
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 7

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

AN INTRODUCTION TO ARRAYS

In scientific and engineering computing, it is very common to need to
manipulate ordered sets of values, such as vectors and matrices.

There is also a common requirement in many applications to repeat the
same sequence of operations on successive sets of data.

This chapter explains the principles of array processing features and for
introductory purposes but they are restricted to one-dimensional arrays

The array concept
An array is identified by the same name but with an index, or subscript to

identify individual locations can repeat the statements in a loop or use different
variables for each iteration to carry out the same operation.

.1
r e a l

2
r e a l

3
r e a l

n
r e a l

A

The whole set of n boxes is called A, but within the set it can be identified
individual boxes by their position within the complete set. Mathematicians
are familiar with this concept and refer to an ordered set like this as the
vector A and the individual elements as A1, A2, A3 AN.

This ordered set of related variables are called as an array and the
individual items within the array as array elements

A(1), A(2), A(3), ..., A(n)

An array element is defined by writing the name of the array followed by
a subscript, where the subscript consists of an integer expression (known

as the subscript expression) enclosed in parentheses.

Thus, if x, y and z are arrays, of any type, and i,j, k are integer variables,
then the following are all valid ways of writing an array element:

x(10)
y(i+4)

z(3*max(i,j,k))
x(int(y(i)*z(j)+x(k)))

Array element is a scalar object and may be used as such.
print *, x(5)

x(1) = x(2) + x(4) + 1

Array declaration
When an array is declared, however, the compiler will allocate several

storage units, which can be done by using dimension attribute.

For example the declaration of three real arrays each containing
50 elements will be:

real, dimension(50) :: a, b, c

This informs the compiler that each of three variables specified is an array
having 50 elements. The arrays having different sizes must be written

separately.

 real, dimension(50) :: a, b, c
real, dimension(20) :: x, y

By default, the subscripts will start at 1; if one wishes the subscript to
have a different range of values then it may be written this by providing

the lower bound and the upper bound explicitly separated by a colon:

 real, dimension(11:60) :: a, b, c
 real, dimension(-20:1) :: x
real, dimension(0:49) :: z

• F permits up to seven subscripts, each of which relates to one
dimension of the array. For each dimension there are two bounds
which define the range of values that are permitted for the
corresponding subscript: the lower and the upper bound.

• The number of permissible subscripts for a particular array is
called its rank.

• The extent of a dimension is the number of elements in that
dimension and is equal to the difference between the upper and
lower bounds for that dimension plus one.

• The size of an array is the total number of elements, which make
up the array.

• The shape of an array is determined by its rank and the extent of
each dimension.

Array constants and initial values

Since an array consists of a number of array elements, it is
necessary to provide values for each of these elements by means of an
array constructor. It consists of a list of values enclosed between
special delimiters:

arr = (/ value_1, value_2, ... /)

If arr is an integer of size 10, its elements could be set to the values 1, 2,
..., 10 by the statement:

arr = (/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/)

Since the use of this representation for high numbered
arrays is impractical, in general, an implied do is used. It
takes the general form

(value_list, implied_do_control)

where the implied_do_control takes exactly the same
structure as the do variable control specification in a do
statement. Thus, the assignment statement shown above for
the array arr could also be written in more compact and
less error-prone form.

arr = (/(i, i = 1 , 10)/)

The index in an implied do (here i) must not be used for any
other purpose except as an implied do control in another
array constructor in the same procedure or main program.
Thus, for example, i could not also be a dummy argument in
the procedure that contained the array constructor.

arr = (/ -1, (0, i = 2 , 49), 1/)

This array constructor defines the sequence of 50 values
which are all zero except for the first, which takes the value
–1, and the last, which takes the value 1.

Input and output with arrays

The following statement would output the five elements of the array p
followed by the third and fourth elements of the array q and the whole of
the array r:

real, dimension(5) :: p, q
integer, dimension(4) :: r
print *, p, q(3), q(4), r

In a similar way

integer, dimension(5) :: value
read *, value

would read five values from the input stream.

Using arrays and array elements in expressions and
assignments

An array element can be used anywhere, that a scalar variable can be
used. It identifies a unique location in the memory to which a value can be
assigned or input and whose value may be used in an expression or output

list. The great advantage is that, by altering the value of the array
element’s subscript.

The use of array variables within a loop, therefore, greatly increases the
power and flexibility of a program.

The rules for working with whole arrays:

• Two arrays are conformable if they have the same shape.
• A scalar, including a constant, is conformable with an array.
• All intrinsic operations are defined between two conformable

objects.

 .
 .
 real, dimension(20) :: a, b, c, d
 .
 .
! whole-array style manipulation

 a = c*d
 .
! element-by-element style array manipulation
 do i = 1 , 20
 b(i) = c(i) * d(i)

 end do
 .
 .

