
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 8

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

IMPROVED BUILDING BLOCKS
Procedures and modules were first introduced at week 4 as the

fundamental building blocks in F programming. This chapter introduces
several important extensions.

Recursion is an important mathematical concept, and both function and
subroutines may be delayed to be recursive order to allow their use in

appropriate recursive algorithms. Both recursive and non-recursive
procedures in order to provide still more flexibility to a program.

F includes the capability for programmers to create their own data types to
supplement the five intrinsic types, which are integer, real, character,

logical and complex.

Since these data types must be derived from the intrinsic data types they
are called derived types.

Recursive procedures

Since the concept is easier to understand, the recursive
procedures shall be examined with functions, and then it will be extended

to subroutines.

If a function is called recursively, either directly or indirectly,
then the word recursive must be added before function in the initial

statement:

recursive function recursive_function_name(...) result(result)

The calculation of factorials, which is a recursive algorithm, will be
illustrated.

Example: Write a function to calculate n!.
Analysis: The factorial n is written by mathematicians as n! and is defined
as follows:

0! = 1, and n! = n × (n-1) × (n-2) × ... × 2 × 1 for n≥1

Another, recursive, way of expressing this is:
for n = 0 => n! = 1
for n ≥ 1 => n! = n × (n-1)

 Structure Plan

 1 Select case on n
 1.1 n = 0
 1.1.1 factorial_n = 1
 1.2 n > 0
 1.2.1 factorial_n = n*factorial(n–1)
 1.3 n < 0
 1.3.1 Error – return factorial n = 0

 recursive function factorial(n) result(factorial_n)
! dummy argument and result variable

integer, intent(in) :: n
real :: factorial_n

! determine whether further recursion is required
select case (n)
case(0)

! recursion has reached the end
factorial_n = 1.0
case (1:)

! more recursive calculation(s) requires
factorial_n = n*factorial(n-1)
case default

! n is negative - return zero as an error indicator
factorial_n = 0.0
end select

 end function factorial

A recursive subroutine operates in much the same way, and it is
specified by including the word recursive before subroutine in

the initial statement of the subroutine:

recursive subroutine factorial(n, factorial_n)
! dummy argument and result variable

integer, intent(in) :: n
real, intent(out) :: factorial_n

! determine whether further recursion is required
select case (n)
case(0)

! recursion has reached the end
factorial_n = 1.0
case (1:)

! recursive call(s) required to obtain (n-1)!
call factorial(n-1, factorial_n)
factorial_n = n*factorial_n
case default

! n is negative - return zero as an error indicator
factorial_n = 0.0
end select
end subroutine factorial

Passing procedures as arguments

It is possible to have a procedure as a dummy argument,
in which case the dummy argument is called a dummy
procedure.

However, the declaration of a dummy procedure takes a
quite different form from that of any other type of dummy
argument.

For the purpose of the declaration is to provide information
about the procedure’s interface in contrast to a dummy
variable where only the type and certain other attributes
(real, integer, character or logical) are required.

interface
 interface_body
end interface

where the syntax of the interface_body is the same as that of a
procedure, but without any declarations of local variables and without
any executable statements. For example, the interface block for a
function, which takes two real arguments and delivers a real result might
be

interface
 function dummy_fun(a,b) result(r)
 real, intent(in) :: a, b
 real :: r

 end function dummy_fun
end interface

If there are several dummy procedures then all the interface bodies may
be included in a single interface block:

interface
subroutine one_arg(x)

real, intent(inout) :: x
end subroutine one_arg

recursive subroutine two_args(x,y)
real, intent(inout) :: x, y

end subroutine two_args
end interface

The interface of the actual procedure argument corresponding to a
dummy procedure must agree with that of the dummy procedure except
that its name. The name of any dummy arguments or result variable may
be different.

Example: Write a program which uses a procedure to print the values of a
function for a sequence of values between two specified limits, and test
the procedure with the following functions and values of x:

1.) x3 – 3x2 – 4x + 12 = 0
2.) 2ex – e-x = 0
3.) sin(2x) – 2cos(x) = 0

Analysis: This program requires a module containing the three
functions,

a second module containing the print procedure, and a main program
to set things going.

It will be proceeded directly to the solution, using two modules.

