the default output unit. The
default output unit is 6 and therefore the following statements
are equivalent:

write(unit=6, fmt=*) d, e, f
write(unit=*, fmt=*) d, e, f
print *, d, e, f

More powerful formats

In this chapter, considerably complex input and output formats
will be described. Probably the most important of these concern
are multi-record formats, and the repetition of formats.

In the following statements, 12 real numbers into an array arr,
of size 12, typed 4 to a line are to be read and it could be written

read “(4f12.3)”,arr(1:4)
read “(4f12.3)”,arr(5:8)
read “(4f12.3)”,arr(9:12)

 However the following statements are identical

read “(4f12.3)”,arr <==> read “(4f12.3)”,arr(1:12)

After the read statement has used the format to input four real
numbers (which are placed in the first four elements of arr) it
finds that the input list is not yet exhausted, and that another
real number is required.

On input, a / causes the rest of the current record to be ignored
and the next input item to be the first item of the next record.
On output, a / terminates the current record and starts a new
one.

Thus the statement

read “(3f8.2,/,3i6)”,a, b, c, p, q, r

will read three real numbers from the first record and three
integers from the second.

Multiple consecutive / descriptors cause input records to be
skipped or null (blank) records to be output. Thus the
statement

read “(3f8.2,/,/,3i6)”,a, b, c, p, q, r

will cause three real numbers to be read from the first record and
three integers from the third. The second record will be skipped

and not read. Because a sequence of / edit descriptors separated by
commas is rather ugly it is permitted to precede a / edit descriptor

by a repeat count, in the same way as with a, f, i and l edit
descriptors

 Thus an alternative to the previous statement is

read “(3f8.2,2/,3i6)”,a, b, c, p, q, r

Multiple / descriptors are particularly useful on output which will produce
the output shown in the following figure, if a and b have the values 12.25
and 23.50 respectively.

real :: a,b
 a = 12.25
 b = 23.50
 write(unit=6,
c fmt="(t10,a,3/,a,f6.2,a,f6.2,a"//"f7.2,2/,a,f10.3)")
c "Multi-record example",
c " The sum of ",a," and",b," is", a+b,
c " Their product is",a*b

 Multi-record example

The sum of 12.25 and 23.50 is 35.75

 Their product is 287.875

