
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 5

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

CONTROLLING THE FLOW IN A PROGRAM

 the concept of comparison
between two numbers or two character strings

 explanations how such comparisons can be used to determine which of
two, or more , alternative sections of the code obeyed.

Choice and decision-making

All the programs up to now have started execution at the beginning of the main
program, and have then proceed to execute each statement one by one in turn, until

the last statement of the main program executed

F uses the words if and then to alter the sequential process.
This structure is known as an if construct.

The way an if construct works is that each decision criterion is examined in turn.
If it is true the following action or “block” of F statements is executed.

If it is not true then the next criterion (if any) is examined.
If none of the criterion is found to be true the block of statements following the

else (if there is one) is executed.

if (criterion_1) then
action_1
else if (criterion_2) then
action_2
else if (criterion_3) then
action_3
else
action_3
end if

An if structure

If there is no else statement then no

action is taken and the program flow

goes to the next statement.

if (criterion) then
action
end if

 Logical expressions and logical variables

The values true and false are called logical values.

An expression, which can take one of these two values, is called a logical
expression.

The simplest forms of logical expressions are those expressing the relationship
between two numeric values

 thus

a > b
is true if the value of a is greater then the value of b, and

x = = y

is true if the value of x equal to the value of y.

The six relational operators exist in F, which express a relationship between two

values.

a < b is true if a is less than b
a <= b is true if a is less than or equal to b
a > b is true if a is greater than b
a >= b is true if a is greater than or equal to b
a == b is true if a is equal to b
a /= b is true if a is not equal to b

The two possible logical variables in F are written as:

.true.
.false.

The logical operators .or. and .and. are used to combine two
logical expressions or values.

The effect of .or. gives a true result if either of its operand
is true.

The effect of .and. gives a true result only if both are true.

L1 L2 L1 .or. L2 L1 .and. L2
true true true true
true false true false
false true true false
false false false false

Two other logical operators exist in F.

The first of these (.eqv.) gives a true result if its operands are
equivalent (that is, if they both have the same logical value).

The other (.neqv.) is the opposite (not equivalent) and gives a
true result if they have opposite logical values.

L1 L2 L1 .eqv. L2 L1 .neqv. L2
true true true false
true false false true

 false true false true
false false true false

There is one further logical operator .not., which unlike all the other relational and
logical operator.

 The .not. operator, that is a unary, inverts the value of the following logical
expressions and has a single operand.

 If the logical expression is true then logical expression applied to .not. is false.
The following expressions are equivalent in their effect.

.not. (a<b .and. b<c) <==> a>=b .or. b>=c
or

.not. (a<b .eqv. x<y) <==> a<b .neqv. x<y

Essentially
 these operators are used in logical expressions to simplify their structure.

the following two expressions are identical in their effect.

(a<b .and. x<y) .or. (a>=b .and. x>=y) <==> a<b .eqv. x<y

 The initial statement of the construct is an if statement which consists of the
word if followed by a logical expression enclosed in parentheses, followed by the
word then:

if (logical_expression) then

This is followed by a block of statements, which will be executed only if the logical
expression is true. The block of statements is terminated by an else if statement, or

an end if statement.

The else if statement has a very similar syntax to that of an if statement:
else if (logical_expression) then

It is followed by a block of statements which will be executed if the logical
expression is true, and if the logical expression in the initial if statement, and those

of any preceding else if statements, are false.

The block of statements is terminated by another else if statement, an else statement,
or an end if statement.

The if construct

The else statement introduces a final block of statements, which will be executed
only if the logical expressions in all preceding if and else if statements are false.

Finally, the end if statement terminates the if construct.

 if (logical_expression) then
 block of F statements
 else if (logical_expression) then
 block of F statements
 else if (logical_expression) then
 .
 .
 .
 else
 block of F statements

 end if

Example: Write a function, which will return the cube root of its argument.
In section 4.3 a function to meet this requirement, which was only valid for
positive argument, was written. If the argument is negative the relation can be
used. The zero argument situation is however, slightly more complicated, since it
is not possible to calculate the logarithm of zero.