It is obvious that the first style (whole-array style manipulation) is
much easier to read than the second is, as well as avoiding the need for
extraneous do loop variable i

An important point to notice is that the rule is that the shapes of two
arrays must be the same for them to conformable. It does not mean that
the range of the subscripts need be the same.

 .
 real:: a(1:20), b(0:19), c(10:29), d(-9:10)
 .
 .
! whole-array style manipulation

 a = c*d
 .
! element-by-element style array manipulation
 do i = 1 , 20
 b(i-1) = c(i+9) * d(i-10)

end do
 .

This program fragment is exactly the same as that above, except that the
bounds of four arrays are all different, even though their extents are the
same.

A scalar is conformable with any array means that it can be written
statements such as

array_1 = 10*array_2

which will cause every element of the array array_1, whatever its shape, to be
assigned a value 10 times the corresponding element of the array array_2, as
long as its shape is the same as that of array_1. Furthermore, it means that

real, dimension(1000) :: arr
arr = 1.0

will set every element of the array arr to one. This would work regardless of the
rank or size of arr. It also means that all the elements of an array in a module or
a procedure may be initialised in exactly the same way as for scalar variables:

real, save :: a = 0.0, b = 0.0
real, dimension(50), save :: c = 0.0, d = 10.0

sets all 50 elements of c to the value zero and all-50 elements of d the value 10.
Arrays, like scalars, may not be initialised in a main program.

Using intrinsic procedures with arrays

In F, arrays may be used as arguments to many of the intrinsic procedures in just
the same way scalars are. If an elemental function has an array as an argument
then the result of the function will be an array with the same shape as the
argument. Thus, if array_1 and array_2 are conformable arrays, the
statement,

array_1 = sin(array_2)

assigns the sine of each element of the array array_2 to each corresponding
element of the array array_1. Where an intrinsic function has more than one
argument then they must all be conformable, as would be expect. Thus the
statement

arr_max = max(100.0, a, b, c, d, e)
will assign to the array elements of arr_max the maximum value of the
corresponding elements of the arrays a, b, c, d and e or 100.0 if that is
greater as long as the six arrays arr_max, a, b, c, d and e are all
conformable; the scalar value 100.0 is conformable with any array.

There are a number of intrinsic functions especially meant for dealing
with arrays, for example if arr is a rank-one array

• maxval(arr)The maximum value of the elements of arr
• maxloc(arr)The location of the first element of arr having the value

maxval(arr)
• minval(arr)The minimum value of the element arr
• minloc(arr)The location of the first element of arr having the value

minval(arr)
• size(arr) The number of elements in arr
• sum(arr) The sum of the elements of arr

Sub-arrays
A sub-array consists of a selection of elements of an array and can be

manipulated in the same way that a whole array can.
In F, array sections can be extracted from a parent array in a

rectangular grid using subscript triplet notation, or in a completely
general manner using vector subscript notation. A subscript triplet takes
the following form:

subscript_1 : subscript_2 : stride

Thus, if the array arr is declared as

real, dimension(10), arr
2:8:3 is a subscript triplet that defines a set of integers that starts at 2 and proceeds
in increments of 3 until 8 is reached. Consequently, the set of subscripts is 2, 5 and
8, and arr(2:8:3) is an array whose elements are arr(2), arr(5) and arr(8) in
that order.
If stride is negative, then the subscript order is reversed with the result that
arr(8:2:-3) is an array whose elements are arr(8), arr(5) and arr(2), in that
order.

arr(1:10)is a rank-one real array containing all the elements of arr; it is in fact,
 identical to arr

arr(3:5)is a rank-one real array containing the elements arr(3), arr(4) and
 arr(5)

arr(:9)is a rank-one real array containing the elements arr(1), arr(2),
,arr(9)

arr(::4)is a rank-one real array containing the elements arr(1), arr(5),
and arr(9)

arr(:) is a rank-one real array containing all the elements arr;
it is the same as arr

A simple example of how array sections can simplify code can be seen if it is
considered how to print the first three elements of an array work of size n. Rather
than write:

print *, work(1), work(2), work(3)

it can be written the simpler

print *, work(1:3)

As more complicated example, if the even-numbered elements of an array
is wanted to print. Rather than write:

integer :: i
do i = 2, n, 2
print *, work(i)
end do

or the simpler form

print *, work(2 :: 2)

This defines an array section consisting of the even-numbered elements of
work. This version is both easier to read and less error-prone than the
first method.

 integer, dimension(10) :: a
 integer, dimension(3) :: b
 .
 .
 .
! set b(1)=a(4), b(2)=a(5) and b(3)=a(6)
 b = a(4:6)
! set a(1), a(2), a(3) to 0
 a(1:3) = 0
! set the odd-numbered elements of a to 1
 a(1 :: 2) = 1
! make each odd-numbered element of a equal to
! one more than the next even-numbered element

Array sections, since they are arrays, can be used in conjunction with
the intrinsic procedures of F. Thus:

 real, dimension(4) :: a
 .
 .
 .
 print *, sum(a(2:4))

 print *, sum(a(1:4:2))
prints out the value of a(2)+a(3)+a(4) and then the value of a(1)+a(3).

