
Introduction to
Scientific & Engineering Computing

BIL 102FE (Fortran) Course
for

Week 4

Dr. Ali Can Takinacı
Assistant Professor

in
The Faculty of Naval Architecture and Ocean Engineering

80626
Maslak – Istanbul – Turkey

 BASIC BUILDING BLOCKS
Two types of procedures (subroutine and function) and module

in F

Programs and modules
A module is primarily a means of collecting together a set of related objects

(procedures, variables and data types)

A Module does not contain any executable statement

Procedures
A special section of programs

It is known as procedures
 Modules normally collect procedures together

In F, all procedures must be defined within modules

Intrinsic Functions

The function takes one or more values (called arguments)
and

create single result

There are 97 intrinsic functions defined in F
e.g.

sin(x) calculates the value of sinx where x is in radians
log(x) calculates the value of logex
sqrt(x) calculates the square root of x

real :: x, y
y = abs(x)

will produce the absolute value of the real variable x.

Functions

The function statement, which is one of a sub-program of F, takes the form

function name(d1, d2, ...) result(result_name)

where d1, d2, ... are dummy argument which are used when the function is
executed.

The result_name is the final result of the function after execution.

The final statement of the function is the end function statement,

taking the form,

end function name

As an example, a function, which calculates the cube root of a positive real
numbers and a main program is given

 module cube_root_calc_1
public :: cube_root
contains
function cube_root(x) result(root)

! Dummy argument declaration
real::x

! Result variable declaration
real::root

! Local variable declaration
real::log_x

! Calculate cube root by using logs
log_x = log(x)
root = exp(log_x/3.0)
end function cube_root
end module cube_root_calc_1

! **
program test_cube_root
use cube_root_calc_1
real :: x
print *," type real positive number"
read *, x
print *,"the cube root of x=",x," is",cube_root(x)
end program test_cube_root

There are three important points to notice about the function.

1. The variable log_x and root are not accessible from outside the function.
 They are called internal variables or local variables, and have no existence
 outside the function. Therefore the names log_x and root can be used in the
 main program or another procedure without any difficulty since they are
 isolated inside the function.

2. Every function must have exactly one such result variable whose name must
 appear in the result clause of the function statement.

3. The dummy argument, x, must be defined in the phrase intent(in) after the type
 declaration. This informs the compiler that the dummy argument can not be
 changed

When the end function statement is obeyed it causes execution of the program to
return to the point program at which the function was referenced. For example
the statement

a = b*cube_root(c) + d

will cause the cube root of c to be calculated by the function , multiplied by b,
added to the current value of d, then the sum is assigned to the variable a.

It is possible to write a function, which has no argument such as

function name() result name(result_name)

Although this kind of use is not very good, the function is referenced such as

a = b*name() + c.

As a result, writing its name, followed by any arguments it may have enclosed in
parenthesis references a function.

The execution of a function yields to a single value.

Subroutines

A subroutine is accessed by means of a call statement.
This gives the name of the subroutine and list of arguments, which will be used to
transmit information between the calling program unit and the subroutine:

call name(arg1, arg2,)

The call statement interrupts the execution of main program and the program flow
goes to the statement contained within the subroutine name.

When the subroutine has completed its task it returns to the place where it was
called.

 program various_roots
! A program to show the use of the subroutine roots
 real :: x,root_2,root_3,root_4,root_5

print *," type real positive number"
read *, x

! obtain roots
call roots(x,root_2,root_3,root_4,root_5)
print *,"the square root of x=",x," is",root_2
print *,"the cube root of x=",x," is",root_3
print *,"the fourth root of x=",x," is",root_4
print *,"the fifth root of x=",x," is",root_5
end program various_roots

A program sample (main program)

module various_roots_1
public :: roots
contains
subroutine roots(x,square_root,cube_root,fourth_root,fifth_root)

! subroutine to calculatebvarious rots of a positive real numbers
! supplied as the first argument, and returned them in the second to !
! fifth arguments
! Dummy argument declaration

real, intent(in)::x
! Result variable declaration

real, intent(out)::square_root,cube_root,fourth_root,fifth_root
! Local variable declaration

real::log_x
! Calculate square root using intrinsic sqrt()

square_root = sqrt(x)
! Calculate other root by using logs

log_x = log(x)
cube_root = exp(log_x/3.0)
fourth_root = exp(log_x/4.0)
fifth_root = exp(log_x/5.0)
end subroutine roots
end module various_roots_1

A program sample (sub program)

The subroutine calculates the square root, the cube root, the fourth root and the fifth
root of a positive real number

The code is very similar to that written for the corresponding function.