Structure plan

Function cube_root(x)
if x = 0
Return zero
else if x < 0
Return -exp(log(-x)/3)
else
Return exp(log(x)/3)

 end if

 program test_cube_root
 real :: x
 print *," type real positive number"
 read *, x
 print *,"the cube root of x=",x," is",cube_root(x)
 end program test_cube_root
 function cube_root(x) result(root)
! Dummy argument declaration
 real::x
! Result variable declaration
 real::root
! Local variable declaration
 real::log_x
! eliminate the zero case

if(x==0.0) then
root = 0.0

! Calculate cube root by using logs
else if (x<0.0) then

! first deal with negative arguments
 log_x = log(-x)
 root = -exp(log_x/3.0)

else
 log_x = log(x)
 root = exp(log_x/3.0)

end if
! positive argument

end function cube_root

Comparison of character string

Character strings are compared with the rule of
the collating sequence of letters, digits, and other characters,

which is based on the order of these characters in the
American National Standard Code for Information

Interchange (ASCII).

F lays down six rules for this, covering letters, digits and the
space or blank character.

 1. The 26 upper-case letters are collated in the following order:
 A B C D E F G H I J K L M N O P Q R S T U W Y Z

2. The 26 lower-case letters are collated in the following order:
 a b c d e f g h i j k l m n o p q r s t u w y z

3. The 10 digits are collated in the following form:
 0 1 2 3 4 5 6 7 8 9

4. A space (or blank) is collated before both letters an digits

5. Digits are all collated before the letter A.

6. Upper-case letters are all collated before any lower-case letters.

The position in the collating sequence of the other 22 characters in the F
character set is determined by their position in the ASCII collating sequence.

 1. If the two operands are not the same length
 the shorter one is treated as though it were extended on
 the right with blanks until it is the same length as the
 longer one.

• “Adam” > “Eve” is false because A comes before E

2. The two operands are compared character by character,
 starting with the left-most character,
 until either a difference is found or the end of the operands is reached

• “Adam” < “Adamant” is true because after Adam has been extended
the relationship reduces to “ “ < “a”
after the first four characters have been found to be the same.
Since a blank comes before a letter, this is true

 3. If a difference is found, then the relationship between the two operands
 with the character, which comes earlier in the collating sequence being

deemed to be lesser of the two. If no difference is found
then the strings are considered to be equal.

• “120” < “1201” is true because the first difference in the string leads to an
 evaluation of “ “< “1”, which is true since a blank also comes before a digit.

• “ADAM” < “Adam” is true because the first difference in the strings leads
 to an evaluation of “D”<”d”, which is true since upper-case letters come
 before lower-case letters.

 Example 1: Write a function which takes a single character as its argument
 and returns a single character according to the following rules:

• If the input character is a lower-case letter then return its upper-case
 equivalent.
• If the input character is an upper-case letter then return its lower-case
 equivalent.
• If the input character is not a letter then return it unchanged.

Analysis: The major problem is establishing the relationship between upper and
lower-case letters, so that conversions may be easily made.

 It can be used the ASCII code to effect due to the existence of the two intrinsic
functions ichar() and char().

 Ichar() provides the position of its character argument in
 he ASCII collating sequence.

 ichar(“A”) is 65. Char() returns the character at a specified position in that
sequence.

Therefore char(97) returns to the character “a”. Every lower-case character is
exactly 32 positions after its upper-case equivalent in the ASCII character set.

Structure plan
Function change_case(ch)
if A <= ch <=Z
calculate the lower-case of the character ch
else if a <= ch <=z
calculate the upper-case of the character ch
else
return without changing

 end if

 program character_converter
character(len=1) ::input_char,change_case
print *,"enter a character"
read *, input_char
print *,"input character = ",input_char
print *,"output character = ",change_case(input_char)
end program character_converter

 function change_case(ch) result(ch_new)
! this function changes the case of its argument
! if it is alphabetic
! Dummy arguments and result

character (len=*), intent(in)::ch
character (len=1) :: ch_new

! Check if argument is upper-case - convert lower-case
if (ch>="A" .and. ch<="Z") then
ch_new = char(ichar(ch) + 32)

! Check if argument is lower-case - convert upper-case
else if (ch>="a" .and. ch<="z") then
ch_new = char(ichar(ch) - 32)
else

! not alphabetic
ch_new = ch
end if
end function change_case

Example 2: Write a program that reads the coefficient of a quadratic equation of the
form ax2+bx+c=0 and print its roots.