 1. First module: It contains the definitions of three functions.
module functions
public :: f1,f2,f3
contains
function f1(x) result(fx)
real, intent(in) :: x
real :: fx
fx = x**3 - 3.0-x*x - 4.0*x + 12.0
end function f1
function f2(x) result(fx)
real, intent(in) :: x
real :: fx
fx = 2.0*exp(x) - exp(-x)
end function f2
function f3(x) result(fx)
real, intent(in) :: x
real :: fx
fx = sin(2.0*x) - 2.0*cos(x)
end function f3
end module functions

 2. Second module: It contains the print and interface procedures.
module use_functions
public :: list_function
contains
subroutine list_function(f,x1,x2,xinc)
! dummy arguments
interface
function f(x) result(fx)
real, intent(in) :: x
real :: fx
end function f
end interface
real, intent(in)::x1,x2,xinc
! local variable
real :: x
! loop to print values of f(x) for specified values of x
x = x1
do
print *,"x=",x,"f(x)=",f(x)
x = x + xinc
if (x > x2) then
exit
end if
end do
end subroutine list_function

end module use_functions

3. Main program.

program test_functions
use functions
use use_functions
real, parameter :: pi=3.1415927, twopi=2.0*pi,
piby4=0.25*pi
print *,"f(x) = x**3 - 3.0*x*x - 4.0*x + 12"
call list_function(f1, -4.0, 4.0, 0.5)
print *,"f(x) = 2.0*exp(x) - exp(-x)"
call list_function(f2, -10.0, 10.0, 1.0)
print *,"f(x) = sin(2.0*x) - 2.0*cos(x)"
call list_function(f3, -twopi, twopi, piby4)

end program test_functions

Creation of special data types
F includes the capability for programmers to create their

own data types to supplement the five intrinsic types, which
are integer, real, character, logical and complex. Since these
data types must be derived from the intrinsic data types they
are called derived types.

A derived data is defined by a special sequence of
statements, which in their simplest form are as follows:

type, public:: new_type
component_definition
.
.
.

end type new_type

There may be as many component definitions as required, and each takes
the same form as a variable declaration. Unlike the declaration of variables,
however, derived type definitions may only appear in a module. It gains an
access to the new data type with a public attribute. It is also permissible to

declare derived types to be private, but then the type is only available
within the module.

As an example a new data type called person, which would contain all
information, could be defined as:

type, public:: person
character (len=12) :: first_name
character (len=1) :: middle_initial
character (len=12) :: last_name
integer :: age
character (len=1) :: sex ! Male or Female
character (len=11) :: social_security

 end type person

Once a new type has been defined the variables may be declared in a
similar way to that used for intrinsic types:

type(person) :: jack, jill

Such declarations will need access to the type a definition, which is why
such definitions must always be placed in a module.

A constant value of a derived type is written as a sequence of constants
corresponding to the components of the derived type, enclosed in
parentheses and preceded by the type name:

jack = person(“Jack”,”R”,”Hagenbach”,47,”M”,”123-
45-6789”)
jill = person(“Jill”,”M”,”Smith”,39,”F”,”987-45-
6789”)

This form of defining a constant value for derived type is called a
structure constructor.

A component of a derived type variable is referred directly by
following the name of variable by a percentage sign and the
name of the component.

The following statement changes the last name of Jill to
that of Jack, for example if she had married with Jack.

jill%last_name = Jack%Last_name

A derived type can be used in the definition of another derived type:

type, public:: employee
type(person) :: employee

character (len=20) :: department
real :: salary

end type employee

However, operations between two objects of the same derived
type are more difficult because although it would be
meaningful to write

Pat%salary - Tom%salary

to establish the difference between the salaries of Pat and
Tom, since both are real values

 the expression

Pat%department - Tom%department

is meaningless because both components are character strings.

Example 1: Define two data types, one to represent a point by
means of its coordinates (in two-dimensional space only) and
the other to represent a line (also in two-dimensional space) by
the coefficients of its defining equation. Write a program
which reads the coordinates of two points and which then
calculates the line joining them, printing the equation of the
line.

Analysis: First the two derived types – point and line must be
established. The point consists of two real components, representing the
x and y coordinates, respectively.

A straight line is defined by an equation of the form ax + by + c = 0.
From simple analytical geometry knowledge, the coefficients can be
defined with

a = y2 – y1 ; b = x1 – x2 ; c = y1x2 – y2x1

where (x1, y1) and (x2, y2) are the two coordinate points on the line.