The dummy arguments have given an intent(out) attribute, to indicate that they are to
be used to transfer information from the subroutine back to the calling program.

The name of the subroutine is simply a means of identification and the interface of
for a subroutine is the name of subroutine, together with the number and type of any
dummy argument

 Finally
A subroutine may call other subroutines but it must not call itself.

some important points

Actual and dummy arguments

When a function or subroutine is referenced
the information between the calling program unit and the subroutine or the function

is passed through its arguments

The relationship between the actual arguments in the calling program unit

and

the dummy arguments in the subroutine or function is of vital importance

 The order and types of the actual arguments
 must correspond exactly with the order

and

types of the corresponding dummy arguments.

Example
Write a subroutine which will take two character arguments as input arguments,
containing two names (a “first name” and a “family name”, respectively) and
which will return a string containing the two names with exactly one space
separating them.

Analysis & Solution
The major difficulty is in the declaration of the length of the two names in the
subroutine. This difficulty can be handled by using an assumed-length character
declaration in the F. This can only be used for declaring a dummy argument, and
involves replacing the length specifier by an asterisk:

character (len=*) :: character_len_argument

This assumes that the length from the corresponding actual argument in the
calling program is the same as the length of the dummy argument in the
subroutine.

The other difficulty is the redundant spaces at the beginning or the end of the two
names and then inserting exactly one character between them. The intrinsic
function, trim, removes any trailing blanks from argument and adjustl moves
argument enough spaces to the left to remove any leading blank

 program make_full_name
! Variable declaration
 character (len=80)::name_1,name_2,name
! read the first name
 print *,"enter the first name"
 read *,name_1
! read the surname
 print *,"enter the surname"
 read *,name_2
! combine two names by using the subroutine named
 get_full_name
 call get_full_name(name_1,name_2,name)
 print *,"the combination of the two names is => ",name
 end program make_full_name
 subroutine get_full_name(first_name,last_name,full_name)
! Subroutine to join two names to form a full name with
 a single space between the first and last names
! Dummy argument declaration
 character (len=*), intent(in) ::first_name,last_name
 character (len=*), intent(out) ::full_name
! use adjustl to remove redundant leading blanks, and trim
! to remove redundant blanks atr the end of first name
 full_name = trim(adjustl(first_name)) // " " //
 c adjustl(last_name)

end subroutine get_full_name

 some important points

Although the dummy arguments are declared to be of assumed length, the
corresponding actual arguments are declared with specific lengths in the calling
program (here main program) unit.

The result of the adjustl function has been used as the argument to trim.

The first function adjustl moves its argument, first_name, to the left to eliminate
any leading blanks

the second trim takes the result and removes any trailing blanks.

 Local and global objects

A module may be used to make variables and constants available to several
procedures.
This can be performed using a public attribute in the declaration statement.
Any public statements must appear before any declaration statements.

For example if one wished to use the values of π, g (acceleration of gravity) and e
in a number of different procedures, a simple module performing this would be,

module Natural_Constants
real,parameter,public::pi=3.1415927,g=9.81,e=2.7182818

 end module Natural_Constants

 In order to obtain access to the constants defined in
 the module Natural_Constants
 the use statement must appear immediately after the initial statement, which may
 be a module, a procedure or a main program
 as shown in the module_example_1 example.

Program module_example_1
Use Natural_Constants
print *,g,pi

 end program module_example_1

In this example, the values, g and π, are printed out without any assignment to
them but the module, Natural_Constants, must be compiled before Program
module_example_1.

 Giving procedure variables an initial name

If there is a situation when a variable in a procedure may be
required to have an initial value on the first reference to the
procedure the save attribute can be used.

real, save :: b=1.23
integer, save :: count=0

In this program part example, the initial values are assigned
to the variable b as the real and the variable count as the
integer.

 Procedures as an aid to program structure

The modular program development, which is the key concept
of the software engineering,

enables us to break the design of a program into several
smaller, more manageable sections
known as modules, and procedures.

But this requires much more experience and effort on
programming.