Analysis: The program will use the formula:

a2
ac4bbx

2

2,1
−±−=

There are three possible cases:

0ac4b 2 >−

0ac4b2 =−

0ac4b2 <−

The equation will have two real roots.

The equation will have two coincident roots

The equation will have no roots.
 (actually in this case the roots will be imaginary but
this is out of scope of this chapter)

Since the real arithmetic is an approximation, the equality of two real numbers should
never been tested. If the numbers have been calculated in a different way, they will

often differ very slightly. This difficulty can be avoided by comparing the difference
two real numbers with a very small number. Therefore the second case can be written

as follows:

where small is a very small number, in this case the equation will have one root.

In this case the suitable design would be:

 read coefficients
 calculate b2-4ac, and store it in d
 if d > small then
• calculate and print two roots
 if d < -small then
• print message “no roots”
 if –small ≤ d ≤ small then
• calculate and print two equal roots

 end of if block

smallac4bsmall 2 ≤−≤−

 program quadratic_equation_solution
! A program to solve a quadratic equation using an if
! construct to distinguish between the three cases.
! Constant declaration
 real, parameter :: small=1.e-6
! Variable declarations
 real :: a,b,c,d,x1,x2
! read coefficients
 print *," Type the three coefficients a, b and c"
 read *, a,b,c
! Calculate b^2-4ac
 d = b**2 - 4.0*a*c
! calculate an print roots
 if (d > small) then
! two roots case
 x1 = (-b - sqrt(d)) / (2.0*a)
 x2 = (-b + sqrt(d)) / (2.0*a)
 print *," The equation has two roots:"
 print *," x1=",x1," x2=",x2
 else if (-small <= d .and. d <= small) then
! two coincident roots case
 x1 = -b / (2.0*a)
 print *," The equation has two coincident roots:"
 print *," x1=x2=",x1
 else
! No root case
 print *," The equation has no real roots"
 end if

end program quadratic_equation_solution

The case construct

F provides another form of selection, known as the case construct, to deal with the situation
in which the various alternatives are mutually exclusive.

The initial statement of a case construct takes the form

select case (case_expression)

where case_expression is either an integer or a character expression.

When the select case statement is encountered the value of case_expression is
evaluated, and its value used to determine which, if any, of the alternative blocks of
statements in the case construct is to be executed.

select case (case_expression)
case (case_selector)
block of statements
case (case_selector)
block of statements
 .
end select

The case_selector determines, which, if any, of the blocks of statements will be
obeyed

Example 1: Write a program that reads the date in the form of dd-mm-yyyy and prints a
message to indicate whether on this date, it will be spring, summer, fall and winter.

Analysis: The problem is ideally suited for a case statement. The structure plan of the
problem may be:

 read date
extract month from date
select case
month is 3-5 => print “spring”
month is 6-8 => print “summer”
month is 9-10 => print “fall”
month is 11-12,1 => print “winter”
month is anything else print an error message

 program seasons
! A program to calculate in which season a specified date lies.
! variable declarations

character(len=10) :: date
character(len=2) :: month

! read date
print *, "Please type a date in the form dd-mm-yyy"
read *, date

! extract month number
month = date(4:5)

! extract from 4th to 5th character of string date and assign them
! to character variable month
! print season

select case(month)
! case("03","04","05")

case("03":"05")
print *, date , " is in the spring"
case("06","07","08")
print *, date , " is in the summer"
case("09","10","11")
print *, date , " is in the fall"
case("12","01","02")
print *, date , " is in the winter"
case default
print *, date , " is invalid date"
end select
end program seasons