The structure plan would be:
Module geometry
(defines derived types for points and lines)

function distinct_points(p1,p2) result(distinct)
1. Set distinct true if x_coordinates or y_coordinates differ

function line_from_points(p1,p2) result(joint_line)
 2. Calculate and return the coefficients of the line joining
 the points p1 and p2.

program geometry_example
(uses geometry module)

function distinct_points(p1,p2) result(distinct)
1. Reads coordinates of two points

2. If the points are distinct
 2.1. Calculate the coefficients of the line joining
 the points
 2.2. Print equation of line
otherwise

 2.3. Print an error message

 Solution: The module and program would be:

module geometry
public :: distinct_points,line_from_points

! type definitions
 type, public :: point
! cartesian coordinates of the point
 real :: x,y
 end type point

 type, public :: line
! coefficients of defining equation
 real :: a,b,c
 end type line

! constant declaration
 real, parameter, public :: small = 1.0e-5

 contains

function distinct_points(p1,p2) result(distinct)
! returns true if the two points supplied as arguments
! are not efficiently coincident
! dummy arguments and result variable declaration
 type(point), intent(in) :: p1,p2
 logical :: distinct
! set result true if either pair of corresponding
! coordinates are different
distinct= abs(p1%x-p2%x)>small .or. abs(p1%y-p2%y)>small
end function distinct_points
function line_from_points(p1,p2) result(join_line)
! returns the line joining the two points supplied as
! arguments
! dummy arguments and result variable declaration
 type(point), intent(in) ::p1,p2
 type(line) :: join_line
! calculate coefficients of line
 join_line%a = p2%y - p1%y
 join_line%b = p1%x - p2%x
 join_line%c = p1%y*p2%x - p2%y*p1%x
end function line_from_points
end module geometry

 program geometry_example
! A program to use derived types for two-dimensional
! geometric calculations
 use geometry
! contains point and line type definitions
! constant small definition and functions
! distinct_points and line_from_points
! variable and constants declarations
 type(point) :: p1,p2
 type(line) :: p1_to_p2
! read data
 print *, "enter coordinates of first point (x,y)"
 read *, p1
 print *, "enter coordinates of second point(x,y)"
 read *, p2

! test for coincident points
 if (distinct_points(p1,p2)) then
! calculate coefficients of equation representing the line
 p1_to_p2 = line_from_points(p1,p2)
! print result
 print *,"the equation of the line joining these two"
 print *,"points is ax + by + c = 0"
 print *,"where a =",p1_to_p2%a
 print *," b =",p1_to_p2%b
 print *," c =",p1_to_p2%c
 else
 print *,"error: the two points supplied are coincident!"
 end if

 end program geometry_example

Another example will make this concept clearer

Example 2: Define a data type which can be used to represent
complex numbers, and then use it in a program which reads two
complex numbers and calculates and prints their sum,
difference and product.

Analysis: The rules for addition, subtraction and multiplication
are simply derived as:

(x1,y1) + (x2,y2) = (x1+ x2, y1+ y2)
(x1,y1) - (x2,y2) = (x1- x2, y1- y2)
(x1,y1) * (x2,y2) = (x1*x2 - y1*y2 , x1*y2 + x2*y1)

The structure plan would be:
1. Define a data type for complex numbers
2. Read two complex numbers
3. Calculate their sum, difference and
 product

 4. Print result

 module complex_arithmetic
! this module contains a derived type
! definition
! for complex numbers
 type, public :: complex_number

real :: real_part, imaginary_part
end type complex_number
end module complex_arithmetic

The module and program would be:

program complex_example
! A program to illustrate the use of a derived type to
perform
! complex arithmetic
use complex_arithmetic
! variable definitions
type(complex_number) ::c1,c2,csum,cdif,cprod
! read data
print *,"enter first complex number in the form of (x,y)"
read *, c1
print *,"enter second complex number in the form of
(x,y)"
read *, c2
! calculate sum, difference and product
csum%real_part=c1%real_part+c2%real_part
csum%imaginary_part=c1%imaginary_part+c2%imaginary_part
cdif%real_part = c1%real_part-c2%real_part
cdif%imaginary_part=c1%imaginary_part - c2%imaginary_part

cprod%real_part = c1%real_part*c2%real_part-
 c1%imaginary_part * c2%imaginary_part
cprod%imaginary_part = c1%real_part * c2%imaginary_part +
 c1%imaginary_part * c2%real_part
! print results
print *,"the sum of the two numbers is", csum
print *,"the difference between the two numbers is",cdif
print *,"the product the two numbers is",cprod

 end program complex_example

Controlling access to entities within a module
Derived types provide good programming practice to group

related variables together in a derived type definition in a
module in order that the type may then be easily used
throughout a program. The access control within a module can
be supplied by using private attribute. This restricts the use of
the derived component in a module.

type, public :: complex_number
 private
 real :: a, phi

end type complex_number

The privacy only applies outside the module in which the type
definition appears. Within the module, including all its module
procedures, the components are fully accessible.

 Example: In the previous example a data type to represent
complex numbers was defined and used this to carry out
addition, subtraction and multiplication. Write a module, which
contains a similar data type, whose components are hidden
from the user of the module, and which also contains four
procedures to carry out addition, subtraction, multiplication and
division between two complex entities.

