
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 6

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

REPEATING PARTS OF A PROGRAM
(LOOPS)

A very large proportion of mathematical techniques rely on some form of
iterative process,

while the processing of most types of data requires the same,
or similar actions to be carried out repeatedly for each set of data.

 One of the most important of all programming concepts
 is the ability to repeat sequences of statements

either a predetermined number of times
or until some condition is satisfied.

Program repetition and the do construct

The repetition of a block of statements a number of times is called a loop.
 It is called a do construct and takes one of the following forms:

do count = initial,final,inc
 block of statements

end do
or

 do count = initial,final
 block of statements

end do
or simply

do
block of statements

end do

A loop created by use of a do construct is called a do loop.

Count-controlled do loops
The first statement of a do loop is called a do statement.

do count = initial,final,inc
do count = initial,final

do

The first two alternatives define a count-controlled do loop, in
which an integer variable known as the do variable, is used to determine
how many times the block of statements which appears between the do

statement and the end do is to be executed.

The meaning of the second alternative, in which inc is absent, is that the
loop is executed for count taking the value initial the first time and the

loop is executed with initial+1 for next time, and so on, until it takes the
value final on the last pass through the loop.

The formal definition of this process is that
when the do statement is executed
an iteration count is first calculated using the formula

max((final-initial+inc)/inc,0)

do statement Iteration count do variable values
do i=1,10 10 1,2,3,4,5,6,7,8,9,10
do j=20,50,5 7 20,25,30,35,40,45,50
do p=7,19,4 4 7,11,15,19
do q=4,5,6 1 4
do r=6,5,4 0 (6)
do x=-20,20,6 6 -20,-14,-8,-2,4,10,16
do n=25,0,-5 6 25,20,15,10,5,0
do m=20,-20,-6 7 20,14,8,2,-4,-10,-16

At the beginning of the execution the value of count is initial, and on each subsequent pass
its value is increased by inc.

If inc is absent then its value is taken as 1.

The effect of the max function is that if final<initial then the loop will not be executed at all.

The do variables count, initial and final must be a scalar integer (for Fortran Power Station
User’s can use the variables as real also).

Because of its special role the do variables between the initial do statement and the
corresponding end do statement can not be altered while the do loop is under processing.

It must always be remembered that once the loop has been completed the value count will be
final+inc.

Example: Write a program which first reads the number of people taking
an exam.

It should then read their marks (or scores) and
 print the highest and lowest marks,

followed by the average mark for the class.

Analysis: It will be used a do loop to repeatedly read a mark and use it to
update the sum of all the marks, the maximum mark so far, and the

minimum mark so far. The initial value of the cumulative sum obviously
starts zero. The maximum and minimum marks are both set to the first

value (first mark or score) of the do loop by using an if construct, which
obviously works for only the first loop (i=1 case).

program examination_marks
integer :: i,number,mark,maximum,minimum,total
real :: average

! initialize variable
total = 0

! read number of marks , and then the marks
print *,"how many marks are there"
read *,number
print *," please type ",number," marks, one per line"

! Loop to read and process marks
do i = 1 , number
read *, mark

! initialize max. and min. marks for only the first loop.
 if (i==1) then
! this if construct is executed for the case only i=1.
 maximum = mark
 minimum = mark
 end if
! on each pass ,update sum,maximum and minimum

total = total + mark
if (mark > maximum)then
maximum = mark
else if (mark < minimum)then
minimum = mark
end if
end do

! calculate average mark and print out results
average = real(total) / number
print *,"highest mark is",maximum
print *,"lowest mark is",minimum
print *,"average mark is",average

 end program examination_marks

More flexible loops
The third form of the do statement together with a statement, exit, which causes a transfer
control to the statement immediately following the end do statement. When executed all
the remaining statements in the loop are omitted and it is always used in association with
one of the control statements (if constructs).

For example, the following loop will continue to be executed until the value of term
becomes less than the value small:

do
 .
if (term < small) then
exit
end if
 .
 end do
! After obeying the exit statement execution continues
! from the next statement (that is, after this comment)

This form of do statement does incur the risk that the condition for obeying the exit
statement may never occur. In that situation the loop will continue executing until the
program is terminated by some external means such as exceeding a time limit or switching
off the computer. In order to avoid this situation a fail-safe mechanism in which a do
variable is used to limit the number of repetitions a predefined maximum, should be used.
Therefore the simple example given above should be designed with such a mechanism:

do count=1,max_iterations
 .
if (term < small) then
exit
end if
 .
end do
! After obeying the exit statement, or after obeying
! the loop max_iterations times, execution continues
! from the next statement (that is, after this comment)
 .
 .

Giving names to do constructs

It is possible to give a name to do construct by preceding the do statement by a name,
 which follows the normal F rules for names

and is separated from the do by a colon,
and by following the corresponding end do by the same name.

 block_name: do
 .
 .

 end do block_name