A vector subscript can be used to construct a vector from an array that is longer
than that array; for example if the arrays p and u are declared as follows:

logical, dimension(3) :: p
integer, dimension(5) :: u = (/3, 2, 2, 3, 1/)

then p(u) is a rank-one logical array of size 5 whose elements are, in order, p(3),
p(2), p(2), p(3) and p(1). This is an example of a many-one array section. That
is, it is an array section with a vector subscript having at least two elements with
the same value.

Arrays and procedures

In F, one of the most important aspects of the argument-
passing mechanism is that a procedure does not need to know
the details of the calling program unit and the current
procedure except the information about its arguments.

It would make no sense at all for the bounds of a dummy
argument array to be fixed and for all arrays passed as actual
arguments to be required to have the same bounds.

Using the assumed-shape array does this. If an array is a
procedure dummy argument, it must be declared in the
procedure as an assumed-shape array.

An assumed-shape array is a dummy argument array whose
shape is not known but which assumes the same shape as that
of any actual argument that becomes associated with it.

An assumed-shape array can take one of two forms:

(lower_bound:)
or, simply

(:)

The second for is equivalent to the first with a lower bound
equal to 1.

In both cases the upper bound will only be established on entry
to the procedure. Therefore, the actual argument array overlays
the dummy argument array.

 program main
 .
 .
 real, dimension(4) :: a
 .
 .
 call sub(a)
 .
 .
 end program main
 subroutine sub(x)
 real, intent(in), dimension(:) :: x
 .

Here x(1) corresponds to a(1)
x(1) => a(1)
x(2) => a(2)
x(3) => a(3)
x(4) => a(4)

A more complicated case:

 program main
 .
 real, dimension(b:40) :: a
 .
 call sub(a)
 .
 end program main
 subroutine sub(x)
 .
 real, intent(in), dimension(d:) :: x
 .
 from declarations x(d) will correspond to a(b)

x(d) => a(b)
x(d+1) => a(b+1)
x(d+2) => a(b+2)
x(d+3) => a(b+3)
 .
 .

Another example will make this concept clearer
 program main
 .
 real, dimension(10:30) :: a, b
 .
 call sub(a,b)
 .
 .
 end program main
 subroutine sub(dummy_array_1, dummy_array_2)
 .
 real, intent(inout), dimension(:) :: dummy_array_1,
 dummy_array_2
 .

 The two dummy argument arrays will both have lower
bounds of 1 and upper bounds of 21

If a subroutine is subsequently called from another program
unit that contains the declarations

real :: p(-5:5), q(100)

by the statement

call sub(p, q)

On this occasion both dummy argument arrays will have a
lower bound of 1, while the upper bound of dummy_array_1
will be 11 and the upper bound of dummy_array_2 will be 100.

For many purposes all the use of array manipulations examined
above may be needed, but there also be occasions when it will
be necessary for a procedure to know the size of the actual
arrays associated with its dummy argument arrays.

The intrinsic function, size, can solve this problem.

Thus, for rank-one array argument arr, size(arr)returns
the number of elements in arr.

Example: Write a subroutine that will sort a set of 10 numbers
in ascending (from smaller to bigger) order.
Analysis: This is quite a simple method to code in F; The
structure plan:

subroutine sort_ascending(name)
1. repeat for i from 1 to number-1
1.1 Save i and name(i) as current “earliest name”
1.2 Repeat for j from i+1 to number
 1.2.1 if name(j) is “earlier” than current ‘earliest’ store
it and its index

 1.3 If step 1.2 found an “earlier” name with name(i)

 subroutine sort_ascending(number,name)
! A subroutine to sort a set of integer numbers into ascending order
! dummy argument

integer, dimension(*), intent(inout) :: name
integer, intent(inout) :: number

! local variables
integer :: save_index, i, j, first, temp

! loop to sort number-1 into order
do i = 1 , number-1

! initialize earliest so far to be the first in this pass
first = name(i)
save_index = i

! search remaining (unsorted items) for earliest one
do j = i+1 , number
if (name(j) < first) then
first = name(j)
save_index = j
end if
end do
if (save_index /= i) then
temp = name(i)
name(i) = name(save_index)
name(save_index) = temp
end if
end do
end subroutine sort_ascending