 Analysis: It has been already carried out most of the work
for this module, other than complex division and the four new
procedures to carry out input/output and conversion. Complex
division was not discussed in that example, but is included here
for completeness. The formula required is as follows:

()
() 





+
−

+
+= 2

2
2
2

2122
2
2

2
2

2121

22

11

yx
y*xy*x,

yx
y*yx*x

y,x
y,x

Input and output procedures are needed because derived type input
and output takes place component by component, and the

components will not be accessible outside the module. Two
conversion procedures are required in order to allow access to the

real and imaginary parts. They are all quite straightforward,
however, and it can be proceeded straight to the solution.

The principle of data hiding or, more generally, of only allowing
access to a restricted set of the entities in a module is extremely
important for secure programming.

Solution: The module and program would be:

 module complex_procedures
 public :: c_add, c_subt, c_mult, c_divs, print_complex
 public :: read_complex, create_complex, extract_complex

! complex data derived type definition
 type, public :: complex_number
 private
 real :: real_part, imag_part
 end type complex_number

 contains

 function c_add(z1,z2) result(c_sum)
 type(complex_number), intent(in) :: z1, z2
 type(complex_number) :: c_sum
 c_sum%real_part = z1%real_part + z2%real_part
 c_sum%imag_part = z1%imag_part + z2%imag_part
 end function c_add

 function c_subt(z1,z2) result(c_sub)
 type(complex_number), intent(in) :: z1, z2
 type(complex_number) :: c_sub
 c_sub%real_part = z1%real_part - z2%real_part
 c_sub%imag_part = z1%imag_part - z2%imag_part
 end function c_subt

 function c_mult(z1,z2) result(c_mul)
 type(complex_number), intent(in) :: z1, z2
 type(complex_number) :: c_mul
! local variable to avoid writing more data
 real ::temp_1, temp_2
 temp_1 = z1%real_part * z2%real_part
 temp_2 = z1%imag_part * z2%imag_part
 c_mul%real_part = temp_1 - temp_2
 temp_1 = z1%real_part * z2%imag_part
 temp_2 = z1%imag_part * z2%real_part
 c_mul%imag_part = temp_1 + temp_2
 end function c_mult

 function c_divs(z1,z2) result(c_div)
 type(complex_number), intent(in) :: z1, z2
 type(complex_number) :: c_div
! local variable to avoid writing and calculating more data
 real ::temp_1, temp_2, denom
 denom = z2%real_part**2 + z2%imag_part**2
 temp_1 = z1%real_part * z2%real_part
 temp_2 = z1%imag_part * z2%imag_part
 c_div%real_part = (temp_1 + temp_2) / denom
 temp_1 = z2%real_part * z1%imag_part
 temp_2 = z1%real_part * z2%imag_part
 c_div%imag_part = (temp_1 - temp_2) / denom
 end function c_divs

 subroutine print_complex(z)
 type(complex_number), intent(in) :: z
! can not be done outside module
 print *,z
 end subroutine print_complex

 subroutine read_complex(z)
 type(complex_number), intent(out) :: z
! can not be done outside module
 read *,z
 end subroutine read_complex

 subroutine create_complex(real_part, imag_part,z)
 real, intent(in) :: real_part, imag_part
 type(complex_number), intent(out) :: z
 z%real_part = real_part
 z%imag_part = imag_part
 end subroutine create_complex

 subroutine extract_complex(real_part, imag_part,z)
 type(complex_number), intent(in) :: z
 real, intent(out) :: real_part, imag_part
 real_part = z%real_part
 imag_part = z%imag_part
 end subroutine extract_complex

 end module complex_procedures

 program test_complex
 use complex_procedures

! variabvle declaration
 type(complex_number) ::z1, z2, z3
 real :: re, im

! read a complex number
 print *, "enter two complex numbers (z1,z2)"
 call read_complex(z1)

! read two reals and form a complex number
 read *, re,im
 call create_complex(re,im,z2)

! multiply the two complex numbers and print their product
 z3 = c_mult(z1,z2)
 print *, "the product of these two numbers (z1*z2) is"
 call print_complex(z3)

! add the two complex numbers asnd print the real
! and imaginary parts of their sum
 z3 = c_add(z1,z2)
 call extract_complex(re,im,z3)
 print *,"the sum of these two numbers (z1+z2) is ", re,im

! subtract the two complex numbers and print their result
 z3 = c_subt(z1,z2)
 print*,"the difference between the two numbers (z1-z2) is"
 call print_complex(z3)

! divide the two complex numbers and print their result
 z3 = c_divs(z1,z2)
 print *, "the division of the two numbers (z1/z2) is"
 call print_complex(z3)

 end program test_complex

